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Using a large-scale Deep Learning approach applied to a high-frequency database containing bil-
lions of market quotes and transactions for US equities, we uncover nonparametric evidence for the
existence of a universal and stationary relation between order flow history and the direction of price
moves. The universal price formation model exhibits a remarkably stable out-of-sample accuracy
across a wide range of stocks and time periods. Interestingly, these results also hold for stocks which
are not part of the training sample, showing that the relations captured by the model are universal
and not asset-specific.

The universal model—trained on data from all stocks—outperforms asset-specific models trained
on time series of any given stock. This weighs in favor of pooling together financial data from
various stocks, rather than designing asset- or sector-specific models, as is currently commonly done.
Standard data normalizations based on volatility, price level or average spread, or partitioning the
training data into sectors or categories such as large/small tick stocks, do not improve training results.
On the other hand, inclusion of price and order flow history over many past observations improves
forecast accuracy, indicating that there is path-dependence in price dynamics.

Keywords: Financial econometrics; High-frequency data; Machine learning; Deep learning; Price
formation; Market microstructure; Intraday data; Limit order book

JEL Classification: C14, C45, C58

1. Price formation: how markets react to fluctuations in
supply and demand

The computerization of financial markets and the availability
of detailed electronic records of order flow and price dynam-
ics in financial markets over the last decade has unleashed
TeraBytes of high-frequency data on transactions, order flow
and order book dynamics in listed markets, which provide us
with a detailed view of the high-frequency dynamics of sup-
ply, demand and price in these markets (Cont 2011). These
data may be put to use to explore the nature of the price for-
mation mechanism which describes how market prices react
to fluctuations in supply and demand. At a high level, a ‘price
formation mechanism’ is a map which represents the rela-
tionship between the market price and variables such as price
history and order flow:

Price (t + �t) = F (Price history (0 . . . t), Order Flow

× (0 . . . t), Other Information) = F(Xt, εt),

*Corresponding author. Email: Rama.Cont@maths.ox.ac.uk

where Xt is a set of state variables (e.g. lagged values of
price, volatility, and order flow), endowed with some dynam-
ics, and εt is a random ‘noise’ or innovation term representing
the arrival of new information and other effects not captured
entirely by the state variables. Market microstructure models,
stochastic models and machine learning price prediction mod-
els can all be viewed as different ways of representing this
map F.

One question, which has been implicit in the litera-
ture, is the degree to which this map F is universal
(i.e. independent of the specific asset being considered).
The generic, as opposed to asset-specific, formulation of
market microstructure models seems to implicitly assume
such a universality. Empirical evidence on the universal-
ity of certain stylized facts (Cont 2001) and scaling rela-
tions (Mandelbrot et al. 1997, Benzaquen et al. 2016, Kyle
and Obizhaeva 2016, Patzelt and Bouchaud 2017, Toth et
al. 2017, Andersen et al. 2018) seems to support the univer-
sality hypothesis. Creamer and Freund (2007) recommended
training models via a universal approach in order to cap-
ture the diversity of different companies. Yet, the practice

© 2019 Informa UK Limited, trading as Taylor & Francis Group

https://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2019.1622295&domain=pdf&date_stamp=2019-07-31
mailto:Rama.Cont@maths.ox.ac.uk


1450 J. Sirignano and R. Cont

of statistical modeling of financial time series has remained
asset-specific: when building a model for the returns of a
given asset, market practitioners and econometricians typi-
cally use data from the same asset. For example, a model for
Microsoft shares would be estimated using only time series
of Microsoft share prices and would not use data from other
stocks.

Furthermore, the data used for estimation is often limited to
a recent time window, reflecting the belief that financial data
can be ‘non-stationary’ and prone to regime changes which
may render older data less relevant for prediction.

Due to such considerations, models considered in financial
econometrics, trading and risk management applications are
asset-specific and their parameters are (re)estimated over time
using a time window of recent data. Such a model for an asset
i may be expressed in the form

Pricei(t + �t) = F(X i
0:t, εt | θi(t)),

where the model parameter θi(t) is estimated using recent
data on price and other state variables related to asset
i. As a result, data sets are fragmented across assets
and time and, even in the high-frequency realm, the size
of data sets used for model estimation and training are
orders of magnitude smaller than those encountered in other
fields where Big Data analytics have been successfully
applied. This is one of the reasons why, except in a few
instances (Sirignano et al. 2016, Kolanovic and Krishna-
machari 2017, Dixon 2018a, 2018b, Sirignano 2019), large-
scale machine learning methods such as Deep Learning
(Goodfellow et al. 2017) have not yet been deployed for
quantitative modeling in finance.

On the other hand, if the relation between these variables
were universal and stationary, i.e. if the parameter θi(t) varies
neither with the asset i nor with time t, then one could poten-
tially pool data across different assets and time periods and
use a much richer data set to estimate/train the model. For
instance, data on a flash crash episode in one asset market
could provide insights into how the price of another asset
would react to severe imbalances in order flow, whether or
not such an episode has occurred in its history. This idea,
known as transfer learning, has been used with great success
in applications such as image and text recognition.

In this work, we provide evidence for the existence of
such a universal, stationary relation between order flow and
market price fluctuations, using a nonparametric approach
based on Deep Learning. Deep learning can estimate non-
linear relations between variables using ‘deep’ multilayer
neural networks which are trained on large data sets using
‘supervised learning’ methods (Bengio et al. 2015).

Using a deep neural network architecture trained on a high-
frequency database containing billions of electronic market
transactions and quotes for US equities, we uncover nonpara-
metric evidence for the existence of a universal and stationary
price formation mechanism relating the dynamics of supply
and demand for a stock, as revealed through the order book, to
subsequent variations in its market price. We assess the model
by testing its out-of-sample predictions for the direction of
price moves given the history of price and order flow, across
a wide range of stocks and time periods. The universal price

formation model exhibits a remarkably stable out-of-sample
prediction accuracy across time and across a wide range of
stocks from different sectors. Interestingly, these results also
hold for stocks which are not part of the training sample,
showing that the relations captured by the model are univer-
sal and not asset-specific. We observe that the neural network
thus trained outperforms linear models, pointing to the pres-
ence of nonlinear relationships between order flow and price
changes.

Our paper provides quantitative evidence for the exis-
tence of a universal price formation mechanism in financial
markets. The universal nature of the price formation mech-
anism is reflected by the fact that a model trained on data
from all stocks outperforms, in terms of out-of-sample pre-
diction accuracy, stock-specific linear and nonlinear models
trained on time series of any given stock. This shows that
the universal nature of price formation weighs in favor of
pooling together financial data from various stocks, rather
than designing stock- or sector-specific models as commonly
done. Also, we observe that standard data transformations
such as normalizations based on volatility or average spread,
or partitioning the training data into sectors or categories
such as large/small tick stocks, do not improve training
results. On the other hand, inclusion of price and order flow
history over many past observations improves forecasting
performance, showing evidence of path-dependence in price
dynamics.

Remarkably, the universal model is able to extrapolate, or
generalize, to stocks not within the training set. The univer-
sal model is able to perform well on completely new stocks
whose historical data the model was never trained on. This
shows that the universal model captures features of the price
formation mechanism which are robust across stocks and
sectors and implies the possibility of using transfer learn-
ing for training price prediction models. This feature is quite
interesting for applications in finance where missing data
problems and newly issued securities often complicate model
estimation.

Outline: Section 2 describes the dataset and the supervised
learning approach used to extract information about the price
formation mechanism. Section 3 provides evidence for the
existence of a universal and stationary relationship linking
order flow and price history to price variations. Section 4 sum-
marizes our main findings and discusses some implications.

2. Data-driven modeling of price formation via deep
learning

Applications such as image, text, and speech recognition have
been revolutionized by the advent of ‘Deep Learning’—the
use of multilayer (‘deep’) neural networks trained on large
data sets to uncover complex nonlinear relations between
high-dimensional inputs (‘features’) and outputs (LeCun et
al. 2015).

At an abstract level, a deep neural network represents a
functional relation y = f (x; θ) between a high-dimensional
input vector x and an output y through iterations (‘layers’)
consisting of weighted sums followed by the application of
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nonlinear ‘activation’ functions. Each iteration corresponds to
a ‘hidden layer’ and a deep neural network can have many
hidden layers. The network weights are the parameters θ

for the model. Neural networks can be used as ‘universal
approximators’ for complex nonlinear relationships (Hornik
et al. 1989), by appropriately choosing the weights in each
layer.

In practice, the network weights are estimated by opti-
mizing a regularized cost function reflecting in-sample dis-
crepancy between the network output and desired outputs.
This optimization is computationally intensive due to the
large number of parameters (possibly millions) and the large
amount of data. Stochastic gradient descent algorithms (e.g.
RMSprop or ADAM) are used for training neural networks,
and training is parallelized on Graphics Processing Units
(GPUs).

We apply this approach to learn the relation between sup-
ply and demand on an electronic exchange—captured in the
history of the order book for each stock—and the subsequent
variation of the market price. Our data set is a high-frequency
record of all orders, transactions and order cancellations for
approximately 1000 stocks traded on the NASDAQ between
January 1, 2014 and March 31, 2017.†

Electronic buy and sell orders are continuously submitted,
cancelled and executed through the exchange’s order book.
A ‘limit order’ is a buy or sell order for a stock at a cer-
tain price and will appear in the order book at that price
and remain there until cancelled or executed. The ‘limit order
book’ is a snapshot of all outstanding limit orders and thus
represents the visible supply and demand for the stock (see
figure 1). In US stock markets, orders can be submitted at
prices occurring at multiples of 1 cent. The ‘best ask price’
is the lowest sell order and the ‘best bid price’ is the high-
est bid price. The best ask price and best bid price are the
prices at which the stock can be immediately bought or sold.
The ‘mid-price’ is the average of the best ask price and best
bid price. The order book evolves over time as new orders
are submitted, existing orders are cancelled, and trades are
executed.

In electronic markets such as the NASDAQ, new
orders may arrive at high frequency—sometimes every
microsecond—and order books of certain stocks can update
millions of times per day. This leads to TeraBytes of data,
which we put to use to build a data-driven model of the price
formation process.

Our deep learning model is a recurrent neural network with
Long Short-Term Memory (LSTM) units (Gers et al. 2000)
whose architecture is schematically represented in figure 2.
LSTM networks can learn nonlinear representations of his-
torical data, which it uses for predictions. Each LSTM unit
has an internal state which maintains a nonlinear represen-
tation of all past data. This internal state is updated as new
data arrives. Our network has 3 layers of LSTM units fol-
lowed by a final fully-connected layer of rectified linear units
(ReLUs). A probability distribution for the next price move is
produced by applying a softmax activation function. LSTM
units are specially designed to efficiently encode temporal

† Historical order book data was reconstructed from NASDAQ Level
III data using the LOBSTER data engine (Huang and Polak 2011).

Figure 1. The limit order book represents a snapshot of the supply
and demand for a stock on an electronic exchange. The ‘ask’ side rep-
resents sell orders and the ‘bid’ side, buy orders. The size represents
the number of shares available for sale/purchase at a given price.
The difference between the lowest sell price (ask) and the highest
buy price (bid) is the ‘spread’ (in this example, 1 cent ).

sequences of data. Deep LSTM networks have found great
success in speech and text recognition applications (Gers et
al. 2000, Goodfellow et al. 2017).

We train the network to forecast the next price move from a
vector of state variables, which encode the history of the order
book over many observation lags. The index t represents the
number of price changes. At a high level, the LSTM network
is of the form

(Yt, ht) = f (Xt, ht−1; θ). (0)

Yt is the prediction for the next price move, Xt is the state of
the order book at time t, ht is the internal state of the deep
learning model, representing information extracted from the
history of X up to t, and θ designates the model parameters,
which correspond to the weights in the neural network. At
each time point t the model uses the current value of state
variables Xt (i.e. the current order book) and the nonlinear
representation of all previous data ht−1, which summarizes
relevant features of the history of order flow, to predict the
next price move. In principle, this allows for arbitrary history-
dependence: the history of the state variables X0:t may affect
the evolution of the system, in particular price dynamics,
at all future times T ≥ t in a nonlinear way. Alternative
modeling approaches typically do not allow the flexibil-
ity of blending nonlinearity and history-dependence in this
manner.

The (high-dimensional) parameter θ is estimated by mini-
mizing a regularized negative log-likelihood objective func-
tion using stochastic gradient descent. The parameter θ is
assumed to be constant across time and thus affects the out-
put at all times in a recursive manner. A stochastic gradient
descent step at time t requires calculating the sensitivity of
the output to θ , via a chain rule, back through the previous
times t − 1, t − 2, . . . (commonly referred to as ‘backprop-
agation through time’). In theory, backpropagation should
occur back to time 0. In practice, we limit the dependence
on past data to a window of length T : t − 1, t − 2, . . . , t − T .
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Figure 2. Architecture of a recurrent neural network.

In Section 3.4, we examine the dependence of the results on
the choice of the window length T and evidence for memory
effects.

The resulting LSTM network involves up to hundreds of
thousands of parameters. This is relatively small compared to
networks used for instance in image or speech recognition,
but it is huge compared to econometric models traditionally
used in finance. Previous literature has been almost entirely
devoted to stochastic models with a very small number of
parameters. It is commonly believed that financial data is far
too noisy to build such large models without overfitting. As
we will show, our results suggest that this is not necessar-
ily the case, provided a flexible non-parametric framework is
used for modeling dependencies.

Given the size of the data and the large number of network
parameters to be learned, significant computational resources
are required both for pre-processing the data and training the
network. Training of deep neural networks can be highly par-
allelized on GPUs. Each GPU has thousands of cores, and
training is typically 10× faster on a GPU than a standard CPU.
The NASDAQ data was filtered to create training and test sets.
This data processing is parallelized over approximately 500
compute nodes. Training of asset-specific models was also
parallelized, with each stock assigned to a single GPU node.
500 GPU nodes are used in total to train the stock-specific
models.

These asset-specific models, trained on the data related to
a single stock, were then compared to a ‘universal model’
trained on the combined data from all the stocks in the
dataset. Data from various stocks were pooled together for
this purposes without any specific normalization.

Due to the large amount of data, we distributed the training
of the universal model across 25 GPU nodes using asyn-
chronous stochastic gradient descent (figure 3). Each node
loads a batch of data (selected at random from all stocks in
the dataset), computes gradients of the model on the GPU,
and then updates the model. Updates occur asynchronously,
meaning node j updates the model without waiting for nodes
i �= j to finish their computations.

3. Results

We split the universe of stocks into two groups of roughly 500
stocks; training is done on transactions and quotes for stocks
from the first group. We distinguish:

• stock-specific models, trained using data on all
transactions and quotes for a specific stock.

• the ‘universal model’, trained using data on all
transactions and quotes for all stocks in the training
set.

All models are trained for predicting the direction of the
next price move. Specifically, if τ1, τ2, . . . are the times at
which the mid-price Pt changes, we estimate P[Pτk+1 − Pτk >

0|Xτ0:k ] and P[Pτk+1 − Pτk < 0|Xτ0:k ] where Xt is the state of
the limit order book at time t. The models therefore pre-
dict whether the next price move is up or down. The events
are irregularly spaced in time. The time interval τk+1 − τk

between price moves can vary considerably from a fraction
of a second to seconds.

We measure the forecast accuracy of a model for a given
stock via the proportion of observations for which it correctly
predicts the direction of the next price move. This can be
estimated using the empirical estimator

Ai =
Number of price changes where model correctly

predicts price direction for stock i

Total number of price changes

× 100%.

All results are out-of-sample: the accuracy is evaluated on
time periods outside of the training set. Model accuracy is
reported via the cross-sectional distribution of the accuracy
score Ai across stocks in the testing sample, and models are
compared by comparing their accuracy scores.

Our results provide evidence of short-term predictability of
(mid-)price movements when order flow is observed. Mod-
els can achieve an accuracy significantly higher than 50%
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Parameter Server

Model is stored on the parameter server node

Node 25 GPUGPUGPU Node 2Node 1
Data

Gradients

Random batch of data loaded from
Online Storage onto compute nodes

IBMMSFTAAPL
Data

Compressed in HDF5 and
located in Online Storage

Current model

Gradients

Asynchronous updates to the model

Figure 3. Asynchronous stochastic gradient descent for training the neural network. The dataset, which is too large to be held in the nodes’
memories, is stored on the Online Storage system. Batches of data are randomly selected from all stocks and sent to the GPU nodes. Gradients
are calculated on the GPUs and then the model is asynchronously updated.

for short-term prediction of mid-price movements using order
flow data. Determining whether this predictability leads to
profitable trading strategies requires a careful analysis of
transaction costs, taking into account factors such as latency,
a detailed study of which is beyond the scope of this paper.

In addition, we evaluate the accuracy of the universal
model for stocks outside the training set. Importantly, this
means we assess forecast accuracy for stock i using a model
which is trained without any data on stock i. This tests
whether the universal model can generalize to completely new
stocks.

Typically, the out-of-sample dataset is a 3-month time
period and the training set is a 17-month time period. (There-
fore, the test set is approximately 15% of the dataset.) In the
context of high-frequency data, 3 months corresponds to hun-
dreds of millions of observations and therefore provides a
rigorous test of model performance.

The main findings of our data-driven approach may be
summarized as follows:

• Nonlinearity: Data-driven models trained using
deep learning substantially outperform linear mod-
els in terms of forecasting accuracy (Section 3.1).

• Universality: The model uncovers universal fea-
tures that are common across all stocks (Section
3.2). These features generalize well: they are also
observed to hold for stocks which are not part of
the training sample.

• Stationarity: The model performance in terms
of price forecasting accuracy is remarkably sta-
ble across time, even a year out of sample. This
shows evidence for the existence of a stationary
relationship between order flow and price changes
(Section 3.3), which is stable over long time
periods.

• Path-dependence and long-range dependence:
Inclusion of price and order flow history is shown
to substantially increase the forecast accuracy. This
provides evidence that price dynamics depend not
only on the current or recent state of the limit order
book but on its history, possibly over long time
scales (Section 3.4).

Our results show that there is far more common structure
across data from different financial instruments than previ-
ously thought. Providing a suitably flexible model is used
which allows for nonlinearity and history-dependence, data
from various assets may be pooled together to yield a data set
large enough for deep learning.

3.1. Deep learning versus linear models

Linear state space models, such as Vector Autoregressive
(VAR) models, have been widely used in the modeling of
high-frequency data and in empirical market microstructure
research (Hasbrouck 2007) and provide a natural benchmark
for evaluating the performance of a forecast. Linear models
are easy to estimate and capture in a simple way the trends,
linear correlations and autocorrelations in the state variables.

The results in figure 4 show that the deep learning models
substantially outperform linear models. (To provide context,
an increase of even 1% in accuracy is considered a significant
improvement in high-frequency modeling.)

The linear (VAR) model may be formulated as follows: at
each observation we update a vector of linear features ht and
then use a probit model for the conditional probability of an
upward price move given the state variables:

ht = Aht−1 + BXt,

Yt = P(�Pt > 0|Xt, ht) = G(CXt + Dht), (−1)
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Figure 4. Comparison of a deep neural network with linear models. Models are trained to predict the direction {−1, +1} of next mid-price
move. Comparison for approximately 500 stocks and out-of-sample results reported for June–August, 2015. Left-hand figure: increase in
accuracy of stock-specific deep neural networks versus stock-specific linear models. Right-hand figure: accuracy of a universal deep neural
network (red) compared to stock-specific linear models (blue).

where G depends on the distributional assumptions on the
innovations in the linear model. For example, if we use a
logistic distribution for the innovations in the linear model,
then the probability distribution of the next price move is
given by a logistic function applied to a linear function of the
current order book and linear features:

P(�Pt > 0|Xt, ht) = 1

1 + exp(CXt + Dht)
(0)

We compare the neural network against a linear model for
approximately 500 stocks. To compare models we report the
difference in accuracy scores across the same test data set.
Let

• Li be the accuracy of the stock-specific linear model
gθi for asset i estimated on data only from stock i,

• Âi be the accuracy of the stock-specific deep learn-
ing model fθi trained on data only from stock i,
and

• Ai be the accuracy for asset i of the universal deep
learning model fθ trained on a pooled data set of all
quotes and transactions for all stocks.

The left plot in figure 4 reports the cross-sectional dis-
tribution for the increase in accuracy Âi − Li when moving
from the stock-specific linear model to the stock-specific deep
learning model. We observe a substantial increase in accuracy,
between 5% and 10% for most stocks, when incorporating
nonlinear effects using the neural networks.

The right plot in figure 4 displays histograms of Ai (red)
and Li (blue). We clearly observe that moving from a stock-
specific linear model to the universal nonlinear model trained
on all stocks substantially improves the forecasting accuracy
by around 10%.

The deep neural network outperforms the linear model
since it is able to estimate nonlinear relationships between the
price dynamics and the order book, which represents the visi-
ble supply and demand for the stock. This is consistent with an
abundant empirical and econometric literature documenting
nonlinear effects in financial time series, but the large magni-
tude of this improvement can be attributed to the flexibility of
the neural network in representing nonlinearities.

If the direction of price moves is not symmetric in the data
set, above 50% accuracy can be achieved by simply predict-
ing the most frequent direction of price moves. However, this
feature is easily captured by the linear model we use as a
benchmark. Figure 4 shows however that the deep learning
forecast performs significantly better than the benchmark lin-
ear model, which indicates that the accuracy is not explainable
by an imbalance or trend: the deep learning model is able to
learn relationships between the order book and price beyond
the information contained in the distribution of price moves.

More specifically, sensitivity analysis of our data-driven
model uncovers stable nonlinear relations between state vari-
ables and price moves, i.e. nonlinear features which are useful
for forecasting.

Figure 5 presents an examples of such a feature: the relation
between the depth on the bid and ask sides of the order book
and the probability of a price decrease. Such relations have
been studied in queueing models of limit order book dynamics
(Cont et al. 2010, Cont and de Larrard 2013). In particular, it
was shown in Cont and de Larrard (2013) that when the order
flow is symmetric then there exists a ‘universal’ relation—
not dependent on model parameters—between bid depth, ask
depth and the probability of a price decrease at the next price
move. However, the derivations in these models hinge on var-
ious statistical assumptions which may or may not hold and
the universality of such relations remained to be empirically
verified.

Our analysis shows that there is indeed evidence for such a
universal relation, across a wide range of assets and time peri-
ods. Figure 5 (left) displays the probability of a price decrease
as a function of the depth (the number of shares) at the best
bid/ask price. The larger the best ask size, the more likely
the next price prove will be downwards. The probability is
approximately constant along the center diagonal where the
bid/ask imbalance is zero. However, as observed in queueing
models (Cont et al. 2010, Cont and de Larrard 2013, Figueroa-
Lopez and Chavez-Casillas 2017), even under simplifying
assumptions, the relation between this probability and various
measures of the bid/ask imbalance is not linear. Furthermore,
such queueing models typically focus on the influence of
depth at the top of the order book and it is more difficult to
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Figure 5. Left: relation between depth at the bid, depth at the ask and the probability of a price decrease. The x-axis and y-axis display the
quantile level corresponding to the observed bid and ask depth. Right: Contour plot displaying the influence of levels deeper in the order
book (5–10) on the probability of a price decrease.

Table 1. Absolute change in the probability of a price
increase following to a 10% increase in queue size at a
given depth in the limit order book. The final column is a

10% increase in size for all levels 5, . . . , 10.

Level 1 2 3 4 5–10

Sensitivity 1.7% 0.4% 0.2 % 0.2% 0.4%

extract information from deeper levels of the order book. The
right contour plot in figure 5 displays the influence of limit
orders deeper in the order book (here: total size aggregated
across levels 5–10) on the probability of a price decrease.
We see that the influence is less than the depth at the top
of the book, as illustrated by the tighter range of predicted
probabilities, but still significant.

Unlike previous empirical work which has often been lim-
ited to analyzing the link between price movement and the
depth at the top of the order book, we have examined all levels
of the order book for which there is a non-zero queue size. It
is thus interesting to examine whether the learning algorithm
ends up by selecting a subset of the levels as being more rele-
vant for price forecasting. Table 1 shows the sensitivity of the
probability of an (upward) price move to a unit change in a
one level of the order book, as a function of the distance to the
mid-price. As observed in Cont et al. (2014), the first level has
a stronger impact on price dynamics, but deeper levels also
seem to contain information relevant for forecasting. Figure 6
supports this hypothesis, showing that a model trained using
10 levels of the order book outperforms a model trained, say
using 4 levels of the order book.

3.2. Universality across assets

A striking aspect of our results is the stability across stocks
of the features uncovered by the deep learning model, and its
ability to extrapolate (‘generalize’) to stocks which it was not
trained on. This may be illustrated by comparing forecasting
accuracy of stock-specific models, trained only on data of a
given stock, to a universal model trained on a pooled data
set of 500 stocks, a much larger but extremely heterogeneous

Figure 6. Comparison of two universal models. The first model is
trained using 10 levels of bid and ask sizes. The second model is
trained using only 4 levels of bid and ask sizes. Models are trained
to predict direction {+1, −1} of next mid-price move. Comparison
for 489 stocks and out-of-sample results reported for June–August,
2015.

data set. As shown in figure 7, which plots Ai − Âi, the univer-
sal model consistently outperforms the stock-specific models.
This indicates there are common features, relevant to forecast-
ing, across all stocks. Features extracted from data on stock A
may be relevant to forecasting of price moves for stock B.

We also test whether this increase out-of-sample in accu-
racy is statistically significant i.e. whether it cannot be purely
a result of estimation error. Given the large size of the data
sets involved, we find that, for all stocks in our sample,

• the universal deep learning model outperforms the
stock-specific deep learning model at 99.99% con-
fidence level.

• the stock-specific deep learning model outperforms
the linear model at 99.99% confidence level.

.
Given the heterogeneity of the data, one might imagine that

time series from different stocks should be first normalized
(by average daily volume, average price or volatility, etc.)
before pooling them. Surprisingly, this appears not to be the
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Figure 7. Out-of-sample forecasting accuracy of the universal model
compared with stock-specific models. Both are deep neural networks
with three LSTM layers followed by a ReLU layer. All layers have
50 units. Models are trained to predict the direction of the next move.
Comparison across 489 stocks, June–August, 2015.

case: we have observed that standard data transformations
such as normalizations based on average volume, volatility or
average spread, or partitioning the training data into sectors
or categories such as large/small tick stocks do not improve
training results. For example, a deep learning model trained
on small tick stocks does not outperform the universal model
in terms of forecasting price moves for small tick stocks. It
appears that the model arrives at its own data-driven normal-
ization of inputs based on statistical features of the data rather
than ad hoc criteria.

The source of the universal model’s outperformance is
well-demonstrated by figure 8. The universal model most
strongly outperforms the stock-specific models on stocks with
less data. The stock-specific model is more exposed to over-
fitting due to the smaller dataset while the universal model
is able to generalize by interpolating across the rich scenario
space of the pooled data set and therefore is less exposed to
overfitting. So, the existence of these common features seems
to argue for pooling the data from different stocks, notwith-
standing their heterogeneity, leading to a much richer and
larger set of training scenarios. Using 1 year of the pooled
data set is roughly equivalent to using 500 years (!) of data for
training a single-stock model and the richness of the scenario
space is actually enhanced by the diversity and heterogeneity
of behavior across stocks.

Due to the large amount of data, very large universal mod-
els can be estimated without overfitting. Figure 9 shows
the increase in accuracy for a universal model with 150
units per layer (which amounts to several hundred thousand
parameters) versus a universal model with 50 units per layer.

Remarkably, the universal model is even able to generalize
to stocks which were not part of the training dataset: if the
model is only trained on data from stocks {1, . . . , N}, its fore-
cast accuracy is similar for stock N + 1. This implies that the
universal model is capturing features in the relation between
order flow and price variations which are common to all
stocks. Table 2 illustrates the forecast accuracy of a universal

Figure 8. Increase in out-of-sample forecast accuracy (in %) of
the universal model compared to stock-specific model, as a func-
tion of size of training set for stock-specific model (normalized by
total sample size, N = 24.1 million). Models are trained to predict
the direction of next price move. Comparison across 500 stocks,
June–August, 2015.

Figure 9. Comparison of two universal models: a 150 unit per layer
model versus 50 unit per layer model. Models are trained to predict
direction {−1, +1} of next mid-price move. Out-of-sample predic-
tion accuracy for direction of next price move, across approximately
500 stocks (June–August, 2015).

model trained only on stocks 1−464 (for January 2014–May
2015), and tested on stocks 465−489 (for June–August 2015).
This universal model outperforms stock-specific models for
stocks 465−489, even though the universal model has never
seen data from these stocks in the training set. The univer-
sal model trained only on stocks 1−464 performs roughly the
same for stocks 465−489 as the universal model trained on
the entire dataset of stocks 1−489. Results are reported in
table 2.

Figure 10 displays the accuracy of the universal model for
500 completely new stocks, which are not part of the train-
ing sample. The universal model achieves a high accuracy
on these new stocks, demonstrating that it is able to gen-
eralize to assets that are not included in the training data.
This is especially relevant for applications, where missing
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Table 2. Comparison of universal model trained on
stocks 1–464 versus (1) stock-specific models for stocks
465–489 and (2) universal model trained on all stocks
1–489. Models are trained to predict direction of next
mid-price move. Second column shows the fraction of
stocks where the universal model trained only on stocks
1–464 outperforms models (1) and (2). The third column
shows the average increase in accuracy of the universal
model trained on stocks 1–464 versus models (1) and (2).
Comparison for stocks 465–489 and out-of-sample results
reported for June–August, 2015. The training time period

is January 2014–May 2015.

Model Comparison

Average
increase in
accuracy

Stock-specific 25/25 1.45%
Universal model

trained on stocks
1–489

4/25 − 0.15%

data issues, stock splits, new listings and corporate events
constantly modify the universe of stocks.

3.3. Stationarity

The relationships uncovered by the deep learning model are
not only stable across stocks but also stationary in time. This is
illustrated by examining how forecast accuracy behaves when
the training period and test period are separated in time.

Figure 10 shows the accuracy of the universal model on
500 stocks which were not part of the training sample. The
left histogram displays the accuracy in June–August, 2015,
shortly after the training period (January 2014–May 2015),
while the right plot displays the cross-sectional distribution
of accuracy for the same model in January–March, 2017, 18
months after the training period. Interestingly, even one year
after the training period, the forecasting accuracy is stable,
without any adjustments.

Such stability contrasts with the common practice of ‘recal-
ibrating’ models based on a moving window of recent data

Table 3. Out-of-sample forecast accuracy of deep learning
models trained on entire training set (19 months) vs. deep
learning models trained for shorter time periods immediately
preceding the test period, across 50 stocks Aug 2015. Models are
trained to predict the direction of next price move. Second col-
umn shows the fraction of stocks where the 19th month model
outperforms models trained on shorter time periods. The third
column shows the average increase in accuracy across all stocks.

Size of training set

% of stocks for
which 19-month

training
outperforms
short-term

training

Average increase in
accuracy for

19-month model

1 month 100% 7.2%
3 months 100% 3.7%
6 months 100% 1.6%

due to perceived non-stationarity. If the data were non-
stationary, accuracy would decrease with the time span sep-
arating the training set and the prediction period and it would
be better to train models only on recent periods immediately
before the test set. However, we observe that this is not the
case: Table 3 reports forecast results for models trained over
periods extending up to 1, 3, 6, and 19 months before the test
set. Model accuracy consistently increases as the length of
the training set is increased. The message is simple: use all
available data, rather than an arbitrarily chosen time window.

Note that these results are not incompatible with the data
itself being non-stationary. The stability we refer to is the sta-
bility of the relation between the inputs (order flow and price
history) and outputs (forecasts). If the inputs themselves are
non-stationary, the output will be non-stationary but that does
not contradict our point in any way.

3.4. Path-dependence

Statistical modeling of financial time series has been domi-
nated by Markovian models which, for reasons of analytical
tractability, assume that the evolution of the price and other

Figure 10. Performance on 500 new stocks which the model has never seen before. Left: out-of-sample accuracy reported for June–August,
2015. Right: out-of-sample accuracy reported for January–March, 2017. Universal model trained on data from January 2014–May 2015.
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Figure 11. Comparison of out-of-sample forecast accuracy of a
LSTM network with a feedforward neural network trained to fore-
cast the direction of next price move based on the current state of
the limit order book. Cross-sectional results for 500 stocks for test
period June–August, 2015.

state variables only depends on their current value and there
is no added value to including their history beyond one
lag. There is a trove of empirical evidence going against
this hypothesis, and pointing to long-range dependence in
financial time series (Mandelbrot et al. 1997, Bouchaud et
al. 2004, Lillo and Farmer 2004, Bacry et al. 2008, Taranto
et al. 2014). Our results are consistent with these findings:
we find that the history of the limit order book contains sig-
nificant additional information beyond that contained in its
current state.

Figure 11 shows the increase in accuracy when using an
LSTM network, which is a function of the history of the order
book, as compared with a feedforward neural network, which
is only a function of the most recent observation (a Markovian
model). The LSTM network, which incorporates temporal
dependence, significantly outperforms the Markovian model.
We have also tested to determine whether feedforward neu-
ral networks with larger numbers of hidden units can reduce
the performance gap between the feedforward and recur-
rent neural networks. However, even using more complex
feedforward neural networks with more parameters are not
able to reduce the performance gap between feedforward and
recurrent neural networks.

The accuracy of the forecast also increases when the net-
work is provided with a longer history as input. Figure 12
displays the accuracy of the LSTM network on a 5000-step
sequence minus the accuracy of the LSTM network on a 100-
step sequence. Recall that a step �k = τk+1 − τk is on average
1.7 s in the dataset so 5000 lags corresponds to 2 h on aver-
age. There is a significant increase in accuracy, indicating that
the deep learning model is able to find relationships between
order flow and price change events over long time periods.

Our results show that there is significant gain in model
performance from including many lagged values of the obser-
vations in the input of the neural network, a signature of
significant—and exploitable—temporal dependence in order
book dynamics.

Figure 12. Out-of-sample increase in accuracy when using a
5000-step sequence versus a 100-step sequence, across 1000 stocks.
Test period: June–August 2015.

4. Discussion

Using a Deep Learning approach applied to a large dataset
of billions of orders and transactions for 1000 US stocks,
we have uncovered evidence of a universal price formation
mechanism relating history of the order book for a stock to
the (next) price variation for that stock. More importantly, we
are able to learn this mechanism through supervised train-
ing of a deep neural network on a high-frequency time series
of the limit order book. The resulting model displays several
interesting features:

• Universality: the model is stable across stocks and
sectors, and the model trained on all stocks outper-
forms stock-specific models, even for stocks not in
the training sample, showing that features captured
are not stock-specific.

• Stationarity: model performance is stable across
time, even a year out of sample.

• Evidence of ‘long memory’ in price formation:
including order flow history as input, even up to
several hours, improves prediction performance.

• Generalization: the model extrapolates well to
stocks not included in the training sample. This is
especially useful since it demonstrates its applica-
bility to recently listed instruments or those with
incomplete or short data histories.

Our results illustrate the applicability and usefulness of
Deep Learning methods for modeling of intraday behavior of
financial markets. In addition to the fundamental insights they
provide on the nature of price formation in financial markets,
these findings have practical implications for model estima-
tion and design. Training a single universal model is simpler
and more straightforward than training and maintaining thou-
sands of single-asset models. Since the universal model can
generalize to new stocks—without training on their historical
data—it can also be applied to newly issued stocks or stocks
with missing data or shorter data histories.
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