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 LIMITING SHAPE FOR DIRECTED PERCOLATION MODELS

 BY JAMES B. MARTIN

 CNRS and Universite Paris 7

 We consider directed first-passage and last-passage percolation on the

 nonnegative lattice Z7, d > 2, with i.i.d. weights at the vertices. Under
 certain moment conditions on the common distribution of the weights, the

 limits g(x) = lim,- n-1 T( Lnxi) exist and are constant a.s. for x E Rd, where T(z) is the passage time from the origin to the vertex z E Zd. We

 show that this shape function g is continuous on Rd, in particular at the
 boundaries. In two dimensions, we give more precise asymptotics for the
 behavior of g near the boundaries; these asymptotics depend on the common
 weight distribution only through its mean and variance. In addition we discuss

 growth models which are naturally associated to the percolation processes,
 giving a shape theorem and illustrating various possible types of behavior
 with output from simulations.

 1. Introduction. We consider directed first-passage and last-passage perco-

 lation models on the nonnegative lattice Z%, focusing in particular on behavior
 close to the boundaries of the orthant.

 With each node z E Zd+, associate the weight X (z). We assume that the weights

 {X(z), z E Zd+} are i.i.d. according to some common distribution F on R; by
 allowing the weights to take negative as well as positive values we can consider
 first-passage and last-passage models simultaneously.

 A directed path in Zd is a path each step of which consists of increasing a single
 coordinate by 1. Let T (z), the last-passage time to z, be the maximum weight of all
 directed paths from the origin to the point z, where the weight of a path is the sum

 of the weights of the nodes along the path. (See Section 2 for precise definitions.)
 Natural objects of study are asymptotic quantities such as the function g Rd 4
 defined by

 ET(Lnxj) g(x) = sup E T(nx)
 ntEN n

 From superadditivity properties, we have that this supremum is in fact a limit,

 and that n 1T(Lnx]) -- g(x) a.s. as n --> o, for all x E iRd. We call g the shape function, since it determines the limiting shape for the growth model associated
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 SHAPE IN DIRECTED PERCOLATION 2909

 to the percolation process; g(x) is also sometimes known as the time constant in
 direction x.

 Analogous first-passage percolation models on the undirected lattice are by now
 very well known-see, for example, Kesten [14, 15] or Durrett [7] for fundamental
 results. Recently, the directed last-passage model has also received much attention;
 in particular, the case where d = 2 and the weight distribution F is geometric or
 exponential. First, this is essentially the only nontrivial case (whether directed or
 undirected, first- or last-passage) where the form of the shape function g above is
 known; for exponential weights, it was first given by Rost [25]. But much more
 precise results are now available; in particular Johansson [13] extended methods
 developed by Baik, Deift and Johansson [2] for the closely related model of the
 longest increasing subsequence of a random permutation, and showed that, for

 a > 0, the distribution of n-1/3{T((n, [an])) - ng((1, a))} converges as n -+ c*
 to a nondegenerate limit (the Tracy-Widom distribution, which also arises as the
 limiting distribution for the size of the largest eigenvalue of a random matrix from

 the Gaussian unitary ensemble).
 Two-dimensional directed last-passage percolation problems with general

 weight distributions have also been studied in detail in the context of tandem
 queueing systems; see, for example, [1, 10, 19].

 Our first observation is a condition on the weight distribution F under which
 the shape function g above is finite everywhere. The condition required on the

 positive tail is that fo0(1 - F(s))1/d ds < oc; this follows quickly from analogous
 results for the related model of greedy lattice animals (introduced in [5] and [9];
 the precise results we use are from [20]). We note that, as in the greedy lattice
 animals model, there is still a small gap between this sufficient condition and the
 best currently known necessary condition, which is that E Xd < 00 (see [20] for a
 discussion).

 Our first main result is then that the shape function g is continuous on all of

 Rd+, including at the boundaries (in fact, continuity on the interior is immediate
 from a simple concavity property). We note that the question of continuity for the

 directed first-passage model was raised by Newman and Piza [21]; for the two-
 dimensional last-passage model it was resolved (in a queueing theory context)
 by Glynn and Whitt [10] for distributions with an exponential tail, and then
 by Baccelli, Borovkov and Mairesse [1] and Martin [19] under weaker moment
 conditions. Particular tools which we use to prove continuity at the boundaries
 in any dimension are a truncation which relies on a bound given in [20] for the
 growth rate in the greedy lattice animals model, and a concentration inequality
 derived from a result of Talagrand [27].

 In two dimensions we then give more precise information about the behavior of
 g close to the boundary. For a distribution F with mean 1u and variance 2, we
 prove the asymptotic formula, as a - 0,

 g((1, a)) = - + 2a + o(/).
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 2910 J. B. MARTIN

 In addition to the tools used in the proof of continuity, we use here a comparison
 with a variant form of directed percolation analyzed by Seppilkinen [26], and an
 estimate for the speed of convergence in the central limit theorem from [24],
 in order to prove a universality property over all F for the asymptotics at
 the boundary. Comparing the exact formula known for the case where F
 is the exponential distribution then yields the result. These asymptotics are
 linked to the Brownian directed percolation model-obtained, loosely speaking,
 by reversing the order of the limits n -- c (in the definition of g) and
 a - 0-which has been widely studied recently in various contexts; see,
 for example, [3, 11, 12, 23]. See also [22] for a survey of the connections
 between these various directed percolation processes, random matrix theory and
 noncolliding particle systems.

 For various results on the dependence of the time constant on the weight
 distribution in the context of undirected first-passage percolation, see, for example,
 [16, 18, 28].

 Just as in the case of undirected first-passage percolation, there are growth
 processes naturally associated to the directed percolation models considered here.
 In Section 5 we describe these and prove a shape theorem analogous to those given
 in [4] and [14]. We also discuss, with illustrations from simulations (see Figures
 1-7), various possible behaviors of the growth processes, and the differences which
 exist between the directed and undirected cases and between the first-passage and
 last-passage cases.

 2. Notation and main results. We work with the d-dimensional nonnegative
 lattice Zd . For x Zd (and similarly Zd, Rd and Rd) we write xi for the ith

 component of x; we use the norm Ilxll = E Ixi I, and write x < x' if xi < x' for

 i - 1 ... . d. We write 0 for the origin and 1 for the point all of whose coordinates
 equal 1, and ei for the point all of whose coordinates are 0 except the ith which

 - j=1 xiei). is 1 (so that x 1 d xie1).
 With each point v of d+, associate the weight X (v). We assume that the weights

 {X (v), v d } are i.i.d. random variables, with common distribution function F,
 where F(s) = -P(X < s) (as here, we sometimes write simply X to denote a generic
 random variable with distribution F).

 A directed path in d+ is a path each step of which consists of increasing a

 single coordinate by 1. For Zl, Z2 E Zd, with I _< Z2, let H-[zI, Z2) be the set of
 directed paths from zl to Z2. We identify a path with the set of points it contains;
 by convention we exclude the final point z2 (but include the initial point z1, unless

 zl = z2). Note that all paths in F[zl, z2) have size (or "length") 11z2 - zil .
 For Zl < z2, define T (z1, z2), the last-passage time from zl to z2, by

 T(Zl,Z2)= max LX(v).
 I rcH[Zlz2)V

 In the case zl = 0, we write simply n[z) = H[0, z) and

 (2.1) T(z)= T (0,z)= max X (v).
 : IEl[z)
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 SHAPE IN DIRECTED PERCOLATION 2911

 We immediately have the following superadditivity property: if Zl < z2 < Z3 E

 Zd, then

 (2.2) T(zl , Z2) + T (2, Z3) < T(zl, z3).
 Suppose EL I X < o. Then also El IT(z)l < c for all z e Zd. For x IRd,we

 now define

 1
 (2.3) g(x) = sup -E T([nx])

 nEN n

 (which may be infinite). We sometimes write gF (x) to emphasize the dependence

 on the distribution F; we also write g(xl, ..., xd) for g(x) when x = (xl ..., xd)
 in order to avoid proliferation of brackets.

 The following basic properties of the function g are immediate from this
 definition and from the superadditivity in (2.2), using (a superadditive version of)
 Kingman's subadditive ergodic theorem:

 PROPOSITION 2.1. Suppose E IXi < c.

 (i) For all x IRd+,
 1

 -T(Lnx]) -+ g(x) as n --+ c, a.s. and [if lg(x)l < oo] in Li.
 n

 (ii) g(ax) = ag(x) for all a > O0, x E Rd+
 (iii) g is invariant under permutations of the coordinates.
 (iv) g(x) + g(y) < g (x + y) for all x, yE Rd

 The following result gives conditions under which the function g is finite.
 Condition (2.5) is stronger than the condition that E Xd < o (which is known
 to be necessary for the finiteness) but weaker, for example, than the condition
 E Xd (log+ X)d- 1+ < 00c. See [20] for details.

 PROPOSITION 2.2. If

 (2.4) E IXI < oc

 and

 (2.5) f (1 - F(s))1/d ds < oo,
 then Ig(x)I < co for all x e Rd

 Our first main result is then:

 THEOREM 2.3. Under conditions (2.4) and (2.5), the shape function g is
 continuous on all of IRd+ (including at the boundaries).
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 2912 J. B. MARTIN

 Proposition 2.2 and Theorem 2.3 are proved in Section 3. In Section 4 we prove
 the following theorem, which gives more precise asymptotics for g at the boundary
 in the case d = 2.

 THEOREM 2.4. Let d =-2. Let the distribution F have mean it and
 variance ar2, and satisfy

 (2.6) j (1 - F(s))'1/2 ds < c0

 and

 (2.7) F(s)1/2 ds < oc.

 Then as a 4 0,

 (2.8) g(1, a) = f + 2a/a + o(,/).

 Note that the framework effectively includes first-passage as well as last-
 passage percolation models, since the weights may take negative as well as positive

 values; replacing max by min and replacing the weights X(z) by -X(z) would
 simply change the sign of T and so of g. When considering associated growth
 models in Section 5, however, it is easier to consider first-passage and last-passage

 models separately. For completeness, we also state here the first-passage versions

 of the results above. Define the quantities {S(z), z e Zd } and {h(x), x e Rd
 analogous to the last-passage quantities {T(z)} and {g(x)} defined at (2.1) and
 (2.3), by

 (2.9) S(z)- = m in (v), 7r l [[z) E

 1

 (2.10) h(x) = inf -E S([nxJ).

 COROLLARY 2.5. (i)IfE IXI <00 and fo"(F(s))/d < o00, then Ih(x)l < 00

 for all x E Rd+, and h is continuous on all of Rd (including at the boundaries). (ii) Let d = 2. If F has mean /t and variance a2 and satisfies (2.6) and (2.7),

 then as a 4, 0,

 h(1, a) = /1 - 2a~ + o(V&).

 Definitions, results and discussions for the growth models are given in Section 5.
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 SHAPE IN DIRECTED PERCOLATION 2913

 3. Continuity at the boundary.

 3.1. Case of bounded weights. We first prove the continuity result of Theo-
 rem 2.3 for the case where the weights are bounded. We will need the following
 concentration inequality, which follows easily from Theorem 8.1.1 of [27]; see, for
 example, Lemma 5.1 of [20] for the argument.

 LEMMA 3.1. Let Yi, i c I, be a finite collection of independent random
 variables, such that

 P(Yil _< L)-= 1
 for all i E I. Let C be a set of subsets of I such that

 max CI < R,
 CEC

 and let

 Z = max > Yi.
 CEC  IEC

 Then for any u > 0,

 I(IZ - E Z > u) <exp(-64RL2 +64 .

 We apply the concentration inequality in the following lemma, which is the
 central part of the proof of the continuity of g.

 LEMMA 3.2. Suppose IP(I X I L) = 1 for some finite L. Let R > 0 and c > 0.
 There exists 6 > 0 such that if x e IRd with Ilxll < R and xj = 0 (where 1 < j < d),
 then

 lg(x + hej) - g(x) < 8

 for all 0 < h < 8.

 PROOF. Without loss of generality, let j = 1. Rephrased, the statement is that

 for x = (x2, x3,..., xd)e Rd+ 1

 g((h, x)) -- g((0, x)) as h 4 0,

 uniformly in {x: xl x< R}.
 So let h > 0 and ne ? . Any path from 0 to the point (Lnhj, LnxJ) contains

 exactly [nhJ steps which increase the first coordinate, so can be decomposed into

 a disjoint union of paths from (r, mr) to (r, mr+l), r = 0, 1, 2 ..., Lnhj, where

 mr E d4_-1 for each r, and
 (3.1) 0 = mo m < .- < mLnhJ+1 = LnxJ.
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 2914 J. B. MARTIN

 We have

 T((nh], Lnx])) = max Y T((r, mr), (r, mr+0))
 T((nhnx)) mo,m1,.....mLnh+1=O (3.2) r nhj-I

 + X(r, mr+i).
 r=0---O

 (The second term on the right-hand side appears because of the convention that a

 path from zl to z2 does not include the "final point" z2.) Here and below the mr
 range over values satisfying (3.1). The number of such choices for the mr is

 d(LnxiJ + [Lnh]J
 LnhJ P i=2

 which, by Stirling's formula, is exp[no(h, x) + o(n)], where

 4(h,x)= L (hlog xi +h xi log i +h
 2<i<d h xi
 xi >0

 We now consider the expectation of the quantity within the maximum on the
 right-hand side of (3.2). For fixed {mr ), we have

 [nh] Lnh]-I
 E T((r, mr), (r,mr+))+ X(r, mr+)
 r=0 r=0

 [nh]

 = E T((O, mr), (0, mr+l)) + Lnh]E X
 r=0

 (3.3) < E T((0, mo), (0, mLnhj+l)) + nhL (by superadditivity)
 = E T((0, Lnx])) + nhL

 < n[g((O, x)) + hL]

 (by definition of g and superadditivity again).
 Still keeping mr } fixed, note that the quantity inside the expectation on the

 left-hand side of (3.3) may be written as the maximum of the sum of various

 sets of weights X; each such set has size I( [nhJ, LnxJ) |l < nll (h, x) I and, by
 assumption, none of the weights has absolute value greater than L. So we can
 apply the concentration inequality in Lemma 3.1 to give

 r-I"IhA LnhJ- 1

 T T((r, mr), (r, mr+1)) +  X(r, mr+1) > n(g((O, x)) + hL +)
 -r=0 r=0

 LnhJ L[nhj-1

 <- T((r, mr), (r, mr+l))+ - X(r, mr+l) r =O0 r=0
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 SHAPE IN DIRECTED PERCOLATION 2915

 deviates from its expectation by more than ne

 64n (h, x)LL2 +64

 = exp -6411(h, x)11L2 +64) .

 Thus, taking the sum over all possible {mr 1,

 P[T((Lnh], LnxJ)) > n(g((O, x)) + hL + e)]

 < exp[no(h,x) + o(n)lexp -26411(hx)l L2 +64 . ( 6411(h, x)IIL2

 This sums over n E N to a finite amount whenever

 S> 8L I/I(h, x)Ij|(h, x).
 Since

 1

 g((h, x)) = lim -T((Lnh], LnxJ)) a.s.,
 n oon

 Borel-Cantelli then gives

 g((h, x)) - g((0, x)) < hL + 8L /|I (h, x)11(h, x).

 The right-hand side tends to 0 as h , 0, uniformly in Ilxl i R, as required.
 In the other direction, the superadditivity property in Proposition 2.1 (iv) implies

 g((h, x)) - g((0, x)) > g((h, 0))
 = hEX

 > -hL,

 which again tends to 0 as h , 0, uniformly over all x. O

 LEMMA 3.3. Suppose I(i XI _< L) = 1 for some finite L. Then g is continuous
 on all of Rd+.

 PROOF. Let e > 0 and ye IRd+. Suppose that y has exactly k nonzero
 coordinates. Without loss of generality, assume that in fact yi > 0 for 1 < i < k

 and yi = 0 for k + 1 < i < d.

 Define the function gk on Rk+ by gk(u) = g(ul,.. ., uk, 0,..., 0) (appending
 d - k zeros to the end of u).

 Since g is concave on Rd+ [by Proposition 2.1(iv)], gk is concave on RIk, and so
 is continuous on the interior of IRk.

This content downloaded from 
�������������195.113.0.105 on Thu, 06 May 2021 17:08:29 UTC������������� 

All use subject to https://about.jstor.org/terms



 2916 J. B. MARTIN

 Hence we can choose 8' > 0 small enough that if IhiI < 6' for 1 < i < k, then

 jgk(xl + h ,..., xk + hk) - gk(xl, ..., xk) < 8,

 and so

 (3.4) g ?+ hiei -g(x) < c.
 Choose any R > Ilyll + k6'. We now fix 8 > 0 small enough that the conclusion

 of Lemma 3.2 applies (for our chosen L, R and E), and also small enough that

 |lyl| + k6 + (d - k)6 < R.
 Take any h E Rd with |lh|I < min(8', 8) and with (y + h) E Rd<. Then certainly

 hi < 8' for 1 < i < k, and also 0 <hi < 6 for k + 1 < i <d.
 We are about to apply Lemma 3.2 (d - k) times, once for each of the coordinates

 of y which is 0. Specifically, for k + 1 < j < d, set x(j) = y + j=1 hiei. Then for

 k + 1 < j < d, we have Ix(J) II < R (by choice of 6) and x = 0 (since yj = 0),
 so all the required conditions of Lemma 3.2 apply.

 Using also (3.4), we obtain

 d jj-1I
 Ig(y+h)-g(Y)_ =g (Y+i hiei -g(y)

 + g y+ hiei - g y + hiei
 j=k+1 i=1 i=1

 g y+Yhi ei -g(y)

 d

 + g g(x(j) +hjej) - g(x(j))
 j=k+l

 < e + (d - k)s

 < (d + 1)e.

 Since E was arbitrary, we have that g is continuous at y, as desired. O

 3.2. Extension to unbounded weight distribution. Define a lattice animal of

 size n to be a connected subset of Zd of size n which includes the origin. Extend

 the i.i.d. array {X (z)} to all of Zd, so that {X (z), z E Zd} is an i.i.d. array with
 common distribution F. Let A(n) be the set of lattice animals of size n, and define

 N(n)= max X(z),
 N ~eA(n)
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 SHAPE IN DIRECTED PERCOLATION 2917

 the maximum weight of a lattice animal of size n.
 The results in the following proposition are taken from Theorems 1.1 and 2.3

 of [20]. (In fact the model in [20] covers only the case where the weights X (z) are
 nonnegative; but replacing weights whose value is 0 by negative weights can only
 reduce the left-hand side of (3.5) or (3.6) and leaves the right-hand side unchanged.
 Alternatively, see [6] for a detailed treatment of the lattice animals model where
 the weights can take negative values.)

 PROPOSITION 3.4. There exists c = c(d) < oo such that, for all F satisfy-
 ing (2.5):

 (i) for all n > 1,

 (3.5) IEN(n) < cn (1 - F(s))lid ds;
 (ii) with probability 1,

 (3.6) lim sup N(n) c (1 - F(s))1/dds.
 n-oc n

 Now we can easily deduce the following lemma for the directed percolation
 model. Part (iii) implies Proposition 2.2.

 LEMMA 3.5. There exists c = c(d) < oc such that,for all F satisfying (2.5):

 (i) for all z e Zd

 (3.7) E T(z) < clIlzi (1 - F(s))1/d ds;
 (ii) with probability 1,

 1 f0 (3.8) lim sup- max T(z) < c (1 - F(s))1/dds;
 n-*oo n z: IjzII<n0

 (iii) for all x c Rd+,

 (3.9) [[x IEX < g(x) < c [xl0 (1 - F(s))l/dds.

 PROOF. First note that if z e Zd and lizil = n, then any path nr H[z) is a

 lattice animal of size n; thus T (z) _ N(n), and parts (i) and (ii) follow immediately from Proposition 3.4.

 Putting z = Lnxj in (i), dividing by n and then letting n -+ x gives the upper
 bound in (iii).
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 2918 J. B. MARTIN

 For the lower bound in (iii), let z E Z +, and let i be any path in 1-i[z); then

 Il = lizil, and we have

 ET(z)=-E max LX(v) EH[z) v[Z

 >E X (v)
 VET

 - tzIIE X.

 Again let z = [nx] and let n -4 00 to obtain the lower bound in (iii). FZ

 We now introduce truncated versions of the weights { X (z)}. For L > 0 and z E
 d, let X() (z) = max{min{X(z), L}, -L} [so that IX(L)(z)I = min(IX(z)I, L)].

 Then let { T)(z), z Z } and {g(L)(x), x E Rd } be defined just as { T(z)} and

 {g(x)}, but with the quantities {X (z)} replaced by the truncated versions {X(L)(z)}.

 LEMMA 3.6. Suppose that (2.4) and (2.5) hold. Then for any x E Rd

 g(L)(X) - Ixil f F(s) ds
 (3.10)

 < g(x) < g(L)(x) + clxL (1 - F(s))l/d ds,

 where c is as in Lemma 3.5. Thus,for any R > 0,

 (3.11) sup g (x) - g(L)(X) --0 as L ---+ o.
 xER d: ixll<R

 PROOF. Note that

 -[L - X(z)] <X(z) - X(L)(z) < [X(z) - L]+.
 We consider first the positive tail. Let x E Rd. Then

 g(x) - g(L)(x) = - lIE T(1nx) - lim 1ET(L)(Lnxj) n -*oo n n -+c00 n

 = lim -E sup X (v)- sup X(L)(v)
 n - n Er n[, LnxJ) ver rnlo[0, Lnx]) vE j

 (3.12) < lim tE sup X (v)_- X(L)(v)
 n-+00 n 7r[OLnxJ) vc7 vCF

 =lim -IE sup Lv[X(v) -L]+ n-- n [,nx)

 < cllx (1 - F(s))I/d ds; L
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 SHAPE IN DIRECTED PERCOLATION 2919

 the last inequality follows from Lemma 3.5, since the variables {[X(v) - L]+,
 v E Zd+} are i.i.d. with distribution function F(>L), where F(>L)(s) = 0 for s < L
 and F(>L)(s) = F(s) for s > L. This gives the lower bound in (3.10).
 For the negative tail, let z EZd , and let 7r* I1 [0, z) be the maximizing path

 for T(L) (z). (If there are several maximizing paths, choose, say, the one that is first
 in the lexicographic order.)

 Now for any v Z Z+, IP(v E r*iX(v) < s) is a nondecreasing function of s. [This follows from a simple coupling, since {X (v'), v' E Z } are independent and,
 for a fixed realization of the other weights {X (v'), v' EZd, v' : v}, the function

 I {v E t*} is a nondecreasing function of X (v).]
 Hence in particular P(v E 7r*X(v) < -L) < IP(v e ir*), and so by simple

 manipulation of conditional probabilities,

 P(X(v) < -Liv E xr*) IP(X(v) < -L).
 Furthermore, the event {v E xr*} depends only on {max{X(v'), -LI, v' / ;d
 thus, conditional on {X(v) < -L), X(v) is independent of {v rr *}. Hence

 E ([-L - X(v)]+ v E r*)

 = E ([-L - X(v)]+lX(v) < -L)P(X(v) < -LIv E r*)

 < E ([-L - X(v)]+lX(v) < -L)P(X(v) < -L)
 = E ([-L - X(v)]+)

 -= F(s)ds.
 Now

 EET(z) =E max X (v)
 7r r[z) vEr

 >IE max (X(L)(v)- [-L - X(v)]+)
 7rE-l[z) Z)

 >_E Y X(L)(v)-_E E [-L - X(v)l+ VErT* VET*

 = ETL)(z) Y P(v E7 r*)E ([-L - X(v)]+Iv E r*)
 vcZd

 > E T(L)(z) - F(s) ds P(v e 7*)

 --ol

 =E T(L) (z) - Izll F (s) dslI

 IE T()(z) _ 1121 1 (s) s
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 2920 J. B. MARTIN

 since Jr* E [z) and all paths in I[z) have length |lzil.
 Letting z = Lnx] and taking n -- oo then gives the first inequality in (3.10), as

 required. The convergence in (3.11) then follows since, under (2.4) and (2.5), both

 the integrals in (3.10) tend to 0 as L -- co> . D

 It is now immediate to extend the continuity property proved in Lemma 3.3 to
 the case of unbounded weights, and so complete the proof of Theorem 2.3.
 Lemma 3.3 shows that the functions g(L) are continuous for each L, and (3.11)

 shows that, under the conditions (2.4) and (2.5), g(L) -+ g as L -+ co, uniformly

 on any compact subset of Rd+. Hence g itself is continuous, as required.

 4. Asymptotics at the boundary for d = 2. In this section we prove
 Theorem 2.4.

 We first obtain an estimate on the growth rate in the case where F is a Bernoulli

 distribution. This is done using a comparison with an alternative percolation model
 in which the Bernoulli distribution is an exactly solvable case. We write Ber(p) for
 the Bernoulli distribution with parameter p, with IP(X = 1) = 1 - IP(X = 0) = p.

 LEMMA 4.1. For all a > 0, p E [0, 1],

 gBer(p)(l,) (1, (1 +a)p + 2 a/1 a/p(1 - p).

 PROOF. Recall that

 T(m,n)= max LX(z),
 7r Ec [m,n) ZE

 where H [m, n) is the set of paths of the form

 ZO. zI, , z...,Z+n-1

 such that zo 0= , such that, for all 1 < i < m + n - 1, zi - zi-1 = ej for some

 j E { l,..., d}, and such that also (m, n) - zn+n-I = ej for some j E {1,..., d). Define an alternative set of increasing paths H [m, n) to be those paths of the
 form

 (0, yo), (1, Yl) .... (m - 1, Ym-1),

 where 0 < yo < yl < " ' < Ym-1 < n, and define
 T(m, n)= max X (z).

 r Enh[m,n) zEr

 Define the function '2 ? >2 by # (x, y) = (x + y, y).

 Since # (z) -# (z') whenever z - z', and since { X (z), z e Z2 } are i.i.d., we have

 (4.1) ET(m,n)=-E max LX(z)=E max LX(OP(z)). SEn- [m,n) z cEn [m,n) zEr
 ZEn 
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 SHAPE IN DIRECTED PERCOLATION 2921

 For a path 7r = zo,..., Zr-1, write g(7r) for the path *(zo), ...,4 (Zr-1).
 From the definitions of the path sets above, one can obtain that if 7r E 1-[m, n),

 then Vf(r) E H[m + n, n). (We do not require that all paths in h-[m + n, n) can
 be written as /(.r) in this way.) Put another way: let fr(fI[m, n)) be the set
 {ji : = 4r () for some 7r E H[m, n)}; then fr (H[m, n)) C H[m + n, n).
 Continuing from (4.1),

 IET(m,n)-=E max X(v) 7 El[m,n) vE (r)

 = E max X (v)
 i EG (J1[m,n)) VEi

 < E max X (v)
 irE [m+n,n) Ev

 = ET(m + n, n).

 Then

 1
 g(1, a) = lim -E T(n, Lan])

 n-o+ n
 (4.2)

 < liminf -E T([1 + aJn, L an]).
 n-l00 n

 Seppailaiinen [26] analyzes directed percolation based on the path sets H, and in
 particular obtains that, for the case of Bernoulli weights,

 1

 lim -EBer(p)T(LOln], Lt2nJ)

 al

 p(al - U2) + 2,/ala2/p(1 - p), if p < al +Ua2
 al

 aIl, ifp + p2
 A calculation then shows that for all p,

 1 . lim -EBer(p)T(LInj, L2nJ) <alp +2 apla22/p(1 - p). n o00 n

 Substituting into (4.2) with al = 1 + a, a2 = a gives the required result. E

 LEMMA 4.2. Let Fi and F2 be distributions with means l and j,2 and
 satisfying (2.6) and (2.7). Then for all a > 0,

 IgFI (1, a) - gF2(1, o) -- (1 +-)(Al - E#2)
 f-
 oo0
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 PROOF. Let {U(z), z e Z2} be i.i.d. uniform on [0, 1], and for i = 1,2, let

 Xi(z) = Fi-1(U(z)), where F-1(u) = sup{x : F(x) < u}.

 Then for i = 1,2, {Xi (z), z e Z2+} are i.i.d. with distribution Fi, and for any x,
 I(X1 (z) > x, X2(z) < x) [F2(x) - F1 (x)]+

 and

 P(X2(z) > x, Xl(z) < x) = [Fl (x) - F2(x)]+.

 Now

 gF (1, a) - gF (1, a)

 = lim -E max X(z)- lim E max X2(z)
 n- " oo n rE nI(n, lanj) ZEnn 7n(n,Lan])zE

 1

 < lim -E max Z(X1 (z) - X2(z))
 nloo n 7r cE(n, Lan]) zE
 1 0

 = lim -E max [I(X1 (z) >_ x, X2(z) <x) n x0o n 7rEn(n, [an]J) -0oZEr

 - I(XI(z)< x, X2(z) > x)]dx

 < lim -E max [I(XI(z) 2 x, X2(Z) < x)
 n 00oo n -oc 7r E n(n, Lan]) z~E

 - I(X (z) < x, X2(z) > x)] dx

 = lim -E max 7[I(XI (z) > x, X2(Z) < x)
 - n-o00 n lrEnr(n, Lan]) zE

 - I(X (z) < x, X2(z) > x)]dx

 (by Fubini's theorem and bounded convergence)

 < lim -E max [I(XI(z) >x, X2(z) <x)]
 o n- floo n 7re (n, Lanz) zEr

 + E max (y[ --I(XI(z)< x, X2(Z)> x)] .7r E (n, Lan]0t) ze

 fZ[)

 = { gBer([F2(x)-FI(x)l+)(1,ot) + gBer(l1-F,(x)_(x)2)l+)(1, O) - (1 + a)dx}
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 SHAPE IN DIRECTED PERCOLATION 2923

 < {(1 (la)([F2(x) - FI(x)]+ + 1 - [FI(x) - F2(x)]+)

 + 2,V/1 + a([F2(x) - F1 (x)]1/2 + [F(x) - F2(x)] 1/2)

 - (1 +a)dx

 (by Lemma 4.1)

 = (1+ a) { F2(x) - F1 (x)) dx

 + 2V/-/1+af IFi (x) - F2(x)1/2 dx 000

 = (1 + l)(I - A2) + 2 v /1+a IFI(x) - F2(x) 1/2dx. /OO

 Similarly,

 gF2(1, ) - gF(, )

 < (1 -)(AL2 - tlj) + 2a/l-/+ a IF01(x) - F2(X)11/2dx.
 Together these give the desired result. D

 LEMMA 4.3. Let F satisfy (2.6) and (2.7), and let e > 0. Then there is a
 distribution F with bounded support which has the same mean and variance as F,
 and which satisfies

 J IF(s) - F(s)111/2ds <F.
 -00

 PROOF. Let X have distribution F. For brevity we cover only the case where
 P(X > 0) = 1; the negative tail can be truncated in an analogous way.
 Take any t > 0. If P(X > t) = 0, then F itself has bounded support and we take

 F = F. Otherwise, let m = E (XIX > t) and w = E (X21X > t), and choose p, u
 to satisfy

 (4.3) (1 - p)t + pu = m,

 (4.4) (1 - p)t2 + pu2 = w.
 The solution is

 (m - t)2

 =(m - t)2 + w -2'
 m-t

 u=t+-
 P
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 2924 J. B. MARTIN

 note that 0 < p < 1 and u > t, since m > t and w > m2.
 Then let

 F (x), if 0 x < t,
 (4.5) F(x)= I - p[ - F(t)], if t < x < u,

 1, if x > u.

 Now F has bounded support since F(u) = 1. For the mean and variance, let X
 have distribution F, and use (4.3) and (4.5) to give

 E X E (X; X < t) + (1 - p)[1 - F(t)]t + p[1 - F(t)]u

 = E (X; X < t) + IP(X > t)[(l - p)t + pu]

 = E X;

 similarly use (4.4) to give E X2 = E X2.
 For the final part we have

 f0IF(s)- F(s)11/2 ds < [1J - F(s)]1/2 ds + [1 - F(s)]l/2 ds
 = [ - F(s)]l/2 ds + [p(1 - F(t))]l/2ds

 < [1 - F(s)]12 ds + [pu2p(X > t)]1/2

 j [l - F(s)]/2 ds + E(X2; X > t)1/2

 By assumption, fo0[1 - F(s)]1/2ds < oo, and this implies that E X2 < oc also;
 hence by choosing t large enough we can make the right-hand side as small as
 desired. O

 LEMMA 4.4. Let F be a distribution with bounded support, and, for k E zN,

 let F(k) be the distribution of Xi + X2 + ... + Xk, where {Xi } are i.i.d. - F. Let

 r : R+ - N be any function satisfying r (a) - x- and r (a)f/ -+ 0 as a, O 0. Then
 1 1

 lim g9F(1, a) - g(o)(1, or(a)) = 0. 40V r(a)

 PROOF. For (x, y) e Z2 and r E N, let B(r)(x, y) be the set {(rx + i, y),

 i = 0, 1,...,r - 1}.
 The sets B(r) (z) partition Z2; essentially we have grouped the sites of Z into

 "blocks" of length r and height 1. We will compare our original model with one
 where each of these blocks functions as a single site, whose weight is the sum of
 the original sites contained in the block.
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 SHAPE IN DIRECTED PERCOLATION 2925

 Given 7r c H(nr, m), we can find fr e H1(n, m) such that

 (4.6) UJB(r)(z) WA < mr,
 zEi

 where A denotes the symmetric difference. [For instance, let i = {z: 7 n B(r)(z) #
 0}.] Similarly, given - cE H (n, m), we can find 7r E H(nr, m) such that (4.6) is
 satisfied.

 Suppose that {IX (z), z c Z2I} are i.i.d. with distribution F. Define

 -(r) (z) = X(z).
 vEB(r)(z)

 Then {(r)(z),z eZ2 are i.i.d. with distribution F(r). Let K be such that
 (I X I > K) = 0. Then by the properties (in both directions) noted at (4.6) and
 after,

 max 3:X(z)- max 'X(z) <mrK,
 rcnF(nr,m) ZGr nEI(n,m) ze

 so that

 1 11 1

 -E FT(nr, m) - --E F(r) T(n, m) <<-mr K. nr rn nr

 Putting m = [anrj and letting n -+ co gives

 1

 gF(1,a) - -gF(r) (1,ar) <arK.
 r

 If r is a function of a such that ra -->. 0 as a 4 0, then the right-hand side is

 o(,/-) as a , 0, as desired. D

 LEMMA 4.5. Let F be a distribution with bounded support, with mean PLF
 and variance ar2. Let F(k) and r be as in Lemma 4.4. Then

 1 1 g (1, ar (a))
 lim gF(r)(1, r(a)) - IuF - F0,
  O A r r((a))

 where D is the standard normal distribution.

 PROOF. Theorem 5.16 of [24] gives a bound on the rate of convergence in the
 central limit theorem, for distributions F which have a finite third moment. Here

 F has bounded support and so certainly finite third moment; we obtain that there
 exists C = C(F) such that

 SF(r)(x) - F(x) < Cr-1/2(1 + -II)-3
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 2926 J. B. MARTIN

 for all r E N, x e R, where F (r) is the distribution of (X1 + ... + Xr -
 rtLF)/(arF/T). (Note that F(r) is simply the distribution F(r) normalized to have
 mean 0 and variance 1.)

 Now combine this estimate with Lemma 4.2; for any r e N,

 1 1 g,(1, ar)
 - gF'r) (1, r) -( t rF - F

 1 re 'gq, (1, a o r)
 aF

 = g/(r)(1, ar) - g,(1, ar)

 2 ar /-l arJCr-l/2(l +I xl)-311/2dx ./ar

 =C'F - 1 + ar
 = C r 1/4

 where C' is some constant independent of r and a. If r is a function of a such that

 r/- --+ 0 and r -- oc as a 1 0, then the right-hand side tends to 0 as a 1 0, as
 required. E

 The following lemma is the universality result which we need:

 LEMMA 4.6. Let F be a distribution with mean AF and variance 2F,
 and satisfying (2.6) and (2.7), and let the function r satisfy the conditions of
 Lemma 4.4. Then

 1 g (1, oar (a))
 (4.7) lim gF(1,a) -/AF -a ,F =0.

 PROOF. Let ? > 0. Using Lemma 4.3, choose a distribution F with bounded
 support, with the same mean and variance as F, and with

 (4.8) f IF(x) - F(x) 1/2 dx < E/2.
 D-OO

 Then

 1 g (1, ar(a))

 im lim sup sup(, a) - F - aF

 + lim sup g(1 )-g(1 ). $0 r'a'
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 SHAPE IN DIRECTED PERCOLATION 2927

 The first term is 0 by combining Lemmas 4.4 and 4.5 and using the fact that F has

 the same mean and variance as F; the second term is < e by Lemma 4.2 and (4.8).
 This works for any e > 0, so the desired result follows. D

 Finally, we compare with an exactly solvable case to yield the asymptotic
 behavior for all F:

 PROOF OF THEOREM 2.4. Choose any r that satisfies the conditions of
 Lemma 4.4, for example, r(a) = [la-1/4J.

 When F is the exponential distribution with mean 1 (and so also variance 1),
 we have the exact formula gF0(1, a) = 1 + 2/a- + a (see, e.g., [25]). Substituting
 into (4.7) gives

 1 g(1, oar(a)) _ (4.9) lim 2 - = 0.

 Now take any F satisfying (2.6) and (2.7). Combining (4.7) and (4.9) gives

 lim IgF(1, a) - - F - 2crF = -0,
 as required for (2.8). D

 5. Growth models.

 5.1. Definitions and statement of shape theorem. Recall that first-passage
 quantities S and h, analogous to T and g, were defined at (2.9) and (2.10).

 Define B(t), the last-passage shape at time t, by

 B(t) = {x E Rd+"T(LxJ) _< 0,
 and define C(t), the first-passage shape at time t, by

 C(t) = {x G R : S(Lxd ) < t}.
 Both B(t) and C(t) are increasing in t, in the sense that for 0 < ti < t2,

 B(tl) C B(t2) and C(tl) C C(t2).
 We further define subsets B and C of Rd+ by

 B = {x: g(x) < 11,

 C= {x:h(x) < 11.

 B is concave [by Proposition 2.1(iv)]; similarly, C is convex. B and C are
 asymptotic shapes for the processes { B(t) } and {C(t) } in the sense of the following
 theorem, which is analogous to well-known results for undirected first-passage
 percolation models (see, e.g., [4, 14]). We give the proof in Section 5.3.
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 2928 J. B. MARTIN

 THEOREM 5.1. Suppose that the weight distribution F satisfies

 (5.1) F(s)l/dds < oc
 and

 (5.2) (1 - F(s))1/d ds < oc.

 (i) Last-passage shape theorem.
 If E FX > 0, then for any 8 > 0,

 B(t)
 (5.3) (1 - e)B C c- (1 + I )B

 t

 for all sufficiently large t, with probability 1.

 (ii) First-passage shape theorem. If

 h(x)
 inf > 0,

 xERE+\{0} IlxII

 then for any 8 > 0,

 C (t)

 t

 for all sufficiently large t, with probability 1.

 REMARK 5.1. (i) Note that by a subadditivity property for h, analogous to
 the superadditivity property for g in Proposition 2.1(iv), we have that for all

 x E Rd, h(x) > xllh(1, I... 1); thus the condition in part (ii) is equivalent to
 the condition that h(1, 1,..., 1) > 0. If the weights are nonnegative, then this is

 implied by the condition that F (0) < p d), where pd) is the critical value for
 directed percolation in d dimensions; this follows, for example, from the same
 arguments as the property, noted by Kesten and Su [17], that (in their case for

 undirected percolation) the critical points for percolation and for "l-percolation"
 coincide.

 (ii) In fact, the moment conditions in Theorem 5.1 are stronger than necessary;

 for the last-passage case one can replace (5.1) by the condition that E IX-_ < oc,
 and for the first-passage case one can replace (5.2) by the condition that E X < 0o.

 In particular, combining with the previous remark, for the first-passage model
 with nonnegative weights it suffices for the limiting shape result that E X < x and

 F(0) < pd)
 To prove the theorem under these weaker conditions, one can follow an

 approach similar to that used by Cox and Durrett [4] for the undirected first-

 passage case, making use of the fact that E X < co =? E min(X1, ..., Xd)d < o,
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 SHAPE IN DIRECTED PERCOLATION 2929

 where X1, ..., Xd are i.i.d. copies of X. However, the proof needs a rather lengthy
 enumeration of cases and a description of a variety of different sets of "alternative
 paths"; in addition, the fundamental ideas are already in [4], so we do not include
 it here.

 Under the stronger conditions in Theorem 5.1 (already almost optimal for
 the last-passage case with nonnegative weights), bounds of the sort given in
 Lemma 3.5 are available, and the proof is simpler.

 5.2. Discussion of the growth models. In this section we describe and illustrate
 various possible types of behavior for the first-passage and last-passage growth
 processes B(t) and C(t).
 We will concentrate on the case where the weights { X (z) } are nonnegative. Then

 for all t > 0, B(t) and C(t) are connected; in addition, B(t) is a decreasing subset
 of R1, although C(t) does not generally have a similarly simple property.
 If the weight distribution F is exponential (resp. geometric), then the processes

 {B(t), t > 0} and {C(t), t > 0) are Markov in continuous (resp. discrete) time; in
 the two-dimensional last-passage case this yields the growth model considered in,
 for example, Rost [25] and Johansson [13]. Simulations of B(t) and C(t) in two
 dimensions with exponentially distributed weights are given in Figures 1 and 2,
 and the three-dimensional last-passage case is shown in Figure 7.
 In fact B(t) and C(t) are also Markov in discrete time when the weights are

 Bernoulli (taking values 0 and 1).

 600

 500

 400

 300

 200

 100

 FIG. 1. Simulation of the last-passage
 process for d = 2 and F exponential with
 mean 1. The sets B(t) are shown for t = 150
 (darkest), 300,450,600 (lightest). Here the
 asymptotic shape B is known to be {(x, y) E

 R2 + _:+ < 1<

 .. ....... ... . :.: . . . .: . . . . ..

 .. . ... . . . ...

 350

 0........ 5......50 200.5..30
 .............. .. ... '.. ?.:::..i~iiii l;P :i i~;i!jij: ? 3 0 0 . ..... ::? :? : :?i: '?.; ??: ? ??:?

 :.-M.Z. M ...........:,...;:i::i ' '?''' :i?; ?

 25.... . .......

 ............. : ....... ................. .........

 FIG. 2. First-passage process C(t),
 t = 50, 100, 150, 200 for d = 2 and F exponen-
 tial with mean 1.
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 2930 J. B. MARTIN

 We now discuss various ways in which the shape result in Theorem 5.1 may
 fail.

 First, the last-passage case. Note that if g(x) = oo for some x in the interior of

 Rd+, then (by a simple superadditivity argument) g = oo throughout the interior.
 A sufficient condition for this to occur is that E Xd = - o. Then the growth of B(t)
 in any interior direction is sublinear in t; on a linear scale, the asymptotic shape
 collapses into the boundary (or even to the origin alone if E X = oo). An example
 is illustrated in Figure 3 for a distribution with finite mean but infinite variance,
 with d = 2.

 The undirected first-passage case on Zd is comparable. Here again there are
 just two possibilities: either the shape function is 0 everywhere (in which case the
 asymptotic shape is essentially the whole of Rd), or the shape function is nonzero
 everywhere.

 For the directed first-passage case, in contrast, the different behaviors can co-

 exist. If pc(d) < P(X = 0) < 1, then h = 0 for some cone around the direction 1
 (this is the cone in which "oriented percolation of sites with weight 0" occurs),
 but h > 0 elsewhere. In this case there will a.s. be some infinite path starting at
 the origin which has finite total weight, and the set C(t) will have infinite size at
 some finite time. The shape C = {x:h (x) < 1) is noncompact, but not equal to the

 whole of Rd+, and the shape theorem does not apply as given. See Figure 4 for a
 simulation of such a case.

 500

 400

 300

 200-

 100

 S 100 200 300 400 500 600

 FIG. 3. B(t), t = 150,300,450,600, with
 d = 2 and the Pareto distribution F(x) =
 min(0, 1 - (3x)-3/2), which has mean 1 but in-
 finite variance. The asymptotic shape B consists
 only of two lines, between the origin and (0, 1)
 and between the origin and (1, 0).

 350 ........

 300-

 250

 200

 150-

 100

 50-

 0 50 '100 150 200 250 3600 350
 FIG. 4. C(t), t = 18, 36, 54, with d = 2 and
 X = 0 w.p. 0.645 and X = (0.355)- w.p. 0.355
 (showing only the intersection with the box
 [0, 350]2). Here h(x) = O for some (though not
 all) x; thus the asymptotic shape is noncompact

 (but not the whole of Rd), and a.s. the set C(t)
 will be infinite for some t.
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 Note that if again X attains its minimum value with probability more than pd)
 but this minimum is now greater than 0, then h(x)/ lxll is constant on some cone
 around the direction 1, and the boundary of C has a flat section-see Figure 5. This
 is the same phenomenon observed by Durrett and Liggett [8] for the undirected
 case.

 If E X = oc, then h (el) = oc, and the shape theorem cannot hold as stated, but
 an amended version for a cone excluding the boundaries may hold. However, if
 (only slightly more strongly) E min(Xi,..., Xjd)d = oc, then the result fails more
 fundamentally. Still the limit h (x)= lim= ,n n-1S(Lnx]) exists and is finite and

 constant a.s. for any x in the interior of Rd+, and one can define the asymptotic
 shape C as before. However, it is no longer the case that the convergence is a.s.

 uniform on compact subsets of Rd+; in effect, the "holes" in the shape C(t) persist,
 as seen in Figure 6. The same sort of behavior would occur for the undirected
 first-passage model when E min(X, ..., X2d)d = 00; see, for example, related
 discussions in [4].

 5.3. Proof of Theorem 5.1. Note first that for part (i) of Theorem 5.1, the

 condition E X > 0 implies that inf,,Rd\Og(x) > 0 [since, by superadditivity,

 g(x) > Ixllg(1,0 ,... ,0)= IlxllE X].
 Note also that, by replacing the weights {X(z)} by {-X(z)}, part (ii) can be

 rewritten as follows in terms of last-passage rather than first-passage quantities:

 if

 g(x)
 sup <0,

 XERd\(o) |1xII

 then for any E > 0,

 B-(t)
 (5.4) (1 - E)B- C c (1 + e)B-

 t

 for all sufficiently large t, with probability 1, where

 B-(t) = {x E Rd : T(xJ) > -t
 and

 B- = {x:g(x) > -1}.

 By Theorem 2.3, we know that Ig(z)l < oc for all z; then (5.3) and (5.4) are
 immediately implied by the following property: for any e > 0, there are a.s. only
 finitely many z E Zd+ such that I T(z) - g(z) I > eig(z)l.

 Since we assume in both cases that Ig(z)l/llzll is bounded away from 0, we

 have Ig(z)| Ilzll inf,, ig(z')l/llz'll, so in fact it is enough to show that for any
 E > 0, there are a.s. only finitely many z such that IT(z) - g(z)l > ellzll.
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 FIG. 5. C(t), t = 50,100, 150,200, with
 d = 2 and X = 0.5 w.p. 0.8, X = 3 w.p. 0.2.
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 FIG. 6. C(400) for d = 2 and the Pareto
 distribution F(x) = min(0, I - x-3/4), which
 has infinite mean.
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 FIG. 7. B(30) for d = 3 and F exponential with mean 1.
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 This follows immediately from Lemmas 5.2-5.5, which we state immediately
 and then prove in turn.

 LEMMA 5.2. Suppose F satisfies f'O F(s)ll/dds < 0c and fo00(1 -
 F(s))lId ds < o, and let E > 0. If L is large enough, then with probability 1,

 IT(z)- T(L)(z)I < F||z||

 for all except finitely many z E Zd+.

 LEMMA 5.3. Let E > 0 and L > O0. With probability 1,

 [T(L)(z) - E T(L)(z) < E|Iz1,

 for all except finitely many z Zd+.

 LEMMA 5.4. Let E > 0 and L > 0. Then for all except finitely many z e

 ET (L)(z)- g(L)(z)I < 11z|11.

 LEMMA 5.5. Suppose F satisfies focF(s)l/dds < o0 and fo0(1 -
 F(s))l/d ds < oc, and let E > 0. If L is sufficiently large, then for all z E Zd+

 Ig(L)(z) - g(z)l < EIZ 11.

 PROOF OF LEMMA 5.2. Let L be large enough that c f,"(1 - F(s))ld ds <
 e/2 and c f F(s)1/d ds <E /2, where c is the constant in Lemma 3.5.

 Let z E d+; for some 7* 1-I [z), we have

 T(z) - T(L)(z) = [X(v) - X(L)(v)],
 VCTT*

 so that

 IT(z)- T(L)(z)l I [X(v) - L]+ + L[-L - X(v)]+
 V6GJ* VEC*

 (5.5)
 (5.5)< max V(L)(v)+ max W(L)(V),
 7rwEF[z) E r-[z)

 where we define V(L)(v) = [X(v) - L]+ and W(L)(v) - [-L - X(v)]+.
 Note that {IV(L)(v), v c Zd+} are i.i.d, with common distribution F~, where

 F)(x) =- 0 for x < 0 and F (x)- F (L + x)for x > 0.
 Similarly, {W(L) (v), v Zd} are i.i.d. with common distribution F , where

 F) (x) --0 for x < 0 and F (x) 1 - F (-L - x) for x> 0.
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 From Lemma 3.5 (applied to {V(L)(v)} and F (L)rather than to {X(v)} and F),
 we then have that, with probability 1,

 lim sup- max max v(L)(v)< c f(1 - F L)(s))l/dds
 n--*o ln z: I|z l<n rnE [z) vE

 c j(1 - F (s)) /d ds

 < s/2.

 In particular, there are a.s. only finitely many z E Zd+ such that

 max "V (L)(v)> > 11zl. EfH[z)1 - 2

 Applying Lemma 3.5 to {W(L)(v)I} and F in the same way, one obtains that

 there are a.s. only finitely many z E Z+ such that

 max W(Lv) > -lizl.
 7En l-[z) -2 VEnr

 Thus from (5.5), there are a.s. only finitely many z e Zd such that

 T(z) - T(L)(z)] > E11zI,

 as required. D

 PROOF OF LEMMA 5.3. All the paths in Fn[z) have length |lzil, and the
 weights X(L)(v) have absolute value no greater than L. Hence we may apply the
 concentration inequality in Lemma 3.1 to give

 P(ITTL)(z)- E T(L)(z) >2 6|z|) < exp -(e641zllL)2 +64
 e(641zl|L

 64L 4).
 For n E Z+, there are certainly no more than (n + 1)d points z such that |lzil = n;

 thus

 Y P( T(L)(z) - E T(L) (z) I >|llzl) _ (n + 1)d exp 64 L +64 zZE~tin eZ"d

 < 00,

 and Borel-Cantelli yields the desired result. D

 PROOF OF LEMMA 5.4. From the definition of g and so of g(L), we have

 E T(L) () g(L) (Z) for all z, so we need to show that E T(L)(Z) > g(L(z) - eI|zI|,
 except for finitely many z.
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 SHAPE IN DIRECTED PERCOLATION 2935

 Fix a > 0. The distribution F(L) has bounded support, so certainly satisfies (2.4)

 and (2.5); thus by Theorem 2.3, g(L) is continuous on IRd, and hence is uniformly

 continuous on the compact subset {x ERd": lxi < 2d}.
 So choose u < min(l, a) such that whenever Ilxll i d and Ijx - x'll < ud, then

 Ig(L) (x) - g(L)(x') I a.
 Now let C be the set

 d,

 ur, re 0,1, ... . l .
 C is a finite subset of IRd, and for every y e C, we have [by Proposition 2.1(i)],

 EET(L)(Ln y) g(L)(y) as n -* c.
 n

 Hence there is N = N(a) such that, for all n > N and all y E C,

 E T(L)(Lny]) > n(g(L)(y) - a).

 Let z satisfy max zi > N. Define

 lI z
 y=u

 u max zi

 then y E C, with (max zi)y < z, with IliYI < d and with
 z

 -y <ud<ad.
 max Zi

 Using first superadditivity, then the fact that all the weights {X(L)(z)} are no
 smaller than -L, then the continuity bounds above, we obtain

 E T(L)(z) > E T(L)(L(max zi)yJ) + E T(L)(z - L(maxzi)yJ)

 > E T(L)(L(max Zi)y]) - Lllz - L(max Zi)yJ II

 > (max zi)(g(L)(y) - a) - L((lz - (max zi)yII + d)

 g(L)(z) (maxzi) g[(L)( z ) (L)(Y (max zi ) J
 z Ld

 +a+L -y + -
 max zi max Zi

 > g(L)(z) -(maxi) a +a + Lad + .d
 max zi

 Hence if a < 2E-1(2 + Ld), then for all z with maxzi > max(N(a), 2Ld/8),
 we have

 E T(L)(z) > g(L)(z) - (maxzi)8

 > g(L)(z) -- 11z11,
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 as required. D

 PROOF OF LEMMA 5.5. Under the moment conditions on F, the result
 follows immediately from Lemma 3.6.

 This completes the proof of Theorem 5.1. D
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