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Most electricity markets exhibit high volatilities and occasional distinctive price spikes, which
result in demand for derivative products which protect the holder against high prices. In this
paper we examine a simple spot price model that is the exponential of the sum of an Ornstein–
Uhlenbeck and an independent mean-reverting pure jump process. We derive the moment
generating function as well as various approximations to the probability density function of
the logarithm of the spot price process at maturity T. Hence we are able to calibrate the model
to the observed forward curve and present semi-analytic formulae for premia of path-
independent options as well as approximations to call and put options on forward contracts
with and without a delivery period. In order to price path-dependent options with multiple
exercise rights like swing contracts a grid method is utilized which in turn uses approximations
to the conditional density of the spot process.
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1. Introduction

A distinctive feature of electricity markets is the

formation of price spikes which are caused when the

maximum supply and current demand are close, often

when a generator or part of the distribution network

fails unexpectedly. The occurrence of spikes has far

reaching consequences for risk management and pricing

purposes. In this context a parsimonious model with

some degree of analytic tractability has clear advantages,

and in this paper we propose and examine in detail

a simple mean-reverting spot price process exhibiting

spikes.
In our model the spot price process S is defined to

be the exponential of the sum of three components:

a deterministic periodic function f characterizing

seasonality, an Ornstein–Uhlenbeck (OU) process X

and a mean-reverting process with a jump component

to incorporate spikes Y. We set this up formally.

Let (�,F ,P) be a probability space equipped

with a filtration (F t) satisfying the usual conditions.

We let

St ¼ expð f ðtÞ þ Xt þ YtÞ,

dXt ¼ ��Xt dtþ � dWt,

dYt ¼ ��Yt� dtþ Jt dNt,

ð1Þ

where N is a Poisson process with intensity � and J is

an independent identically distributed (i.i.d.) process

representing the jump size. We assume W, N and J to

be mutually independent processes adapted to the

filtration.
Our model generalizes a number of earlier models.

For example, the commonly used model of Lucia and

Schwartz (2002) is obtained by setting �¼ 0 and taking

J¼ 0. In this model, St is log-normally distributed

giving analytic option price formulae very similar to

those in the Black–Scholes model. To allow for

a stochastic seasonality, a further component can be

inserted into the model and, as long as this process

has a normal distribution, analytic tractability is

maintained.
The main disadvantage of the Lucia and Schwartz

models is their inability to mimic price spikes.*Corresponding author. Email: hambly@maths.ox.ac.uk
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To overcome this, jumps can be added to the model; for
example, the case �¼ 0 in our model,

dXt ¼ ��Xt dtþ � dWt þ Jt dNt, St ¼ expð f ðtÞ þ XtÞ:

ð2Þ

This model is briefly mentioned by Clewlow and

Strickland (2000, section 2.8). Analytic results are
given by Deng (2000) based on transform analysis
described by Duffie et al. (2000). Calibration to
historical data and the observed forward curve is
discussed by Cartea and Figueroa (2005) where

practical results for the UK electricity market are
given. More general versions are discussed by
Benth et al. (2003) and applied to data from the
Nordpool market. For these models to exhibit typical
spikes the mean-reversion rate � must be extremely

high, otherwise the jumps do not revert quickly
enough.

Benth et al. (2007) introduce a set of independent pure
mean-reverting jump processes of the form

St ¼
X
i

wiY
ðiÞ
t , dY

ðiÞ
t ¼ ��iY

ðiÞ
t dtþ �i dL

ðiÞ
t ,

where wi are some positive weights and the L(i) are
independent increasing càdlàg pure jump processes.
The spot price process is a linear combination of the

pure jump processes and, as there is no exponential
function involved, positivity of the spot is achieved by
allowing positive jumps only. An advantage of this
formulation is that semi-analytic formulae for option

prices on forwards with a delivery period can be derived.
However, a full analysis of this class of models still
seems to be in its early stages; there is some empirical
work on fitting this model in the work of Klüppelberg
et al. (2008).

There are a number of papers which discuss the
stylized facts of electricity markets and seek to model

them empirically. An empirical comparison of a number
of models for the Californian market can be found in
the work of Knittel and Roberts (2005). Other
empirical approaches try to fit more advanced time

series models (e.g. Koopman et al. 2007), or alternative
mathematical models, such as jump diffusion and
regime switching (e.g. Weron et al. 2004). It is clear
that there is a need to capture seasonality and rapid
price changes.

The model (1) we consider in this paper is an
extension of (2), in which we allow for two different

mean-reversion rates, one for the diffusive part and one
for the jump part. The introduction of a mean-reverting
spike process Y allows us to choose a higher mean-
reversion rate � in order for the jump to revert much
more quickly and so mimic a price spike. This is useful

for modelling the NordPool market where estimates
of the mean-reversion speed are typically small, but this
might not be needed in markets where the speed of mean
reversion � is generally very high, like in the UKPX or

EEX, where a jump diffusion with mean reversion may
also be appropriate.

Returning to our model (1) and solving for Xt and Yt,
we have

Xt ¼ X0e
��t þ �

Z t

0

e��ðt�sÞ dWs,

Yt ¼ Y0e
��t þ

XNt

i¼1

e��ðt��iÞJ�i , ð3Þ

where �i indicates the random time of the occurrence
of the ith jump. Thus, given X0¼x0, Xt�N (x0e

��t,
(�2/2�)(1� e2�t)). Properties of the spike process Y are not
as obvious and will be examined in the following section.
At this point we make no assumption on the jump size J
but will later give results for exponentially and normally
distributed jump sizes.

Note also that, although X and Y are both
Markov processes, the price process S is not. We will
therefore assume that all three components of the price
process, i.e. the time t values f(t), Xt and Yt, are
individually observable, implying we expect jumps not
to be small.

Figure 1 shows a simulated sample path of the
processes X, Y and the composed process S.

In section 2 we derive important stochastic properties
of the process, including the moment generating function
and various approximations to its probability density
function. Pricing of a variety of derivative contracts will
be discussed in sections 3 and 4, using the results obtained
in section 2.

2. Properties of the model for spot prices

2.1. The spike process

The following result is known and given by Duffie et al.
(2000) in a more general framework.

Lemma 2.1 (moment generating function of the spike
process, Yt): Let {J1, J2, . . .} be a series of i.i.d. random
variables. We assume that there is a �040 such that the

–1
–0.5

0
 0.5

1
X
Y

0
50

100
150
200
250
300

0 0.5 1 1.5 2

0 0.5 1 1.5 2

S
Exp(f(t))

Figure 1. Simulated sample paths of X, Y and S of the spot
model (1). We use the following parameters which are of the
same order of magnitude as calibrated values of the Nord Pool
spot market, except the seasonality function f(�) which has been
chosen arbitrarily: f(t)¼ ln(100)þ 0.5cos(2�t), �¼ 7, �¼ 1.4,
�¼ 200, Jt� exp(1/	J), 	J¼ 0.4, �¼ 4.
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moment generating function �J(�) :¼E[e�J] exists for �5�0.
Let {�1, �2, . . .} be the random jump times of a Poisson
process N with intensity �. Then the process Y with initial
condition Y0¼ 0 has, for all �5�0, t� 0, the moment
generating function

�Yð�, tÞ :¼ E½e�Yt � ¼ exp �

Z t

0

�Jð�e
��sÞ � 1 ds

� �
: ð4Þ

Furthermore, the first two moments of Yt are given by

E½Yt� ¼ �0Yð0, tÞ ¼
�

�
E½J�ð1� e��tÞ,

E½Y2
t � ¼ �00Yð0, tÞ ¼ E½Yt�

2
þ
�

2�
E½J2�ð1� e�2�tÞ,

and in particular we have

var½Yt� ¼
�

2�
E½J2�ð1� e�2�tÞ:

Remark 1 (asymptotics for �!1): As remarked above,
in practice the timescale 1/� for mean reversion of spikes
is much shorter than any of: the contract lifetime T; the
diffusive mean-reversion time 1/�; the volatility timescale
1/�2; and the mean arrival time of spikes 1/�. We
therefore calculate approximations for the moment
generating function of the spike process, and for its
distribution, as �!1.

To analyse the behaviour of the moment generating
function for large � we make the substitution u¼ �e��s in
the integrand to obtain

�Yt
ð�Þ ¼ exp

�

�

Z �

�e��t

�JðuÞ � 1

u
du

� �
:

For fixed �, t, as �!1 we haveZ �e��t

0

�JðuÞ � 1

u
du ¼ �e��tE½J� þOðe�2�tÞ,

because �J(u)¼ 1þE[J]uþO(u2), u! 0, and so

�Yt
ð�Þ ¼ exp

�

�

Z �

0

�JðuÞ�1

u
du� �e��tE½J�þOðe�2�tÞ

� �� �
:

ð5Þ

Example 2.2 (exponentially distributed jump size): If
J�Exp(1/	J) with mean jump size 	J, then �J(�)¼
1/(1� �	J) exists for �5�0¼ 1/	J. We obtain

�Yð�, tÞ ¼
1� �	Je

��t

1� �	J

� ��=�
, �5 1=	J:

As t!1, we have �Y(�, t)! (1� �	J)
��� for �51/	J so

the stationary distribution forY is the Gamma distribution
Gamma(�/�, 1/	J). As �!1, we also have �Y(�, t)¼
1þ �	J�/�þO(��2)� (1� �	J)

��/� for �51/	J. Thus Yt

is distributed approximately as Gamma(�/�, 1/	J) for
large �.

The mean and variance of the spike process Yt with
Y0¼ 0 are

E½Yt� ¼
�	J

�
ð1� e��tÞ, var½Yt� ¼

�	2
J

�
ð1� e�2�tÞ:

2.2. The combined process

Having examined the properties of the spike process Y we
conclude properties of the sum XtþYt and consequently
of the price St¼ exp( f(t)þXtþYt).

Theorem 2.3: Let the spot process S be defined by (1) and
let Zt :¼ lnSt¼ f(t)þXtþYt with X0 and Y0 given. The
moment generating function of Zt exists for �5�0 and is
given by

Ee�Zt ¼ exp

�
�f ðtÞ þ �X0e

��t þ �2
�2

4�
ð1� e�2�tÞ

þ �Y0e
��t þ �

Z t

0

�Jð�e
��sÞ � 1 ds

�
: ð6Þ

Proof: The processes X and Y are independent so the
expectation of the product is the product of the
expectations. The moment generating function of Yt is
given in lemma 2.1 which yields the result. œ

If �041, the expectation value of the spot process at
time t, St, immediately follows by setting �¼ 1. We note
that, in general, the moments for the spot price ES�t only
exist for �5�0. For instance, if the jump distribution is
exponential with mean 	J, the spot price has less than
1/	J moments.

2.3. Approximations

We now derive approximations to the density functions of
the spike process at maturity T for large mean-reversion
values � of the spike process. Although we can always
compute the density by Laplace inversion of the moment
generating function, an explicit expression for the density
allows for more efficient algorithms and more explicit
option pricing formulae. Here we only provide an
expression for the density of a ‘truncated’ spike process
~YT as defined below. However, knowledge of the density
of ~YT alone will help us to efficiently construct a grid to
price swing options. We start by defining the truncated
spike process ~Y, showing that ~Yt provides a good
approximation to the value Yt for large values of �,
deriving a general formula for the density function of ~Yt

and finally making it more explicit by considering an
exponential jump size distribution.

For very high mean-reversion rates � and small jump
intensities �, the dominant contribution to the density of
the spike process comes from the last jump. We therefore
introduce the truncated spike process

~Yt :¼
JNt

e��ðt��Nt Þ, Nt 4 0,

0, Nt ¼ 0:

(
ð7Þ

Note that we only consider Y starting from 0; any other
starting point can be incorporated by adding the initial
value.

Lemma 2.4: ~Yt is identically distributed as

Zt :¼
J1e
���1 , �1 � t,

0, �1 4 t:

�
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Proof: We use the reversibility property that if N¼ {Nt;

t2Rþ} is a Poisson process, then N̂ ¼ f�N�t; t 2 Rþg is

also a Poisson process. As �Nt
is the jump time of the last

jump before t, this translates into the first jump of the

reversed process and hence t� �Nt
and �1 are identically

distributed, given Nt40. If Nt¼ 0, then there has been no

jump in [0, t] and the same applies for the reversed process

and so this is equivalent to �14t. œ

Lemma 2.5 (moment generating function of the truncated

spike process): The random variable ~Yt of the truncated

spike process at time t with initial condition ~Y0 ¼ 0 has a

moment generating function for �5�0 which is given by

� ~Yt
ð�Þ ¼ 1þ �

Z t

0

ð�Jð�e
��sÞ � 1Þe��s ds:

The first two moments are given by

E½ ~Yt� ¼
�

�þ �
E½J�ð1� e�ð�þ�ÞtÞ,

E½ ~Y2
t � ¼

�

2�þ �
E½J2�ð1� e�ð2�þ�ÞtÞ:

Proof: By lemma 2.4 we only need to determine the

moment generating function of

Zt :¼ Je���I��t, � � Expð�Þ,

where IA denotes the indicator function for the event A.

Given the jump time � we have

E½e�Zt j � ¼ s� ¼ �Jð�e
��sIs�tÞ,

and so

E½e�Zt � ¼ E½E½e�Zt j ���

¼

Z 1
0

�Jð�e
��sIs�tÞ�e

��s ds

¼

Z t

0

�Jð�e
��sÞ�e��s dsþ e��t:

The first two moments are given by E½ ~Yt� ¼ �0~Yt
ð0Þ and

E½ ~Y2
t � ¼ �00~Yt

ð0Þ. œ

Remark 2 (pointwise convergence of the moment gen-

erating functions): The moment generating function of

the truncated spike process converges pointwise to the

moment generating function of the spike process for

either �! 0 or �!1 with t and � fixed. First consider

�! 0. Fix all other parameters and set g(s;�, �) :¼
�J(�e

��s)� 1, then

�Yt
ð�Þ ¼ exp �

Z t

0

gðs; �, �Þ ds

� �

¼ 1þ �

Z t

0

gðs;�, �Þ dsþOð�2Þ,

� ~Yt
ð�Þ ¼ 1þ �

Z t

0

gðs;�, �Þe��s ds

¼ 1þ �

Z t

0

gðs;�, �Þ dsþOð�2Þ:

To see the convergence for �!1 with �, t and � fixed,

first note that from (5) we have

�Yt
ð�Þ ¼ 1þ

�

�

Z �

0

�JðuÞ � 1

u
duþOð1=�2Þ:

Also from lemma 2.5,

� ~Yt
ð�Þ ¼ 1þ �

Z t

0

ð�Jð�e
��sÞ � 1Þe��s ds

¼ 1þ
�

�

Z �

�e��t

�JðuÞ � 1

u

u

�

� ��=�
du

by setting �e��s¼ u. Now as �!1, (u/�)�/�! 1 except in

a small region u¼O(�e��/�), which makes a negligible

(exponentially small) contribution to the integral.

Likewise, we may replace the lower limit of integration

by 0 and incur a similarly small error. Hence,

� ~Yt
ð�Þ ¼ 1þ

�

�

Z �

0

�JðuÞ � 1

u
duþ o

1

�

� �

¼ �Yt
ð�Þ þ o

1

�

� �
:

Two examples of the approximated and exact moment

generating function using our standard parameters can be

seen in figure 2.

Lemma 2.6 (distribution of the truncated spike

process): Let the jump size distribution have density

 0.98
1

 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

–3 –2 –1 0 1 2 3

P
hi

P
hi

Theta Theta

Moment generating function of the spike process Y Moment generating function of the spike process Y

Mgf
Approximation

Mgf
Approximation

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

–6 –4 –2 0 2 4 6

Figure 2. Moment generating function of Yt and ~Yt denoted by mgf and approximation, respectively. On the left we use
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function fJ. Then the truncated spike process ~Yt as defined

above has the cdf

F ~Yt
ðxÞ ¼ e��tIx�0 þ

Z x

�1

f ~Yt
ð yÞdy, t � 0,

with

f ~Yt
ðxÞ ¼

�

�

1

xj j1��=�

Z xe�t

x

fJð yÞ y
�� ����=�dy

�����
�����, x 6¼ 0: ð8Þ

Proof: Based on lemma 2.4 it suffices to determine the

distribution of

~Yt ¼ JZI��t, Z :¼ e��� , � � Expð�Þ:

It follows that Z is the (�/�)th power of a uniformly

distributed random variable on [0, 1] and its density is

given by

fZðxÞ ¼
�

�
x�ð1�ð�=�ÞÞIx2½0,1�:

As P(�4t)¼ e��t we obtain the cdf of ZI��t as

FZI��t ðxÞ ¼ e��tIx�0 þ

Z 1
�1

fZI��t ð yÞdy,

fZI��t ðxÞ ¼
�

�
x�ð1�ð�=�ÞÞIx2½e��t, 1�,

and the distribution of the product of two independent

random variables J and ZI��t is then given by

FJZI��tðcÞ ¼ e��tIc�0 þ

Z c

�1

fJZI��t ðxÞdx,

fJZI��tðcÞ ¼

Z 1
�1

fZI��t ðc=xÞ
fJðxÞ

xj j
dx:

With

fZI��t ðc=xÞ ¼
�

�

1

c1�ð�=�Þ
Ix2½c,ce�t�x

1�ð�=�Þ, c4 0,

fZI��t ðc=xÞ ¼
�

�

1

cj j1�ð�=�Þ
Ix2½ce�t, c� xj j

1�ð�=�Þ, c5 0,

the desired result follows. œ

Example 2.7 (exponential jump size distribution): Let

J�Exp(1/	J) be exponentially distributed. The

probability density function for the truncated spike

process ~Yt is

f ~Yt
ðxÞ ¼

�

�	�=�J

�ð1� �=�, x=	JÞ � �ð1� �=�, xe�t=	JÞ

x1��=�
,

x4 0, ð9Þ

where �(a, x) is the incomplete Gamma function.

The approximation is a good fit to the exact density

for typical market parameters as can be seen in

figure 3. The only discrepancy occurs at Yt¼ 0 where

the density has a singularity. We use this approxima-

tion in section 4.1 to efficiently generate a grid to price

swing options.

3. Option pricing

The electricity market with the model presented is
obviously incomplete. Not only are we faced with
a non-hedgeable jump risk but also we cannot use the
underlying process (St) to hedge derivatives due to
inefficiencies in storing electricity. Hence, the discounted
spot price process in the risk-neutral measure is not
necessarily a martingale. From now on we assume the

model is specified in the risk-neutral measure Q as

St ¼ expð f ðtÞ þ Xt þ YtÞ,

dXt ¼ ��Xt dtþ � dWt,

dYt ¼ ��Yt� dtþ Jt dNt,

ð10Þ

where W is a Brownian motion under Q and N a Poisson
process with intensity � under Q. For simplicity of
notation we use the same parameters as in (1) but note

that they might differ from the parameters under the real-
world measure. A common modelling assumption is that
the risk-neutral model has a jump structure that is similar
to that observed under P. This is certainly true for
a discrete jump size distribution, so we will assume that it
is the case here.

Lemma 3.1 (seasonal function consistent with the forward
curve): Let t¼ 0 and F ½T �0 be the forward at time 0
maturing at time T; then the risk-neutral seasonality
function is given by

f ðT Þ ¼ lnF ½T �0 � X0e
��T � Y0e

��T �
�2

4�
ð1� e�2�TÞ

� �

Z T

0

�Jðe
��sÞ � 1 ds: ð11Þ

Proof: The forward price is F ½T �0 ¼ E
Q
½ST � and so the

result follows from (6). œ

This result forms an important part of the calibration

of the model. As the model is incomplete the calibration
procedure depends on the set of liquid derivatives used.
Here we assume a continuous forward curve is observable
in the market, i.e. values of F ½T �0 are given. This is not
a realistic assumption but there are ways to generate
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Figure 3. Distribution of the spike process (Yt) at T with a jump
size of J�Exp(1/	J). We use approximation (9) and compare it
with the exact density as produced by a Monte-Carlo simula-
tion. We use the same parameters as in figure 1.
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a continuous curve consistent with discretely observed
prices; see figure 4 and Kluge (2006, section 2.2.2.5) for
more details.

For the sake of simplicity we adopt a policy of choosing
parameters from the real-world measure P if they are not
uniquely determined by the set of observed derivative
prices. This is equivalent to saying we choose a risk-
neutral measure Q which changes as few parameters of
the model as possible. As there are at least five parameters
(�,�, �, �,	J) and seasonality to fit we need to tradeoff
those calculated using historical data and the observed
derivative prices. The volatility parameter � remains
unchanged by any equivalent measure change so we can
always determine it from historical data. If we only see
forward prices in the market we can also calibrate all
other parameters to historical data except the seasonal
function. In brief, this can be done by de-seasonalizing
the data using the real-world seasonality and then making
a first estimation of � from which we can start filtering
suspected spikes. From the reduced dataset, � can be
re-estimated and suspected spikes filtered recursively.
Having determined all parameters from historical data
we finally calculate the risk-neutral seasonality function f
from the observed forward curve based on (11).

3.1. Pricing path-independent options

If the payoff of an option on the spot at maturity T
is given by g(ST) then its arbitrage free price at time t is
given by

Vðx, y, tÞ ¼ e�rðT�tÞEQ
½gðST Þ j Xt ¼ x,Yt ¼ y�:

Although we do not have an expression for the density of
ST we know its moment generating function and so can

apply Laplace transform methods to calculate the
expectation value. For an overview, see Cont and
Tankov (2004, section 11.1.3)y or Carr and Madan
(1998) and Lewis (2001). Consider, for example, put or
call options. Let Zt¼ lnSt and let �Zt

(�) be its moment
generating function, as given in (6). Now define its
truncated moment generating function by

G
ðx, tÞ :¼ E½e
ZtI Zt�xf g� ¼

Z x

�1

e
y dFZt
ð yÞ,

which can be computed using a generalization of Lévy’s
inversion theorem:

G
ðxÞ ¼
�Zt
ð
Þ

2
�

1

p

Z 1
0

=ð�Zt
ð
þ ��Þe���xÞ

�
d�:

The price of a put option is then

E½ðK� ST Þ
þ
� ¼ KE½IST�K� � E½STIST�K�

¼ KG0ðlnKÞ � G1ðlnKÞ,

and by put–call parity we obtain the price of a call option.

3.2. Pricing options on forwards

For a forward contract at time t, understood to be today,
maturing at T the strike of a zero-cost forward is given by

F ½T �t ¼ E
Q
½ST j F t�:

The most common options on forwards are puts or
calls maturing at the same time as the underlying forward,
i.e. the payoff is given by ðF ½T �T � KÞþ, which is equivalent
to (ST�K)þ. We can price these contracts based on the
dynamics of the spot and using methods developed above.
However, by analysing the dynamics of the forward curve
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Figure 4. Interpolation of the forward curve by a seasonal function and spline correction. Three years worth of spot history data
has been used to calibrate a seasonality function which is then used as a first approximation of the forward curve. The difference
between the seasonality function and the observed forward prices is then corrected by a piecewise quadratic polynomial.

yThey describe the method in terms of a complex valued characteristic function and Fourier inversion, but by allowing complex
values the method can also be written in terms of Laplace transforms.

942 B. Hambly et al.



implied by the spot price model we will gain further
insights and be able to relate the price of an option to the
Black-76 formula (Black 1976), which is still widely used
in practice.

Recall that the expectation value of ST is equal to the
moment generating function given in (6) at �¼ 1. For
F ½T �t ¼ E

Q
½ST j Xt,Yt� we obtain

F ½T �t ¼ exp

�
f ðT Þ þ Xte

��ðT�tÞ þ Yte
��ðT�tÞ

þ
�2

4�
ð1� e�2�ðT�tÞÞ þ �

Z T�t

0

�Jðe
��sÞ � 1 ds

�
:

ð12Þ

For fixed T, the dynamics of the forward maturing at T
is then

dF ½T �t

F ½T �t

¼ ��ð�Jðe
��ðT�tÞÞ � 1Þ dtþ �e��ðT�tÞ dWt

þ ðexpðJte
��ðT�tÞÞ � 1Þ dNt: ð13Þ

The forward is a martingale under Q by definition, and so
the drift term compensates the jump process. For large
time to maturities T� t, a jump in the underlying
process has only very limited effect on the forward.
More precisely, if the relative change in the underlying
is exp(Jt)� 1 the forward changes relatively by
exp(Jte

��(T�t))� 1. In addition to the jump component
the dynamics follows a deterministic volatility process
starting with a low volatility �e��T at t¼ 0 and increasing
to � at maturity. Without the jump component there are
clear similarities with the Black-76 model.

For pricing purposes we need to find the distribution
of F ½T �T in terms of its initial condition F ½T �t . We have

lnF ½T �T ¼ f ðT ÞþXTþYT,

lnF ½T �t ¼ f ðT ÞþXte
��ðT�tÞ þYte

��ðT�tÞ þ
�2

4�
ð1� e�2�ðT�tÞÞ

þ�

Z T�t

0

�Jðe
��sÞ� 1ds:

Eliminating the seasonality component f(T ), and using
the relations

XT � Xte
��ðT�tÞ ¼ �

Z T

t

e��ðT�sÞ dWs,

YT � Yte
��ðT�tÞ ¼

XNT

i¼Nt

J�ie
��ðT��iÞ,

we finally get

lnF ½T �T ¼ lnF ½T �t þ �

Z T

t

e��ðT�sÞ dWs þ
XNT

i¼Nt

J�ie
��ðT��iÞ

þ
�2

4�
ð1� e�2�ðT�tÞÞ þ �

Z T�t

0

�Jðe
��sÞ � 1 ds:

ð14Þ

Without the jump component, F ½T �T would be log-
normally distributed. In order to relate the pricing of
options to the Black-76 formula even in the presence

of spike risks, we assume that F ½T �T is log-normally
distributed in a first approximation. We basically ignore
the heavy tails caused by the spike risk and so expect to
underestimate prices of far out-of-the-money calls but
should do well with at-the-money calls.

We define the approximation by matching the first two
moments but take into account that by definition F ½T �t is
a martingale for a fixed maturity T and in order to keep
the same property we set

lnF ½T �T � lnF ½T �t þ �, � � N �
1

2
�̂2ðT� tÞ, �̂2ðT� tÞ

� �
,

and set �̂2ðT� tÞ :¼ var½lnF ½T �T j F t�, i.e.

�̂2ðT� tÞ ¼ var �

Z T

t

e��ðT�sÞ dWs þ
XNT

i¼Nt

Jtie
��ðT�tiÞ

" #

¼
�2

2�
ð1� e�2�ðT�tÞÞ þ

�

2�
E½J2�ð1� e�2�ðT�tÞÞ:

Remark 1 (term structure of implied
volatility): Comparing this result with the setting of
Black-76 (Black 1976) where dF¼F� dW and so FT¼

Ftexp(�) with � � Nð� 1
2 �

2ðT� tÞ, �2ðT� tÞÞ, we conclude
that �̂ is the implied Black-76 volatility and in a first
approximation given by

�̂2 �
ð�2=2�Þð1� e�2�ðT�tÞÞ þ ð�=2�ÞE½J2�ð1� e�2�ðT�tÞÞ

T� t
,

ð15Þ

which is shown in figure 5. It can be seen that the spike
process has a much more significant impact on the
implied volatility for short maturities rather than for
long-term maturities. As far as the price of an
at-the-money call is concerned, the additional jump risk
adds an almost constant premium to the price to be paid
without any jump risk.

Remark 2 (implied volatility across strikes): The approx-
imation does not predict a change of implied volatility
across strikes. However, the jump risk introduces a skew
as can be seen in figure 6 where the exact solution based
on section 3.1 has been used to calculate implied
volatilities. The bigger the mean jump size and hence
the bigger E[J2], the more profound is the skew.

3.3. Pricing options on forwards with a delivery period

As electricity is a flow variable, forwards always
specify a delivery period. The results of the previous
section can therefore only be seen as an approximation
to option prices on forwards with short delivery
periods, like one day. Here we only consider options
on forwards maturing at the beginning of the delivery
period, i.e. the payoff is given by some function of
F ½T1,T2�

T1
at time T1. An option on such a forward is

conceptually similar to an Asian option in the Black–
Scholes world. One method of pricing Asian options is
to approximate the distribution of the integral by
a log-normal distribution and this can be done by
matching the first two moments; see Turnbull and
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Wakeman (1991), for example. Once the parameters of

the approximate log-normal distribution have been

determined, pricing options comes down to pricing in

the Black–Scholes or Black-76 setting.
The strike price of a zero cost forward with a delivery

period is generally given by a weighted average of

instantaneous forwards of the form

F ½T1,T2�
t ¼

Z T2

T1

wðT;T1,T2ÞF
½T �
t dT,

where for a settlement at maturity T2 the weighting factor

is given by w(T;T1,T2)¼ 1/(T2�T1) and for instanta-

neous settlement the discounting alters the weighting to

w(T; T1,T2)¼ re�rT/(e�rT1� e�rT2).
The second moment of F ½T1,T2�

T1
is given by

E
Q

Z T2

T1

wðT ÞF ½T �T1
dT

� �2����F t

" #

¼

Z T2

T1

Z T2

T1

wðT ÞwðT	ÞEQ F ½T �T1
F ½T

	�

T1

���F t

h i
dTdT	,
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and the expectation of the product of two individual

forwards E
Q
½F ½T �T1

F ½T
	�

T1
j F t� can be derived using the

solution of the forward (12) as follows:

lnF ½T �T1
¼ lnF ½T �t þ e��ðT�T1Þ�

Z T1

t

e��ðT1�sÞdWsþ e��ðT�T1Þ



XNT1

i¼Nt

J�ie
��ðT1��iÞ �

�2

4�
ðe�2�ðT�T1Þ � e�2�ðT�tÞÞ

þ�

Z T�T1

0

�Jðe
��sÞ� 1ds��

Z T�t

0

�Jðe
��sÞ� 1ds

¼ lnF ½T �t þ e��ðT�T1Þ�

Z T1

t

e��ðT1�sÞdWsþ e��ðT�T1Þ



XNT1

i¼Nt

J�ie
��ðT1��iÞ �

�2

4�
ðe�2�ðT�T1Þ � e�2�ðT�tÞÞ

��

Z T1�t

0

�Jðe
��ðT�T1Þe��sÞ� 1ds,

and so

lnF ½T �T1
þ lnF ½T

	�

T1

¼ lnF ½T �t þ lnF ½T
	�

t þ ðe��ðT�T1Þ þ e��ðT
	�T1ÞÞ�




Z T1

t

e��ðT1�sÞdWs þ ðe
��ðT�T1Þ þ e��ðT

	�T1ÞÞ



XNT1

i¼Nt

J�ie
��ðT1��iÞ �

�2

4�
ð1þ e�2�ðT

	�T ÞÞ


 ðe�2�ðT�T1Þ � e�2�ðT�tÞÞ � ln�Yðe
��ðT�T1ÞÞ

� ln�Yðe
��ðT	�T1ÞÞ,

which gives

E
Q
½F ½T �T1

F ½T
	�

T1
j F t�

¼ E
Q
½expðlnF ½T �T1

þ lnF ½T
	�

T1
Þ j F t�

¼ F ½T �t F ½T
	�

t

�Yðe
��ðT�T1Þ þ e��ðT

	�T1ÞÞ

�Yðe��ðT�T1ÞÞ�Yðe��ðT
	�T1ÞÞ


 exp �
�2

4�
ð1þ e�2�ðT

	�T ÞÞðe�2�ðT�T1Þ � e�2�ðT�tÞÞ

� �


 exp
�2

4�
ð1þ e��ðT

	�T ÞÞ
2
ðe�2�ðT�T1Þ � e�2�ðT�tÞÞ

� �
:

How well the moment matching procedure works is

shown in figure 7 where the density of a forward F ½T1,T2�

T1
is

compared with the density obtain by the approximation.

The shapes of both densities are similar but differences in

values are clearly visible. As a result, one might not expect

call option prices based on the approximate distribution

to be very close to the exact prices for all strikes K but still

close enough to be useful. For an at-the-money strike call

option, prices for varying maturities are shown in figures 8

and 9. As it turns out, the approximation gives very good

results for short delivery periods and is still within a 5%

range for delivery periods of one year.

4. Pricing swing options

Swing contracts are a broad class of path-dependent

options allowing the holder to exercise a certain right

multiple times over a specified period but only one right
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at a timey or per time interval like a day. Such a right
could be the right to receive the payoff of a call option.
Other possibilities include a mixture of different payoff
functions like calls and puts or calls with different strikes.
Another very common feature is to allow the holder to
exercise a multiple of a call or put option at once, where
the multiple is called volume. This generally involves
further restriction on the volume, like upper and lower
bounds for each right and for the sum of all trades.

Swing contracts can be seen as an insurance for the
holder against excessive rises in electricity prices.
Assuming the prices generally revert to a long-term
mean, even a small number N of exercise opportunities
suffices to cover the main risks and hence make the
premium of the contract cheaper. Sometimes, swing
contracts are bundled with forward contracts.
The forward contract then supplies the holder with
a constant stream of energy at a fixed pre-determined
price. If the strike price of the call options of the swing
contract is set to the forward price, the swing contract will
allow for flexibility in the volume the customer receives
for the fixed price. They can either ‘swing up’ or ‘swing
down’ the volume of energy and hence the name swing
contract. One cannot assume that the holder always
exercises the contract in an optimal way to maximize
expected profit but they might also exercise according
to their own internal energy demands.

It is only very recently that articles on numerical pricing
methods for swing options have appeared in the
literature. We can identify a few main approaches, all
based on dynamic programming principles. A Monte-
Carlo method and ideas of duality theory are utilized by
Meinshausen and Hambly (2004) to derive lower and
upper bounds for swing option prices. The main advan-
tages of the method being its flexibility, as it can be easily
adapted to any stochastic model of the underlying, and its
ability to produce confidence intervals of the price.
Monte-Carlo techniques are also used by Ibanez (2004)
and Carmona and Touzi (2008), where the latter uses the
theory of the Snell envelope to determine the optimal
exercise boundaries and also utilizes the Malliavin
calculus for the computation of greeks. A constructive
solution to the perpetual swing case for exponential
Brownian motion is also given by Carmona and Touzi
(2008). Unfortunately, these methods only work for the
most basic versions of swing contracts where, at each
time, only one unit of an option can be exercised.

More general swing contracts with a variable volume
per exercise and an overall constraint can be priced with
a tree-based method introduced by Jaillet et al. (2004).

In the above papers a discrete-time model for the
underlying is used where one time step corresponds to
the time frame in which no more than one right can be
exercised, i.e. one day in most of the traded contracts.
A special case where the number of exercise opportunities
is equal to the number of exercise dates is considered
by Howison and Rasmussen (2002) and a continuous

optimal exercise strategy derived which yields a partial
integro-differential equation for the option price.

Our method is based on the tree approach of Jaillet
et al. (2004) with some slight modifications to adapt it to
the peculiarities of our model for the underlying electricity
price process.

4.1. The grid approach

The tree method of Jaillet et al. (2004) requires a discrete
time model of the underlying. This is due to the fact that
their swing contracts allow the holder to exercise at most
one option within a specified time interval, say a day, and
this is best modelled if the underlying process has the
same time discretization. Assuming (St) is some contin-
uous stochastic process for the spot price we obtain
a discrete model by observing it on discrete points in time
only, i.e.

St0 ,St1 ,St2 , . . . ,Stm ,

with t0¼ 0, tiþ1¼ tiþ�t, tm¼T and �t ¼ 1
365, indicating

we can exercise on a daily basis.
Let the maturity date T be fixed and the payoff at time t

for simplicityz be given by (St�K)þ for some strike price
K and we assume only one unit of the underlying can be
exercised in any time period. Let V(n, s, t) denote the price
of such a swing option at time t and spot price s which has
n out of N exercise rights left. The dynamic programming
principle allows us to write

Vðn, s, tÞ ¼max

e�r�t
E
Q
½Vðn,Stþ�t, tþ�tÞ j St ¼ s�,

e�r�t
E
Q
½Vðn� 1,Stþ�t, tþ�tÞ j St ¼ s�

þðs�KÞþ

8><
>:

9>=
>;,

n5N, ð16Þ

and V(n, s,T )¼ (S�K)þ, 05n�N and V(0, s, t)¼ 0.
The conditional expectations can be written

E
Q
½Vðn,Stþ�t, tþ�tÞ j St ¼ s�

¼

Z 1
�1

Vðn, x, tþ�tÞfSðx; sÞdx,

where fS(x; s) is the density of Stþ�t given St¼ s.
Discretizing the spot variable we approximate

E
Q
½Vðn,Stþ�t, tþ�tÞ j St ¼ si�

�
X
j

Vðn, sj, tþ�tÞfSðsj; siÞ�sj:

This is only one possible approximation; others might be
to use higher-order integration rules or using only a few
grid points in the sum based on the fact that fS(x; s)! 0
for js�xj large. For a trinomial tree, one only uses three
grid points, i.e.

E
Q
½Vðn,Stþ�t, tþ�tÞ j St ¼ si� �

X1
j¼�1

Vðn, siþj, tþ�tÞpi,iþj,

yThis will also involve a ‘refraction period’ in which no further right can be exercised.
zWe could assume any general payoff function.
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pi,j being the probability of going from node i to node j.

However, such a tree approach is not well suited to our

case for two reasons. First, the time step size is

determined by the shortest time between two possible

exercise dates, which is mainly one day for swing

contracts. This limits the accuracy of the algorithm as

a refinement of the grid in the spot direction will not

improve the result. Second, in the presence of jumps, a

three-point approximation for the conditional density is

insufficient due to the heavy tails in the distribution.

As a result, we keep our method general and say

E
Q
½Vðn,Stþ�t, tþ�tÞ j St ¼ si� �

X
j

Vðn, sj, tþ�tÞpi, j,

where pi,j is an approximation to the density fS(sj; si)�sj
(it can accommodate higher-order integration rules

and boundary approximations). With the notation

Vn
i,k :¼ Vðn, si, tkÞ we can then write the method as

Vn
i,k ¼ max

(
e�r�t

X
j

Vn
j,kþ1pi, j, e

�r�t
X
j

Vn�1
j,kþ1pi, j

þ ðsi � KÞþ

)
, V0

i,k ¼ 0, Vn
i,m ¼ 0:ð17Þ

4.2. Numerical results

We now turn to the model of interest, (10), which exhibits

spikes. Assume that the mean-reversion process (Xt) and

the spike process (Yt) are individually observable and so

the value function V of a swing option depends on both

variables and the general pricing principle (16) becomes

In order to calculate conditional expectations we need
to define transition probabilities. Given one starts at node

(Xt,Yt)¼ (xi, yj) the probability to arrive at node

(Xtþ�t,Ytþ�t)¼ (xk, yl) is approximately given by

pi, j,k,l � fXtþ�tjXt¼xiðxkÞfYtþ�tjYt¼yið ylÞ�x�y,

because Xt and Yt are independent. The conditional
density of the mean-reverting process (Xt) is known as

Xtþ�t given Xt¼ x is normally distributed with

N (xe���t, (�2/2�) (1� e�2��t)). As we do not have

a closed-form expression for the density of the spike

process we use approximations developed in section 2.1.

For an exponential jump size distribution J�Exp(1/	J),

for example, we use approximation (9) for the spike

process at time t given zero initial conditions.
The introduction of a second space dimension increases

the complexity of the algorithm considerably, essentially

by a factor proportional to the square of the number of

grid points in the y direction. To price the swing contract

shown in figure 10 which has 365 exercise dates and up
to 100 exercise opportunities, our Cþþ implementation
requires about 10 minutes to complete the calculation on

an Intel P4, 3.4 GHz, and for a grid of 120
 60 points in
the x and y direction, respectively. The same computation

but with no spikes and a grid of 120
 1 points only takes
about one second.

Based on figure 10 we make two observations. First,
the price per exercise right decreases with the number of

exercise rights. This is the correct qualitative behaviour
one would expect because n swing options each with one

exercise righty only, offer more flexibility than one swing

option with n exercise rights.z Second, the premium

added due to the spike risk is much more significant

for options with small numbers of exercise rights than for

a large number. This is also intuitively clear, as an option

with say 100 exercise rights will mainly be used against

high prices caused by the diffusive part and only

occasionally against spiky price explosions.
In figure 11 we show how sensitive swing option prices

are to changes in market parameters. There we consider

a swing option with a duration of 60 days and up to 20

exercise opportunities. In each graph we change one

parameter by 20% up and down. The most significant

change is caused by a change in the volatility parameter �.
Note, the long-term variance of themean-reverting process

(Xt) is �2/2� and we expect some direct relationship

between the long-term variance and the option price.

Hence, a change in the mean-reversion parameter � is
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Figure 10. Value of a one year swing option per exercise right.
Market parameters of the underlying are as before, see figure 1,
i.e. �¼ 7, �¼ 200, �¼ 1.4, �¼ 4, J�Exp(1/	J) with 	J¼ 0.4,
f(t)¼ 0, r¼ 0, and initial conditions X0¼ 0 and Y0¼ 0.
The swing contract delivers over a time period of one year
T2 [0, 1] with up to 100 call rights and a strike price of K¼ 1,
where a right can be exercised on any day. As a comparison
the price of the same swing option is plotted but where the
underlying does not exhibit spikes, i.e. �¼ 0.

Vðn, x, y, tÞ ¼ max
e�r�t

E
Q
½Vðn,Xtþ�t,Ytþ�t, tþ�tÞ j Xt ¼ x,Yt ¼ y�,

e�r�t
E
Q
½Vðn� 1,Xtþ�t,Ytþ�t, tþ�tÞ j Xt ¼ x,Yt ¼ y� þ ðef ðtÞþxþy � KÞþ

(

yThis is actually an American option.
zThe rights of a swing option can only be exercised one at a time.
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inversely proportional to the price and quantitatively
changes the price less than the volatility �. The mean-
reversion parameter � of the spike process has a similar
effect on the option price as � has, but where the influence
slightly decreases with the number of options. This is
consistent with previous observations of the impact of
jumps on option prices as seen in figure 10. This effect is
much more clearly visible for the other jump parameters �
and	Jwhich have the greatest impact on options with only
a few exercise rights. For one exercise right, a 20% change
in the jump size 	J has an even greater effect on the price
than a 20% change in volatility �. A possible explanation
is that we deal with the exponential of an exponentially
distributed jump size which is very heavy tailed.
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