
Efficient Irreversible Monte Carlo Samplers
Fahim Faizi,* George Deligiannidis,* and Edina Rosta*

Cite This: J. Chem. Theory Comput. 2020, 16, 2124−2138 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We present here two irreversible Markov chain Monte Carlo algorithms for
general discrete state systems. One of the algorithms is based on the random-scan Gibbs
sampler for discrete states and the other on its improved version, the Metropolized-Gibbs
sampler. The algorithms we present incorporate the lifting framework with skewed detailed
balance condition and construct irreversible Markov chains that satisfy the balance
condition. We have applied our algorithms to 1D 4-state Potts model. The integrated
autocorrelation times for magnetization and energy density indicate a reduction of the
dynamical scaling exponent from z ≈ 1 to z ≈ 1/2. In addition, we have generalized an
irreversible Metropolis−Hastings algorithm with skewed detailed balance, initially
introduced by Turitsyn et al. [Physica D 2011, 240, 410] for the mean field Ising model,
to be now readily applicable to classical spin systems in general; application to 1D 4-state Potts model indicate a square root
reduction of the mixing time at high temperatures.

■ INTRODUCTION

Markov Chain Monte Carlo methods (MCMC) have been
extensively utilized to the investigation of a broad range of
statistical problems encompassing physics,1,2 biochemical
sciences,3,4 and economics and finance.5 The introduction of
the widely usedMetropolis algorithm6 in 1953 paved the path to
a broad application of MCMC methods in sampling from
probability distributions with very large dimensions, mostly with
the ultimate intention to estimate expectation values of
observables under such distributions.
In order to ensure sampling from the desired distribution,

MCMCmethods require the propagation of aMarkov chain by a
carefully constructed transition probability such that the
invariant distribution of the Markov chain is precisely a desired
target distribution. Conventional MCMC methods in statistical
physics such as the Metropolis criteria and the Gibbs sampler7

impose the strict detailed balance condition (DBC) on the
transition matrix to ensure sampling from the desired
distribution; in addition, all MCMC methods must impose
ergodicity to ensure convergence to the invariant.
In the DBC regime, where every elementary transition must

balance with its corresponding inverse process, several improve-
ments on the Metropolis Monte Carlo methods have been
proposed to boost relaxation times. One such category is the
generalized-ensemble algorithms,9 common examples of which
include the parallel tempering,10−13 simulated tempering,14 and
multicanonical methods;15,16 these algorithms have been very
successful in simulation of complex biomolecular systems with
many degrees of freedom and a large number of local minimum
energy states. Another class of algorithms with DBC are the
cluster algorithms in classical spin systems such as the
Swendsen−Wang18 and Wolff algorithm,19 whereby the multi-

spin update through a careful construction of a transition matrix
drastically reduces the critical slowing down2 of spin systems.
In the DBC regime, Peskun’s theorem20 dictates that the

asymptotic variance on a given observable is reduced by the
minimization of the rejection rate in the Markov chain. Liu21,22

has successfully applied this idea to the random scan Gibbs
sampler (GS) on discrete state spaces to construct the
Metropolized-Gibbs sampler (MGS) which yields smaller
diagonal elements in the transition matrix.24 Pollet et al. have
applied MGS to q = 4 state Potts model23 where compared with
the random scan Gibbs sampler, a reduction in the asymptotic
variance on the energy of the system is achieved at the critical
temperature.
The strict detailed balance condition is however not a

necessary requirement to ensure the invariance of the target
distribution, the more general balance condition (BC) is
mathematically sufficient.25−27 The violation of DBC to
improve sampling efficiency of MCMC algorithms has been a
hot topic of discussion in various scenarios45−51 with several
numerical and analytical studies demonstrating improved
sampling efficiency of MCMC methods that violate DBC but
satisfy BC to ensure invariance.28−44

There are various methods of violating DBC. For a classical
spin system with local spin updating the random updating
scheme, whereby a spin is chosen at random, satisfies DBC,
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whereas the sequential updating scheme, whereby spins are
updated in a sequential order (e.g., in one sweep), satisfies DBC
only locally (i.e., only at each spin flip). The transition kernel of
each sweep, however, breaks DBC but satisfies BC to ensure
invariance.27,31

Suwa and Todo have proposed a novel method based on
geometric weight allocation which satisfies BC but violates DBC
even locally.32,33 The authors have applied their algorithm to q =
4 and 8 state Potts model reporting a boost in the relaxation time
in both cases compared to the Metropolis−Hastings algo-
rithmby a factor of 6.4 for 4-state Potts model. The Suwa−
Todo algorithm has since been extended to generalized-
ensemble algorithms such as simulated tempering54 and replica
permutation method.52,53

Another class of irreversible methods that have been an eager
topic of study incorporate the concept of lifting.28−30,34−44 In
the lifting framework of Diaconis et al.,28 the state space and the
target distribution are extended by creating a duplicate replica of
the system; each replica is characterized by a lifting variable, and
each state in the state space therefore acquires two copies, one in
each replica. An irreversible lifted Markov chain is thus
propagated in this enlarged state space by a transition matrix
that violates DBC but yet ensures invariance of the target
distribution by satisfying BC. The lifting framework has been
applied to the mean-field Ising model,34,35 where the integrated
autocorrelation time of magnetization reportedly indicates a
reduction in the dynamical scaling exponent at the critical
temperature.
To augment the state space the lifting mechanism has been

incorporated in event-chain Monte Carlo algorithms
(ECMC),41 initially constructed for hard disk and hard sphere
systems and later adapted for more general particle systems with
continuous degrees of freedom.42 Further applications of
ECMC with the lifting mechanism to continuous-spin systems
such as the three-dimensional Heisenberg model has led to z≃ 1
dynamic scaling,43 while a speed up by 2 orders is reported with
respect to local Metropolis MC in the autocorrelation time for
magnetic susceptibility for the XY model.40

The research presented in this paper concerns the framework
of lifting with the skewed detailed balance condition (SDBC),
originally proposed by Turitsyn et al.34 and extensively studied
by Sakai and Hukushima.36−39 Our work here is particularly
motivated by the analytical and numerical studies of irreversible
Glauber dynamics with SDBC for the cases of one and two-
dimensional Ising model.36,37 In this paper, we present twomain
generalizations of the works of Turitsyn et al.34 and Sakai and
Hukushima:36−38 1: We have generalized an irreversible
Metropolis−Hastings algorithm (IMH) with SDBC for the
Ising model34,38 to be now readily applicable to classical spin
systems in general. 2: Using the same lifting technique of
Turitsyn et al.,34 we have constructed two general algorithms on
the basis of random-scan Gibbs sampler; these are, namely, an
irreversible Gibbs sampler (IGS) and an irreversible Metro-
polized-Gibbs sampler (IMGS), both of which violate DBC but
ensure invariance through SDBC. We test the algorithms on the
4-state Potts model and demonstrate numerically that both IGS
and IMGS are not only superior to their respective reversible
counter-parts which satisfy the strict DBC, but also outperform
the generalized form of the IMH algorithm in reducing
autocorrelation times.

■ DETAILED BALANCE CONDITION

In this paper, we mostly consider a physical system with discrete
state space Ω = {1,···, S}, where S is the total number of states.
We wish to sample from a target probability distribution π = (π1,
..., πS) with πi > 0 and∑i = 1

S πi = 1. We therefore use an MCMC
algorithm to construct a Markov chain requiring that the
stationary distribution of the chain coincide with the invariant
target distribution π. To do this, the transition matrix T =
(Tij)i,j∈Ω of the Markov chain must satisfy the balance condition
(BC) given by

T ii
j

j ji∑π π= ∀
(1)

The transition matrix must also meet the ergodicity
requirement.55 In the construction of MCMC algorithms, the
detailed balance condition (DBC)

T Ti ij j jiπ π= (2)

has been widely imposed upon the transition matrix as a
sufficient condition for satisfying BC. Such Markov chains with
DBC are commonly referred to as reversible Markov chains,
while those not meeting DBC are irreversible Markov chains.

Metropolis−Hastings Algorithm. The Metropolis−Hast-
ings algorithm,6 arguably the most commonly used MCMC
algorithm, enforces the detailed balance condition by requiring
that the stochastic flow vij = πiTij is balanced out by its inverse
flow vji = πjTji. The transition matrix Tij can be written as

T Q A j i

T T

,

1 ,

ij ij ij

ii
j i

ij∑

= ∀ ≠

= −
≠ (3)

where Q = (Qij)i,j∈Ω and A = (Aij)i,j∈Ω are S × S matrices whose
elements denote the proposal and acceptance probabilities,
respectively. LettingX(t) denote the state of the system inΩ after
t iterations, the general execution of the Metropolis−Hastings
algorithm is then given in Algorithm 1.

The original Metropolis algorithm6 assumed a symmetric
proposal matrix Q, and it was later demonstrated by Hastings56

Figure 1. Transition matrix T represented here schematically for five
discrete states whereby the transition probability from one state to
another is indicated by a single arrow.
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that the proposal matrix need not be symmetric. The general
form of the MH acceptance probability is therefore given by

i

k

jjjjjjj
y

{

zzzzzzzA
Q

Q
min 1,ij

ji j

ij i

(MH)
π

π
=

(4)

It is a simple exercise to demonstrate that the Metropolis−
Hastings acceptance probability given in (4) readily satisfies the
balance condition through DBC given in (2). The MH
transition matrix

T Q Aij ij ij
(MH) (MH)= (5)

therefore ensures the invariance of the target distribution π.
Gibbs Sampler. Consider a general system with N

individual components whereby the state variable of the system
σ ∈ Ω is defined by a state vector σ = (σ1, ..., σN) in the discrete
state spaceΩ = {1, ..., S} with σk ∈ {1, ..., q} for k = 1, ..., N. The
state space therefore consists of S = qN number of configurations,
and the target distribution is π. The Gibbs sampler (GS),7 also
known as the heat-bath algorithm in statistical physics, updates
only one component of the state vector, say σk, at a time. This
component is assigned a new value sampled from its conditional
distribution π(· |σ−k) where σ−k = (σ1, ..., σk−1, σk+1, ..., σN) are
considered fixed. For convenience, we let the state vector σk

ν =
(σk

ν, σ−k) denote the state of the system where component k is in
state ν ∈ {1, ..., q} and the rest of the system is in state σ−k. A
general execution of the random scan Gibbs sampler, whereby at
each successive step a component of the system is selected to
update uniformly at random, is given in Algorithm 2.

The Gibbs sampler is a special case of the Metropolis−
Hastings criteria whereby every proposal is accepted. For the
random scan Gibbs sampler, this can be easily demonstrated by
letting the proposal q(σk′, σ−k|σk, σ−k) = 1/Nπ(σk′|σ−k) for σk′ ∈
{1, ..., q}, and the acceptance a(σk′, σ−k|σk, σ−k) = min(1, r),
where the ratio r may then be written as

r
q
q
( , , ) ( , )
( , , ) ( , )

( ) ( , )
( ) ( , )

1.

k k k k k k

k k k k k k

k k k k

k k k k

σ σ σ
σ σ σ

σ σ
σ σ

σ π
σ π σ

π σ π
π π σ

=
|σ′ σ′

σ′ |

=
| σ′

σ′ |

=

− − −

− − −

− −

− −

(6)

The acceptance probability of each proposal is therefore exactly
1. As a special case of Metropolis−Hastings criteria, the Gibbs
sampler readily ensures the invariance of the target distribution
π. The random scan Gibbs sampler given in Algorithm 2 satisfies
DBC. In practice, however, the Gibbs sampling updates are
commonly applied to each system component in sequence
which produces a nonreversible chain. In general terminology, in
the sequential updating scheme,31 each component k of the
system has an associated transition matrix C(k) and is, for
example, updated with Metropolis−Hastings acceptance or a
new value sampled from its conditional distribution as in the

Gibbs sampler. Therefore, C(k) satisfies DBC locally: π(σk
μ)

C(k)(σk
ν|σk

μ) = π(σk
ν)C(k)(σk

μ|σk
ν) and by implication also the

balance condition: π = πC(k). Furthermore, given that the
updating sequence is fixed and iterates from component 1 to N
sequentially, then the transition matrix S =∏k =1

N C(k) of each full
sweep (i.e N trial moves) breaks DBC: π(σk

μ)S(σk
ν|σk

μ) ≠ π(σk
ν)

S(σk
μ|σk

ν) but ensures invariance by satisfying BC: πS =
π∏k = 1

N C(k) = π. The transition matrix S breaks DBC because
for a given component k an immediate reversal of a Monte Carlo
move is not possible within a sweep.
Given that a component k ∈ {1, ..., N} is sampled, the Gibbs

transition rate G(σk
ν|σk

μ) from state σk
μ to σk

ν is then simply the
conditional distribution given σ−k:

G q( )
( )

( )
1, ...,k k

k

l
q

k
l

1

σ σ
σ

σ
π

π
ν| =

∑
∀ ∈ { }ν μ

ν

= (7)

Notice that the transition rate to a new value ν is independent
of the initial value μ. We also point out that for q = 2 in eq 7, the
Gibbs sampler is equivalent to Barker’s method,8 also known as
Glauber dynamics in physics.64 Peskun20 has shown that within
DBC, the Metropolis−Hastings criteria is superior to Barker’s
method as it provides a more efficient sampling of the state space
by returning smaller probabilities of remaining in the current
state. While the Gibbs sampler described here does not involve
an accept-reject criteria, one may regard a move rejected if the
new candidate state ν is the current state μ.

Metropolized-Gibbs Sampler. In this paper, we term a
Metropolized-Gibbs sampler (MGS) to refer to Liu’s modifica-
tion21,22 of the discrete state, random scan Gibbs sampler, which
is shown to increase the probability of transition to all states j ∈
Ω except for the current state i ∈ Ω. The random scan Gibbs
sampler satisfies detailed balance, and the Metropolized-Gibbs
sampler is an improvement on the random scan Gibbs sampler
motivated directly by Peskun’s theorem:20 A Markov chain with
smaller diagonal elements (i.e., smaller probability of remaining
in the current state) provides a more efficient exploration of the
state space and thus returns estimates with smaller asymptotic
variance than a transition matrix with larger corresponding
diagonal elements. The modification on the random scan Gibbs
sampler involves picking a component k∈ {1, ...,N} uniformly at
random and excluding the current value σk = μwhen proposing a
new candidate value σk = ν. The new candidate value σk = ν ≠ μ
is now proposed with the probability

Q
G

G
( )

( )
1 ( )k k

k k

k k
σ σ

σ σ
σ σ

ν μ| =
|

− |
∀ ≠ν μ

ν μ

μ ν
(8)

The Metropolis−Hastings acceptance probability (eq 4) for the
state σk

ν is then given by
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
A

G
G

( ) min 1,
1 ( )
1 ( )k k

k k

k k
σ σ

σ σ
σ σ

ν μ| =
− |
− |

∀ ≠ν μ
μ ν

ν μ
(9)

whereby upon rejection we retain the current state σk
μ. This gives

a reversible transition matrix for the Metropolized-Gibbs
sampler:

i
k
jjjjj

y
{
zzzzzM

G
G

G
G

M M

( ) min
( )

1 ( )
,

( )
1 ( )

,

( ) 1 ( ),

k k
k k

k k

k k

k k

k k k k∑

σ σ
σ σ

σ σ
σ σ

σ σ

σ σ σ σ

ν μ| =
|

− |
|

− |
∀ ≠

| = − |

ν μ
ν μ

μ ν

ν μ

ν μ

μ μ

ν μ

ν μ

≠

(10)
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which readily satisfies DBC. Note that when the denominator in
eq 8 vanishes, the transition matrix element in eq 10 also
vanishes, resulting in the rejection of the move. For practical
implementation of the algorithm it is therefore recommended to
make direct use of the transition matrix in eq 10. The optimality
of MGS over the random scan Gibbs sampler follows from the
same argument Peskun20 put forward to show the superiority of
Metropolis−Hastings criteria over other methods for swaps
between two states: by excluding the current state when
proposing a new candidate state, the MGS updates tend to drive
the Markov chain away from the current state. This may be
further appreciated by noting that for q = 2, the MGS
decomposes to the Metropolis−Hastings criteria, whereas the
standard Gibbs sampler becomes equivalent to Barker’s criteria,
a criteria shown to be less efficient than Metropolis−Hastings
within DBC.20 Furthermore, we point out that just as in the
Gibbs sampling updates, the MGS sampling updates too can be
applied to each system component k∈ {1, ...,N} in sequence, in
which case DBC is satisfied only locally. Equations 7 and 10 are
thus valid regardless of how the system component k is picked
from the set {1, ..., N}.

■ LIFTING AND THE SKEWED DETAILED BALANCE
CONDITION

In the lifting framework of Diaconis et al.,28 the state space and
the target distribution are extended by creating a duplicate
replica of the system, each replica characterized by a lifting
variable, and each state in the state space therefore acquires two
copies, one in each replica. An irreversible lifted Markov chain is
thus propagated in this enlarged state space by a transition
matrix that violates DBC but ensures invariance of the target
distribution by satisfying BC. We provide in this section a brief
review of the lifting framework with skewed detailed balance
condition to construct irreversible Markov chains, as proposed
by Turitsyn et al.34 and extensively studied by Sakai and
Hukushima.36−39

We introduce an auxiliary or lifting variable ε∈ {+1,− 1} and
effectively double the state space Ω so that the extended state
space Ω̃: =Ω× {+,− } consists of two replicas marked by ε =±.
In this light, the extended target distribution π̃ is given by

( , ..., , , ..., )

1
2

( , ),

S S(1, ) ( , ) (1, ) ( , )π

π π

π π π π̃ =

=

+ + − −

(11)

where π(i,ε) concerns the probability of the state (i, ε). The
extended target distribution π̃ is independent of the auxiliary
variable ε so that

i i( , ) ( , )π π̃ = ̃ε ε− (12)

It is straightforward to show that the expectation value Eπ̃[f ] of
an observable fwith respect to the extended target distribution π̃
remains unchanged from that with respect to the original
distribution π, i.e.

f f

f

f

f

E

2

E ,

i

S

i i

i

S
i

i

i

S

i i

1
( , ) ( , )

1
( , )

1

∑ ∑

∑ ∑

∑

π

π

π

[ ] = ̃

=

=

= [ ]

π

π

ε
ε ε

ε
ε

̃
=± =

=± =

=

(13)

where f(i,ε) denotes the realization of the observable f at state (i,
ε) and we have assumed f(i,ε) = f(i,−ε) = f i so that the observable f
is independent of ε.
The transition matrix T̃ of the Markov chain on extended

space Ω̃ is given by

i

k
jjjjjj

y

{
zzzzzzT

T

T

( ) ( )

( ) ( )
̃ = Λ

Λ

+ +

− − (14)

where T(±) = (Tij
(±))ij∈Ω ≥ 0 indicates the intrareplica transition

probability from state i to j in respective ε = ± replicas. The
positive and diagonal inter-replicamatrices Λ(±) = diag(Λi

(±))i∈Ω
≥ 0 denotes the transition probability from state (i, ε) to (i,− ε)
as shown in Figure 2.

Normalization of probability is now explicitly in the form

T i1,
j

ij i
( ) ( )∑ + Λ = ∀ ∈ Ωε ε

∈Ω (15)

Assuming that T̃ is ergodic, the balance condition

T m,m
n

n nm∑π π̃ = ̃ ̃ ∀
(16)

will then ensure that the stationary distribution of the transition
matrix T̃ is the extended target distribution π̃.
The balance condition for extended transition matrix T̃ may

explicitly be written as

Figure 2. Graphical representation of the Markov chain transition
matrix T̃ on extended state space. The positive and negative replicas are
indicated by ε =± left and right of the vertical dashed line, respectively.
In addition to intrareplica transition flows Tij

(±) within states indicated
by solid arrows, we now have inter-replica transition flowsΛ(±) indicated
by dashed arrows, which effectively execute the lifting mechanism.
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T T i,
j

i ij i i
j

j ji i i
( ) ( ) ( ) ( )∑ ∑π π π π+ Λ = + Λ ∀ ∈ Ωε ε ε ε

∈Ω ∈Ω

−

(17)

where we have made use of (11). The balance condition in (17)
can be satisfied by imposing SDBC, which is given by

T Ti ij j ji
( ) ( )π π=ε ε−

(18)

This allows us to construct an intrareplica transition probability
Tij
(ε) for an irreversible Markov chain. SDBC requires that the

stochastic flow vij
(ε) = πiTij

(ε) in one replica is balanced out by the
inverse flow vji

(−ε) = πjTji
(−ε) in the other replica. Note that SDBC

readily breaks detailed balance condition, that is, πiTij
(ε) ≠ πjTji

(ε).
Furthermore, forcing SDBC provides a guideline for the
construction of the inter-replica transition probability Λi

(ε), this
becomes immediately obvious when we insert (18) into (17) to
obtain

T T( )i i
j
j i

ij ij
( ) ( ) ( ) ( )∑Λ − Λ = −ε ε ε ε−

∈Ω
≠

−

(19)

The solution to (19) is not unique, but there exist several
choices. Turitsyn et al.34 had originally proposed the form:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

T Tmax 0, ( )i
j
j i

ij ij
( ) ( ) ( )∑Λ = −ε ε ε

∈Ω
≠

−

(20)

which is known as Turitsyn-Chertkov-Vucelja (TCV) type.
Several other choices have been proposed and studied by Sakai
andHukushima;36,38 however, the transition probability of TCV
type has been shown numerically to provide the largest
reduction in integrated autocorrelation times.36 The following
alternative choice known as the Sakai−Hukushima 1 type (SH1)
has been studied analytically and numerically for the 1D Ising
model:36

Ti
j
j i

ij
( ) ( )∑Λ =ε ε

∈Ω
≠

−

(21)

Irreversible Metropolis−Hastings Algorithm. An irre-
versible Metropolis−Hastings algorithm (IMH) with skewed
detailed balance condition was constructed for the mean-field
Ising model by Turitsyn et al.,34 and this algorithm was later
adapted to be applicable to more general systems with discrete
degrees of freedom.38 In this section, we are motivated to
generalize the works of Sakai and Hukushima on 1D and 2D
Ising models.36,37 We construct an irreversible Metropolis−
Hastings algorithm to be applicable to classical spin systems in
general. Our work specifically follows a prototype recipe
provided by Sakai and Hukushima38 for constructing an
intrareplica transition matrix (Tij

(ε))i,j∈Ω that readily satisfies
SDBC given in (18). This involves the modification of the
transition matrix T = (Tij)i,j∈Ω which satisfies DBC: πiTij = πjTji,
by a skewness function: [Θij

(ε)]i,j∈Ω, so that

T Tij ij ij
( ) ( )= Θε ε

(22)

where the first requirement

0 1ij≤ Θ ≤ (23)

ensures that Tij
(ε) is a probability and the second requirement

ij ji
( ) ( )Θ = Θε ε−

(24)

guarantees that the transition matrix Tij
(ε) satisfies SDBC in (18).

The skewness function can be constructed to directly utilize
the physics of the system. Sakai and Hukushima36 present a
skewness function that introduces a bias in the way the
magnetization of the system is sampled in the Ising model. We
build on their form and present a skewness function that is
readily applicable to classical spin systems in general, such as the
Potts model and the classical XY model, and can be readily
adapted to use any observable of interest f as the lifting
coordinate.

PottsModel.As an example of a classical spin systemwe focus
on the Potts model on a lattice withN sites, however, the ideas in
this section are equally applicable to classical continuous spin
models. The Potts model is a generalization of the Ising model,2

with the Hamiltonian defined as

H J( ) ( , )
k l

kl k l
,

∑σ δ σ σ= −
⟨ ⟩ (25)

where δ(·) is the Kronecker delta function, and the notation ⟨k,
l⟩ indicates that sites k and l are nearest neighbors on the lattice.
Jkl denotes the interaction strength between σk and σl. We have
defined a given state of the Potts model (i.e., a given
configuration) with the state vector σ = (σ1, ..., σN) ∈ Ω in the
discrete state spaceΩ = {1, ..., S} with σk∈ {1, ..., q} for k = 1, ...,
N. The state space therefore consists of S = qN number of
configurations. As before, we use σk

ν = (σk
ν, σ−k) to denote a given

configuration where the spin at site k is in state ν∈ {1, ..., q}, and
the rest of the system is in state σ−k = (σ1, ...,σk−1, σk+1, ...,σN).
We now wish to sample from the target distribution π(σ)

given by the Gibbs−Boltzmann distribution at a given inverse
temperature β:

Z
e( )

1
( )

H( )σπ
β

= σβ−

(26)

where Z(β) = ∑Ωe
−βH(σ) defines the partition function for a

given inverse temperature.
In the notation we have just introduced, the intrareplica

transition from state (σk
μ, ε) to (σk

ν, ε) is indicated by T(σk
ν, ε|σk

μ,
ε), whereas Λ(σkμ, − ε|σk

μ, ε,) indicates inter-replica transition
from state (σk

μ, ε) to (σk
μ,−ε). The balance condition in eq 17

may be expressed as

T

T

( , , ) ( , ) ( , , ) ( , )

( , , ) ( , ) ( ,

, ) ( , )

k
k k k k k k

k
k k k k

k k

,

,

∑

∑

σ σ σ σ σ σ

σ σ σ σ

σ σ

ε ε π ε ε ε π ε

ε ε π ε ε

ε π ε

| ̃ + Λ − | ̃

= | ̃ + Λ

| − ̃ −

ν

ν μ μ μ μ μ

ν

μ ν ν μ

μ μ
(27)

where the extended target distribution is given by (11): π̃(σ, ε) =
π̃(σ, − ε) = 1/2π(σ). An irreversible Markov chain can be
constructed by imposing SDBC given in (18):

T T( ) ( , , ) ( ) ( , , )k k k k k kσ σ σ σ σ σπ ε ε π ε ε| = − | −μ ν μ ν μ ν
(28)

To proceed, we construct the transition rate T(σk
ν, ε|σk

μ, ε)
according to (22). An example of a skewness function Θ(σ, ε)
that readily satisfies requirement (24) has been studied by Sakai
and Hukushima for 1D and 2D Ising models,36,37 and this is of
the form:

( , ) 1 kσ ε φ δεσΘ = [ − ] (29)
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whereby setting the constantφ = 1/(1 + δ) and δ∈ [0, 1], not to
be confused with the Kronecker delta function, ensures that the
skewness function satisfies requirement (23). While the form in
(29) seems specific to the Ising model, the following adaptation
is applicable to classical spin systems in general:

f( , ) 1 ( )σ ε φ δεΘ = [ + Φ ] (30)

where the function Φ( f) is defined as

f f f( ) sgn ( ) ( )k kσ σΦ = [ − ]ν μ
(31)

with f denoting the lifting coordinate or the observable of
interest and the sign function defined as

l
m
ooooo

n
ooooo

x

x

x

x

sgn( )

1, if 0,

0, if 0,

1, if 0,

=
− <

=
+ >

so that (30) satisfies requirement (23). One can simply recover
the special form in (29) by setting the lifting coordinate f as the
magnetization of the system for the Ising model. The form in
(30) is not only applicable to classical spin systems in general,
but it also readily utilizes any observable of interest f as the lifting
coordinate. It is a simple exercise to confirm that the skewness
function in (30) meets the requirement in (24), thus
guaranteeing that T(σk

ν, ε|σk
μ, ε) satisfies SDBC.

The intrareplica transition rate T(σk
ν, ε|σk

μ, ε) with SDBC may
now be expressed in the form:

T f T( , , ) 1 ( ) ( )k k k kσ σ σ σε ε φ δε| = [ + Φ ] |ν μ ν μ
(32)

where T(σk
ν|σk

μ) is a transition rate from state σk
μ to σk

ν with DBC:
π(σk

μ)T(σk
ν|σk

μ) = π(σk
ν)T(σk

μ|σk
ν). The parameter δ in the

skewness function, which we will refer to as the deviation
parameter, just as in the original form, determines the extend to
which DBC is violated; DBC is recovered in (32) with δ = 0.
The argument of the sign function in (31):Δf = f(σkν)− f(σk

μ),
simply denotes the change in the observable f of the system if the
spin at site k acquires a new value ν. To better understand how
the transition rate in (32) introduces bias in the way the
observable f is sampled, it is helpful to consider two distinct
scenarios: (ε = ± 1,Φ( f) = ± 1) and (ε = ± 1,Φ( f) = ∓1). The
transition rate in (32) then decomposes to

l
m
ooooo

n
ooooo
i
k
jjj

y
{
zzz

T
T f

T f
( , , )

( ) for ( 1, ( ) 1),

1
1

( ) for ( 1, ( ) 1).
k k

k k

k k

σ σ
σ σ

σ σ
ε ε

ε

δ
δ

ε
| =

| = ± Φ = ±

−
+

| = ± Φ = ∓
ν μ

ν μ

ν μ

A visual representation of the biased sampling imposed by the
transition rateT(σk

ν, ε|σk
μ, ε) is shown in Figure 3 for a 2× 2 Ising

model with N = 4 sites, where we have chosen to set the
projection coordinate f as the magnetization density of the
system defined as

m
N

( )
1

k

N

k
1

∑σ σ=
= (33)

In Figure 3, we observe that for ε = +1 replica and δ ≠ 0 the
transition rateT(σk

ν, ε|σk
μ, ε) is biased towardMCMCmoves that

tend to increase the magnetization density m, whereas the
transition rate of moves that propose to decreasem are penalized
with a factor (1 − δ)/(1 + δ) < 1; the opposite is true in ε = −1
replica. The selective sampling bias enforced by the transition
rate T(σk

ν, ε|σk
μ, ε) may be characterized as the system acquiring

momentum in a selected direction in state space to climb out of
minimum energy states and thus explore the state space more
efficiently.
In Algorithm 3, the prototype of the irreversible Metropolis−

Hastings algorithm (IMH) of Turitsyn et al.34 for mean-field
Ising model is now adapted for a classical spin system in general.
We have used the notation X̃(t) as a state of extended state space
Ω̃ after t iterations.

Figure 3. Graphical representation of the transition probability T(σk
ν, ε|σk

μ, ε) for a simple 2 × 2 Ising system with magnetization density m. The
subscripts indicate the value of themagnetization density, and the solid arrows indicate intrareplica transition flows between states, whereas inter-replica
lifting flows are indicated by dashed lines. We have assumed here a deviation parameter δ≠ 0. In the positive replica ε = +1, moves that tend to increase
the magnetization of the system are favored over those that tend to decrease the magnetization, the opposite is true in the negative replica, ε = −1.
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The Metropolis−Hastings transition rate T(σk
ν|σk

μ)MH is
decomposed into proposal Q(σk

ν|σk
μ) and acceptance

A(σk
ν|σk

μ)MH:

T Q A( ) ( ) ( )k k k k k kMH MHσ σ σ σ σ σ| = | |ν μ ν μ ν μ
(36)

where the MH acceptance rate, written explicitly in this
notation, is in the form:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
A

Q
Q

( ) min 1,
( ) ( )
( ) ( )k k

k k k

k k k
MHσ σ

σ σ σ
σ σ σ

π
π

| =
|
|

ν μ
μ ν ν

ν μ μ
(37)

The inter-replica transition rate is chosen to be that of TCV type
given in (20):

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
T T

( , , )

max 0, ( ( , , ) ( , , ))

k k

k
k k k k∑ ∑

σ σ

σ σ σ σ

ε ε

ε ε ε ε

Λ − |

= − | − − |

μ μ

ν μ

ν μ ν μ

≠

(38)

However, alternative forms are given by Sakai andHukushima.38

In Algorithm 3, unless otherwise specified, one Monte Carlo
step t is taken to be one iteration of steps (2)−(6) andT denotes
the total number of Monte Carlo steps. To evaluate the
probability in (35), summation with respect to the number of
sites and a summation over (q − 1) spin states at each site are
required. In practice, the summation is computed at the initial
configuration and from then on simply updated at each
successful spin flip at step (4).
Markov Chains with SDBC on the Basis of Gibbs

Sampler. In this section, we demonstrate that a Markov chain
with SDBC can be constructed on the basis of the Gibbs
sampler. The prototype algorithm presented by Turitsyn et al.34

for the mean field Ising model had been developed on the basis
of Metropolis−Hastings criteria, and although a general
formulation of the irreversible Metropolis−Hastings (IMH)
was later presented by Sakai and Hukushima for discrete state
systems,38 both of these efforts however have constructed the
irreversible counterpart of the Metropolis−Hastings transition
as given in (3). Here we develop irreversible Markov chains with
SDBC on the basis of the Gibbs sampler and the Metropolized-
Gibbs sampler that break DBC but satisfy BC on the basis of
SDBC. The algorithms are developed to be applicable to general
discrete state systems.
Irreversible Gibbs Sampler. Let us again consider a general

system withN individual components whereby the state variable
of the system is defined by the state vector σ = (σ1, ..., σN)∈Ω in
the discrete state spaceΩ = {1, ..., S} with σk∈ {1, ..., q} for k = 1,
...,N. The state space consists of S = qN number of configurations
and the target distribution is π. As before we denote a given state
of the system σk

μ = (σk
μ, σ−k) to indicate that component k is in

state μ ∈ {1, ..., q} while the rest of the system is in state σ−k =
(σ1, ...,σk−1, σk+1, ...,σN). The Gibbs transition probability for
component k to acquire a new state ν∈ {1, ..., q} is then given in
(7). The transition matrix for the irreversible Gibbs sampler
(IGS) with SDBC can be constructed according to (22):

G( , , ) ( , ) ( ) ,

( , , ) 1 ( , , ),

k k k k

k k k k∑
σ σ σ σ σ

σ σ σ σ

ε ε ε ν μ

ε ε ε ε

| = Θ | ∀ ≠

| = − |

ν μ ν μ

μ μ

ν μ

ν μ

≠ (39)

where the Gibbs transition G(σk
ν|σk

μ) is given in (7), and the
skewness function Θ(σ, ε) meets requirement (23). SDBC is

readily satisfied by imposing condition (24) on the skewness
function. The transition matrix in (39) will therefore propagate
an irreversible Markov chain on the extended state space Ω̃, yet
ensuring the invariance of the target distribution.
In Algorithm 4, we demonstrate the execution of IGS for a

general discrete state system where unless otherwise specified
one Monte Carlo step t is defined to be one iteration of steps
(2)−(5) with T denoting the total number of MC steps.

With the particular choice of the skewness function given in
(30), the irreversible Gibbs sampler can be readily applied to
discrete state classical spin systems such as the Potts model.
However, we stress that with a careful construction of a skewness
function, which utilizes the properties of the system in question,
IGS is applicable to any systemwith discrete degrees of freedom.
Considering a discrete state spin system withN sites where σk ∈
{1, ..., q} for k = 1, ...,N, the evaluation of the probability in (41)
now requires a summation over (q− 1) spin values at each site in
addition to a summation overN sites in the lattice. However, we
point out that the summation is in practice computed only once
at the initial conditions and from then on simply updated at each
successful spin-flip process, that is, updated at step (3) where σk

ν

≠ σk
μ.

The inter-replica transition rate of the TCV type is now of the
form:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

( , , )

max 0, ( ( , , ) ( , , ))

k k

k
k k k k∑ ∑

σ σ

σ σ σ σ

ε ε

ε ε ε ε

Λ − |

= − | − − |

μ μ

ν μ

ν μ ν μ

≠

(42)

It is worth noting that for q = 2 (the Ising model), the IGS
decomposes to the irreversible Glauber dynamics studied by
Sakai and Hukushima.36,37

Irreversible Metropolized-Gibbs Sampler. In this brief
section we point out that an irreversible counterpart of the
Metropolized-Gibbs sampler (MGS), which we will henceforth
refer to as the irreversibleMetropolized-Gibbs sampler (IMGS),
can be constructed based on the SDBC. The construction of the
corresponding transition matrix follows the same principle as
that of IGS:

M( , , ) ( , ) ( ) ,

( , , ) 1 ( , , ),

k k k k

k k k k∑
σ σ σ σ σ

σ σ σ σ

ε ε ε ν μ

ε ε ε ε

| = Θ | ∀ ≠

| = − |

ν μ ν μ

μ μ

ν μ

ν μ

≠ (43)

whereM(σk
ν|σk

μ) is the MGS transition matrix given in (10). The
general execution of the algorithm follows the same steps as in
Algorithm 4 except for the use of (43) in steps (3) and (4).
IMGS is equivalently applicable to general discrete state
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systems. Note that for a special case of q = 2 (the Ising model)
IMGS and IMH, as given in Algorithm 3, are equivalent. This
should be obvious since the Metropolized-Gibbs transition
given in (10) is essentially the Metropolis−Hastings criteria for
q= 2. The development of IMGS is directlymotivated to check if
the efficiency of the MGS over random scan Gibbs sampler21 is
replicated in their irreversible counter-parts with SDBC.

■ MCMC SIMULATIONS
Performance Analysis on 1D Potts Model. As an

application of IMH, IGS, and IMGS algorithms, we consider
the 1D q = 4 state Potts model with N sites and first nearest
neighbor interactions. The Hamiltonian of the system is then
directly deduced from the general form given in (25):

H J( ) ( , )
k

N

k k k k
1

, 1 1∑σ δ σ σ= −
=

+ +
(44)

where a periodic boundary condition σN+1 = σ1 is imposed and
the interaction strength are all set to 1 so that Jk,k+1 = J = 1 for k =
1, ..., N. We remind the reader that according to (13), the
expectation value Eπ̃[f ] of an observable f = f(σ, ε) with respect
to the extended target distribution π̃(σ, ε) remains unchanged
from that with respect to the original distribution π(σ), that is,
Eπ̃[f ] = Eπ[f ]. The expectation value Eπ[f ] over the equilibrium
distribution π(σ) is then given by

f fE ( ) ( )∑ σ σπ[ ] =π
Ω (45)

where∑Ω indicates a sum over S = qN spin configurations. The
equilibrium distribution π(σ) is the Gibbs−Boltzmann dis-
tribution given in (26) where we define the inverse temperature

1/β = in units where the Boltzmann constant kB is set to 1.

In classical 1D systems, the nonexistence of phase-transition
at any physically accessible temperature has been presented in
various arguments and theorems,59−62 and a 1D Potts model
therefore exhibits no spontaneous magnetization at any finite
temperature. For the 1D Potts model under our consideration,
we have imposed periodic boundary conditions and have let all
sites to be equivalent, so that Jk,k+1 = J for k = 1, ..., N. The
expectation value of the magnetization density over the
equilibrium distribution π(σ) is then given by

m
q

E
1 q

1

∑ σ[ ] =π
σ= (46)

where Eπ[m] = 2.5 for q = 4.
For the simulations that follow, we define the ensemble

average ⟨f(t)⟩ at time t of an observable f = f(σ, ε) as

f t
N

f t t( )
1

( ( ), ( ))
i

N
i i

sim 1

sim

∑ σ ε⟨ ⟩ =
= (47)

where time is measured in number ofMC-steps starting from the
initial conditions. Nsim denotes the number of independent
simulated trajectories and f(σi(t), εi(t)) the realization of
observable f at time t for trajectory i.
The integrated autocorrelation time τint,f for an observable f is

defined as

C t1 2 ( )int f
t

f,
1

∑τ = +
=

∞

(48)

where Cf(t) denotes the autocorrelation function given the
measurements, f1, f 2, ..., f M:

Figure 4. Average trajectory tracing the evolution of magnetization density with respect to time as in eq 47, starting from the initial conditions. The
simulations were initialized with σk = 1 for k = 1, ...,N, and a random assignment of ε∈ {+1,− 1}.N = 144, temperature 2.0= ,Nsim = 10

5 andT = 2×
103 MC-steps. The deviation parameter δ indicates deviation from the DBC.

Figure 5. Integrated autocorrelation times τint,m for the magnetization density at 26 temperatures in the range of 0.5 2.47= − . The values are
obtained from a very long single runs of the algorithms with T = 107 MC-steps and N = 144 sites. The deviation parameter δ indicates deviation from
the DBC.
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C t
f t t f t f t

f t f t
( )

E ( ) ( ) E ( )
E ( ) E ( )f

2

2 2=
[ ′ + ′ ] − [ ′ ]

[ ′ ] − [ ′ ]
π π

π π (49)

with t′ set sufficiently large for equilibration when estimating
Cf(t). τint,f is commonly estimated through the relation

int f
f

f
,

2

0,
2τ

σ

σ
=

(50)

where σ0,f
2 = Eπ[f

2] − Eπ[f ]
2 indicates the variance for an

independent sampling, that is, the naive variance of the raw time
series data treated as though all the values were independently
sampled. σf

2 is the asymptotic variance computed through batch
means method using batch sizes much larger than τint,f.

17 A large
integrated autocorrelation time of observable f therefore
indicates a large corresponding asymptotic variance.
Magnetisation Density as the Lifting Coordinate. We

simulate the 1D 4-state Potts model with IMH, IGS, and IMGS,
whereby we deploy the skewness function introduced in (30)
and take the lifting coordinate f to be the magnetization density
of the system. Figure 4 shows the average trajectories tracing the
evolution of the magnetization density with respect to time. For
all three algorithms, it is observed that deviation from the DBC
condition, δ = 0, results in faster convergence to the equilibrium,
which remains consistent with a similar study on 1D Ising
model.36 This speed-up in equilibration is likely attributed to the
suppression of diffusive behavior along key collective variables
(reaction coordinates) as a result of breaking DBC. As a

consequence, the induction of probability flows in state space
may accelerate exploration.28,34,51

In Figure 5, we show the integrated autocorrelation times of
the magnetization density τint,m for 26 temperatures in the range
of 0.5 2.47= − ; the values were obtained from very long
single runs of the algorithms. Deviation from the DBC
condition, δ = 0, induces a reduction in τint,m for all the
temperatures in the given range. This observation is prevalent
for all three algorithms albeit with varying degrees of reduction.
Concerning the optimum deviation from the DBC condition,
that is, δ = 1 for IMH, IGS, and IMGS, we report that [τ(δ=0)/
τ(δ=1)]IMH∼ 5.86, [τ(δ=0)/τ(δ=1)]IGS∼ 7.12 and [τ(δ=0)/τ(δ=1)]IMGS

∼ 6.59 at 2.0= whereas [τ(δ=0)/τ(δ=1)]IMH ∼ 2.33, [τ(δ=0)/
τ(δ=1)]IGS ∼ 9.71 and [τ(δ=0)/τ(δ=1)]IMGS ∼ 9.93 at 0.66= . At
lower temperatures, the reduction in τint,m (compared to their
respective reversible counterparts) is evidently more profound
for IGS and IMGS than that for the IMH. The IMGS in
particular outperforms its reversible counterpart by almost an
order of magnitude at 0.66= , compared with a gain of only
∼2.33 for IMH.
In Figure 6 and Figure 7, we provide a performance

comparison of IMH, IGS, and IMGS against each other and
some conventional algorithms, namely, MH, GS, MGS, and the
Suwa−Todo algorithm.32 In these conventional methods spin
sites are updated in sequence, which breaks DBC and is shown
to outperform random updating scheme by reducing autocorre-
lation times.31 It is clearly seen in the left panel of Figure 6 that
no appreciable gain in convergence time is provided by IMH,
IGS and IMGS over the conventional methods - except for a gain

Figure 6. A comparison of IMH, IGS, and IMGS algorithms with the deviation parameter set to δ = 1. Left: A comparison of the average trajectory of
the magnetization density with respect to time as in eq 47,N = 144 sites,Nsim = 10

5, T = 2 × 103 MC-steps, and 2.0= . Middle: The autocorrelation
function Cm(t) of the magnetization density at 0.66= obtained from a very long single runs of the algorithms with T = 107 MC-steps and N = 144
sites. The legend is equivalent to the one on the left panel, and the black dash-dotted lines project the trajectory ofCm(t)IMH at the initially fast and then
slow decay rate as in eq 51. Right: A comparison of τint,m at 26 temperatures in the range of 0.5 2.47= − withN = 144 sites and T = 107 MC-steps.

Figure 7. Left: Trajectories for the autocorrelation functions Cm(t)IMH for 26 temperatures in the range of 0.5 2.4= − , where the direction of the
arrow indicates rising temperature.N = 144 sites, T = 107 MC-steps and the deviation parameter is set to δ = 1. Trajectories at higher temperatures are
dominated by a fast mode of decay rate tfast as in eq 51. Middle and right:N dependence of τint,m at 0.66= and 2.0= . τint,m is obtained from a very
long single runs of the algorithms withT = 107MC-steps; the dashed lines indicate the best fits. The deviation parameter δ is set to 1 for IMH, IGS, and
IMGS.
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in convergence time over the Suwa−Todo algorithm. Addition-
ally, it is evident that IMGS returns the smallest integrated
autocorrelation times on the magnetization density at all given
temperatures as shown in the right panel of Figure 6. In
particular, we report τIMH/τIMGS ∼ 6.90 and ∼1.30 at 0.66=
and 2.0, respectivelyIMGS seems to outperform IMH by a
larger margin at lower temperatures. Such a performance of
IMGS is closely followed by the IGS. A particular point of
interest is that at all given temperatures both IGS and IMGS
return smaller values of τint,m than the Suwa−Todo algorithm,32

which is considered one of the best local flip algorithms for the
Potts model. However, τint,m for the IMH only becomes shorter
than that of the Suwa−Todo algorithm for 1.45≥ . In
particular, we report τ(Suwa−Todo)/τIMGS ∼ 2.40 and ∼2.66 at

0.66= and 2.0, respectivelythe integrated autocorrelation
times of IMGS are over twice as short compared to those of the
Suwa−Todo algorithm.
On the right panel of Figure 6 we also note that at higher

temperatures, 1.6≥ , the IMH algorithm returns τint,m values
similar to those of IGS, with the two sets of values converging
with increasing temperature. At lower temperatures, 1.6< ,
while a reduction in τint,m is still prevalent for the IMH algorithm,
it nonetheless performs relatively poorly as compared to IGS
and IMGS. This poor performance at lower temperatures is due
to the cross over of Cm(t)IMH from an initially fast to a slower
decay rate as shown in the middle panel of Figure 6. A similar
phenomenon is reported for the study of two-dimensional
classical XY model with the ECMC algorithm.40 The authors in
ref 40 report that the susceptibility autocorrelation function
crosses over from an initially fast to a slow decay rate at the
criticality. We utilize here a similar description of the
autocorrelation function to express Cm(t)IMH using two time-

scales, tfast and tslow, to characterize the fast and slow modes of
decay rates:

C t A t t A t t( ) exp( / ) exp( / )m IMH 1 fast 2 slow= − + − (51)

In the middle panel of Figure 6, we show the autocorrelation
functions at 0.66= . Initially Cm(t)IMH decays at a fast time
scale tfast for t ∼ 180 Monte Carlo steps to Cm ∼ 0.4, then a
crossover to a slower mode of decay rate tslow occurs, whereby
this new slower decay rate seems characteristic to that of
conventional Metropolis−Hastings Cm(t)MH. We observe that
increasing the temperature causes the decay rate of Cm(t)IMH to
be dominated by the fast time scale tfast as shown in left panel of
Figure 7. A similar cross over between twomodes of decay rate is
not observed in IGS and IMGS algorithmsthey seem to be
well approximated with a single exponential decay. Similar
phenomenon whereby a slow diffusive decay succeeds an initial
ballistic behavior has been reported in simulations of particle
systems with ECMC algorithms.63

The middle and right panel of Figure 7 shows the N
dependence of τint,m at 0.66= and 2.0= . For the
conventional algorithms, τint,m scales on the order of N( ) at
both high and low temperatures, whereas in the case of IMH,
IGS, and IMGS, we observe a reduction in the dynamical scaling
of τint,m. At 2.0= for all three algorithms, IMH, IGS, and
IMGS, τint,m is on the order of N( )1/2 , a square-root reduction
of the mixing time. However, at the lower temperature of

0.66= , a different scenario is observed; both IGS and IMGS
still provide a square root reduction of themixing time, and IMH
now only scales on the order of N( )0.85∼ . The square root
reduction of the mixing time was shown to be optimal through
the lifting framework,29 and it therefore seems that at sufficiently
high temperatures all three algorithms, IMH, IGS, and IMGS

Figure 8.Average trajectories tracing the evolution of energy density with respect to time starting from the initial conditions. The averages have been
computed using eq 47, and the exact value for the equilibrium energy density, 0.3547≃ − , using eq 53. The simulations were initialized with σk = 1
for k = 1, ...,N and a random assignment of ε∈ {+1,− 1}.N = 144, 2.0= ,Nsim = 10

5, andT = 2× 103. The deviation parameter δ indicates deviation
from DBC.

Figure 9. Integrated autocorrelation times int,τ for energy density at 26 temperatures in the range 0.5 2.47= − . The deviation parameter δ
indicates deviation from DBC. The values are obtained from very long single runs of the algorithms with T = 107 MC-steps using N = 144 sites. The
deviation parameter δ indicates deviation from DBC.
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present a maximal improvement of mixing time. However, at a
low temperature, only IGS and IMGS retain the bestmixing time
achievable.
Energy Density as the Lifting Coordinate. In this section, we

take the lifting coordinate f in the skewness function in (30) to
be the energy density of the 1D 4-state Potts model. Imposing
periodic boundary conditions and setting Jk,k+1 = J for k = 1, ...,N
allows us to write the energy density of the system in the form:

J
N

( , )
k

N

k k
1

1∑ δ σ σ= −
=

+
(52)

where δ(·) here denotes the Kronecker delta function, not to be
confused with the parameter in the skewness function given in
(30). In Figure 8, we show the average trajectories tracing the
evolution of energy density with respect to time at 2.0= . The
exact value for the equilibrium energy density of the model can
be analytically deduced from its partition function and is given
by

J
e

e q1

J

J= −
− +

β

β
(53)

In Figure 8, all trajectories converge on the exact value, but
deviation from the DBC seems to induce an initially fast
convergence rate in all three algorithms.
The integrated autocorrelation time for energy density is

computed for 26 temperatures in the range 0.5 2.47= − , we
show this in Figure 9. The pattern observed is very similar to that
in Figure 5: deviation from the DBC induces reduction in int,τ
in all three algorithms.
However, we point out that for both IGS and IMGS, at

temperatures of 0.8< , the autocorrelation functions for
energy density exhibit decay rates at two time scales, tfast and tslow
as dictated in (51). This is not the case with their respective
autocorrelation functions for magnetization density, which seem
to be well-described by a single decay rate. Unlike τint,m, the
reduction in int,τ therefore shows a drastic degradation at low
temperatures for both IGS and IMGS.
A comparison of int,τ to those obtained from conventional

algorithms is shown on the left panel of Figure 10. It seems that,
concerning int,τ , the optimum superiority of both IGS and
IMGS over IMH is in the temperature window of
0.7 1.4< < . The right panels of Figure 10 therefore show
that at a high temperature int,τ scales on the order of N( )1/2

for IMH, IGS, and IMGS, but this square root reduction of the

mixing time is only retained by IGS and IMGS at low
temperatures.
These results show that by setting the lifting coordinate f in

the skewness function in (30) as the observable of interest, IMH,
IGS, and IMGS can significantly reduce the integrated
autocorrelation times of this particular observable in comparison
to conventional algorithms. The IMGS in particular provides the
best performance of the three methods.

Extensions to Continuous-State Systems. As a simple
example of possible applications to continuous-state systems,
one may consider using Monte Carlo simulations to construct a
free energy profile of a system described by a symmetrical 1D
double well potential

U x C x x( ) ( 1) ( 1)2 2= − + (54)

whereC≥ 0 is a tunable constant. The potential has twominima
at x =−1 and x = 1 and an energy barrier of magnitudeC at x = 0.
Let us consider a Metropolis−Hastings Monte Carlo scheme
using a Gaussian proposal in the x-coordinate given by

x xi i1 ςξ′ = ++ (55)

where (0, 1)ξ = and ς is the standard deviation set to 0.11. x′
indicates the proposal for the nextMonte Carlo time step (i + 1).
We will henceforth refer to this particular Metropolis−Hastings
scheme with the proposal given in (55) as MH-C to indicate the
continuous states in the x-coordinate.
Alternatively, one may consider discrete points along the x-

coordinate linearly spaced with a space width of Δ and wish to
propose the next state in theMonte Carlo time step according to

x x n n n n, 1, ..., 1, 1, ..., 1,i i1′ = + {− − + − − }Δ+
(56)

where is the discrete uniform distribution and n determines
the maximum deviation from the current state xi. Setting the
spacingΔ as infinitesimally small, a discrete state approximation
of a continuous state space can be realized along the x-
coordinate. In what follows, we will refer to the standard
Metropolis−Hastings algorithm with the proposal in (56) as
simply MH.
Finally we point out that the irreversible counterpart of MH

with SDBC can now be constructed by simply following the
general recipe in Algorithm 3. The proposal in (56), (x′, ε|x, ε),
is accepted with the probability: Θ(x, x′, ε)A(x′|x)MH, where
upon rejection one accepts the state (x, − ε|x, ε) with
probability: Λ(x, − ε|x, ε)/(1 − ∑x′≠xT(x′, ε|x, ε)), or else
the current state (x, ε) is retained. In the transition probability

Figure 10. Left: A comparison of int,τ at 26 temperatures in the range of 0.5 2.47= − , int,τ is obtained from very long single runs of the algorithms
with T = 107 MC-steps andN = 144 sites. For IMH, IGS, and IMGS, the deviation parameter δ is set to 1. Middle and Right:N dependence of int,τ at

2.0= and 1.0 respectively. int,τ is obtained from a very long single runs of the algorithms with T = 107 MC-steps. For IMH, IGS, and IMGS the
deviation parameter δ is set to 1.
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T(x′, ε|x, ε) = Θ(x, x′, ε)T(x′|x)MH, the MH transition T(x′|
x)MH and acceptance A(x′|x)MH are defined in eqs 5 and 4,
respectively. Two points merit attention here: First, the
evaluation of the probability to switch replica ε→ − ε requires
summation over 2n states, and in practice this summation is
continually updated and for very large n the computation can be
easily done in parallel. Second, the skewness functionΘ(x, x′, ε),
while it must satisfy both conditions (23) and (24), should
ideally utilize the physics of the system in question. So, for
example, for the system under our consideration with the
potential energy defined in (54), for efficient sampling we want
to enhance crossing of the energy barrier between the two
minima. As a convenient choice, we make use of the skewness
function in (30) and set the lifting coordinate f to be the state of
the system along the x-coordinate, so that

x x x x( , , ) (1 sgn( ))ε φ δεΘ ′ = + ′ − (57)

In this manner, the acceptance probability is biased such that in
the ε = +1 replica Monte Carlo moves that drive the system
toward increasing x-coordinate are more likely to be accepted
than those that propose to decrease the x-coordinate, while the
opposite is true in ε = −1 replica. In a given replica the system
therefore acquires momentum in a specific direction in the x-
coordinate, thus barrier crossing between the energy minima is
expected to be more rapid.
We show some results of the simulations with MH, MH-C,

and IMH in Figure 11. For both MH and IMH, we had set n = 5
and the space widthΔ = 0.0303 in (56) so that the average step-
size (i.e., deviation from the current state) in the proposal
corresponds roughly to that of MH-C for fair comparison. All
three algorithms converge to the correct target distribution π(x)
as is clearly evident from the free energy profile βF(x) =
−ln(π(x)) shown on the bottom left of Figure 11. The top row
of Figure 11 shows the evolution of the x-coordinate with
respect to time for a single run of the algorithms, and we observe
the expectedly similar performance ofMH andMH-C; however,

IMH clearly exhibits a ballistic behavior with more rapid
crossing of the energy barrier. The superior mobility of IMH
along the reaction coordinate can induce faster convergence to
the stationary distribution in comparison to its reversible
counterparts, MH and MH-C. This seems to be a typical
advantage of the lifting framework as breaking DBC can
accelerate the otherwise diffusive exploration of the reaction
coordinate.28,34,51We observe on the bottom center of Figure 11
that IMH returns the smallest standard errors on the free energy
profile on either side of the energy barrier. The autocorrelation
functions for the observable x (bottom right of Figure 11)
indicate that τint,x is ∼1.8 times shorter for IMH compared with
MH-C, and the asymptotic variance on the lifting coordinate can
therefore be appreciably reduced with the IMH algorithm.
We have provided here a simple example to demonstrate that

a skewness function can be carefully constructed to optimize
sampling of the state space with the IMH algorithm. The
increased mobility in state space can be attributed with the
optimal choice of the skewness function. For example, for the 1D
model potential discussed here, our observable of interest is
states along the x-coordinate, as effective sampling of this state
space is of interest to construct the corresponding free energy
profile. Therefore, in the interest of increasingmobility along the
x-coordinate, we had provided in (57) a skewness function that
sets the state x as the lifting coordinate. We cautiously state that
an optimal skewness function should in general utilize the
observable of interest as the lifting coordinate.
We also point out that the simple 1D example here can be

extended to 3D cases that may be dictated by more irregular
potential energy profiles. Furthermore, while both the IGS and
IMGS algorithms are applicable to general systems with discrete
state space, their application to continuous state systems, as with
the IMH algorithm, can be practically feasible with a discrete
state space approximation. We have demonstrated with the
simple example of a 1D model potential that the IMH algorithm
can be successfully adapted for a Monte Carlo simulation of a

Figure 11. Simulation of a simple systemwith 1Dmodel potential as given in (54) withMH,MH-C and IMH algorithms and simulation parameters: β
∼ 0.83, T = 107 MC-steps and Nsim = 450 independent simulations. Top row: Time evolution of the x-coordinate obtained from single runs of the
algorithms. Bottom left: The average trajectory of free energy profile βF(x) = −ln(π(x)) as in eq 47. Bottom center: Standard error on the average
trajectory of free energy profile. Bottom right: Autocorrelation function Cx(t) of observable x.
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continuous state system with improved performance than the
standard Metropolis−Hastings with DBC. With similar
reasoning, the application of IGS and IMGS can be practically
viable; for example, the IGS transition rate in (39) may be
adapted to

x x x x G x x x x

x x x x

( , , ) ( , , ) ( ) ,

( , , ) 1 ( , , ),
x x
∑

ε ε ε

ε ε ε ε

′ | = Θ ′ ′| ∀ ′ ≠

| = − ′ |
′≠

where the Gibbs transition

G x x
x
x m

x

x n x x x x n

( )
( )
( )

, ..., , , , ...,
m n
n

π
π

′| = ′
∑ + Δ

∀ ′

∈ { − Δ − Δ + Δ + Δ}
=−

to state x′ could be limited to 2n + 1 states, that is, 2n states in the
vicinity of the current state x, as for example in eq 56. The
irreversible algorithms presented here may therefore be useful in
constructing free energy landscapes of more complex systems
with higher dimensionality, as for example biomolecular
systems.

■ DISCUSSION
In summary, we have presented in this paper three algorithms on
the basis of SDBC, namely, the irreversible Metropolis−
Hastings (IMH), irreversible Gibbs sampler (IGS), and
irreversible Metropolized-Gibbs sampler (IMGS). The IMH
presented here is a generalization, to classical spin systems, of the
prototype algorithm presented by Turitsyn et.al. for the mean
field Ising model,34 and our generalization now makes it
applicable to classical spin systems in general. We have managed
this generalization by building on the works of Sakai and
Hukushima on the 2D Ising model,37 specifically by the
adaptation of the skewness function Θij

(ε), which characterizes
the violation of DBC, so that it may now use any generic
observable f as the lifting coordinate. Performance analysis of
IMH on 1D 4-state Potts model indicates a square-root
reduction of the mixing time at high temperatures, while
performance at low temperatures remains modest.
The IGS and IMGS presented in this paper are respectively

the irreversible counterparts with SDBC of the random-scan
Gibbs sampler7 and the random-scan Metropolized-Gibbs

sampler.21 We have presented these two algorithms in general
formulation so as to be applicable to any system with discrete
degrees of freedom. Performance analysis on 1D 4-state Potts
model show that both IGS and IMGS return shorter
autocorrelation times in comparison to IMH and some
conventional algorithms. The integrated autocorrelation times
for magnetization and energy density scale on the order of

N( )1/2 at both high and low temperatures, as compared with
conventional algorithms which scale on the order of N( ). This
square-root reduction of the mixing time may be the optimal
improvement achievable through the lifting framework.29

To further test the efficiency of IMH, IGS, and IMGS, large-
scale simulations of 2D and 3D discrete state spin systems at the
criticality are of interest. Preliminary simulation results on a 2D
4-state Potts model of size 162 at the criticality indicate that both
IGS and IMGS provide shorter autocorrelation times in
comparison to their respective reversible counterparts that
satisfy the strict DBC, this is, shown in the left panel of Figure 12;
notice that the IMH does not perform significantly better than
its reversible counterpart. The autocorrelations of the magnet-
ization density are also compared to those from conventional
algorithms namely, MH, GS, MGS, and the Suwa−Todo
algorithm,32 where in these conventional methods, spins are
updated in sequence, which breaks DBC. As clearly seen in the
right panel of Figure 12, the IMGS seems second in performance
only to the Suwa−Todo algorithm. In particular, the integrated
autocorrelation time of IMGS is 4.8 times shorter than that by
sequential-scan MH, 1.9 times shorter than the sequential-scan
Gibbs sampler, and a modest 1.1 times shorter than the
sequential-scan MGS. In their current form, IMH, IGS, and
IMGS ensure invariance of the target distribution only with
random updating scheme. Sequential updating schemes have
however been shown to reduce autocorrelation times.31 Our
current work in progress,57 therefore, looks at implementing
IMGS with sequential updating scheme.
Both IGS and IMGS are applicable to general systems with

discrete degrees of freedom, it is therefore of interest, for a future
study, to test the performance of these algorithms in the study of
more complicated statistical-physics models, such as the Potts
spin glass models. In addition, the lifting framework with SDBC
can be applied to generalized-ensemble algorithms in an attempt
to improve their efficiency, for example, recent application of the
lifting technique was applied to the updating scheme of inverse

Figure 12. Autocorrelation functions of magnetization density Cm(t) for the 2D 4-state Potts model at the critical temperature 0.910≃ . The
autocorrelation functions are obtained from very long single runs of the algorithms with T = 107 sweeps. The system size is 16 × 16. Left: DBC is
recovered by setting the deviation parameter δ to 0 while δ = 1 characterizes maximum deviation fromDBC. Right:We show comparison ofCm(t) with
conventional algorithms, namely, MH, GS, MGS, and the Suwa−Todo algorithm, whereby in these conventional algorithms spins are updated in
sequence.
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temperature in simulated tempering39 with improved efficiency
over the standard updating scheme with DBC. In our current
work in progress58 we are implementing the IGS and IMGS in
the updating scheme of inverse temperature in simulated and
parallel tempering.
Spin-cluster algorithms18,19 offer alternative, very efficient

Monte Carlo sampling of simple spin systems, which have been
superior to the study of critical phenomena compared to the
conventional (Metropolis-type) Monte Carlo methods -
particularly in the suppression of critical slowing down.2

However, broader applications of cluster algorithms to off-
lattice systems remain elusive. Only the geometric cluster
algorithms (GCA)65,66 were recently developed for fluid models
that may offer efficient general alternatives. Classical spin-cluster
algorithms, while very impressive, remain confined to a few spin
models. For example, the accelerated dynamics brought about
by cluster algorithms in ferromagnetic spin models remain
difficult to replicate in the more disordered generic spin glass
models.67 Therefore, here we have focused on the development
of more broadly applicable conventional Monte Carlo methods,
albeit combination with GCA-type algorithms and other cluster
approaches remains of interest. For example, the spin-cluster
algorithms are reported to be ineffective in the simulation of 3D
XY spin glass models,40 while the ECMC algorithm (which
combines the concept of lifting with the factorized Metropolis
filter) can outperform both the conventional Metropolis−
Hastings algorithm and spin-cluster methods.40 Future work
could therefore explore the possibility of combining IMH, IGS
and IMGS with cluster algorithms.
In this paper we have made use of the inter-replica transition

probability Λi
(ε) of the TCV type34 as described in (20), we

remark that the choice of Λi
(ε) is not restricted but several other

choices have been proposed and studied analytically and
numerically.36,38 The efficiency of the algorithms here are
dictated by the choice of Λi

(ε), it is therefore of interest to
consider the behavior of IGS and IMGS with alternative choice
of inter-replica transition probability.
Furthermore, we have discussed that the skewness function,

Θij
(ε), requires a careful construction so as to impose the SDBC

condition on the extended transition matrix, however within the
bounds of requirement (23) and (24), it is possible to engineer
an appropriate skewness function that may provide an optimum
efficiency of the algorithm for a given system. The skewness
function presented here, eq 30, readily utilizes a generic
observable f as the lifting coordinate and is therefore broadly
applicable. A careful selection of the lifting coordinate f may
therefore provide a more effective sampling of the state space in
the Monte Carlo study of biomolecular systems, such as
proteins, which are prone to being stuck in local minimum
energy states.
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