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Abstract: Linear relations, containing measurement errors in input and output data, are considered.
Parameters of these so-called errors-in-variables models can change at some unknown moment.
The aim is to test whether such an unknown change has occurred or not. For instance, detecting
a change in trend for a randomly spaced time series is a special case of the investigated framework.
The designed changepoint tests are shown to be consistent and involve neither nuisance parameters
nor tuning constants, which makes the testing procedures effortlessly applicable. A changepoint
estimator is also introduced and its consistency is proved. A boundary issue is avoided, meaning
that the changepoint can be detected when being close to the extremities of the observation regime.
As a theoretical basis for the developed methods, a weak invariance principle for the smallest
singular value of the data matrix is provided, assuming weakly dependent and non-stationary errors.
The results are presented in a simulation study, which demonstrates computational efficiency of
the techniques. The completely data-driven tests are illustrated through problems coming from
calibration and insurance; however, the methodology can be applied to other areas such as clinical
measurements, dietary assessment, computational psychometrics, or environmental toxicology as
manifested in the paper.

Keywords: changepoint; errors-in-variables; hypothesis testing; structural break; non-stationarity;
dependence; weak invariance principle; singular value; calibration; insurance

1. Introduction and Main Aims

If measured input and output data are supposed to be in some linear relations, then it is
of particular interest to detect whether impact of the input characteristics has changed over
time on the output observables. Moreover, only error-prone surrogates of the unobservable
input-output characteristics are in hand instead of a precise measurement. Despite the fact
that the relations and, consequently, suitable underlying stochastic models are linearly de-
fined, the possible estimates and the corresponding inference may be highly non-linear [1].
It becomes even more challenging to handle measurement errors in input and output data
simultaneously, when the linear relations are subject to change at some unknown time
point—changepoint.

There is a vast literature aimed at linear relations modeled through so-called measure-
ment error models or errors-in-variables models (for an overview, see [2–5], or [6]), but very
little has been explored in the changepoint analysis for these models yet. A change in
regression has been explored thoroughly, cf. [7] or [8]. However, such a framework does
not cover the case of measurement error models. Maximum likelihood approach [9,10]
and Bayesian approach [11,12] to the changepoint estimation in the measurement error
models were applied, both requiring parametric distributional assumptions on the errors.
The changepoint in the input data only was estimated in [13]. A change in the variance
parameter of the normally distributed errors within the measurement error models was
investigated in [14]. All of these mentioned contributions dealt with the changepoint
estimation solely. Our main goal is to test for a possible change in the parameters relating
the input and output data, both encumbered by some errors. Consequently, if a change is
detected, we aim to estimate it. By our best knowledge, we are not aware of any similar
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results even for the independent and identically distributed errors. Additionally to that,
our changepoint tests are supposed to be nuisance-parameter-free, distributional-free, and to
allow for very general error structures.

1.1. Outline

The paper is organized as follows: In the next section, our data model for the change-
point in errors-in-variables is introduced and several practical motivations for such a model
are given. Section 3 contains a spectral weak invariance principle for weakly dependent
and non-stationary random variables. It serves as the main theoretical tool for the con-
sequent inference. The technical assumptions are discussed as well. Two test statistics
for the changepoint detection are proposed in Section 4. Consequently, their asymptotic
behavior is derived under the null as well as under the alternative hypothesis. More-
over, a consistent changepoint estimator is introduced. Section 5 contains a simulation
study that compares finite sample performance of the investigated tests. It numerically
emphasizes the advantages of the proposed detection procedures. A practical application
of the developed approach to a calibration problem is presented in Section 6.1. On the
other hand, an actuarial application concerning randomly spaced time series is performed
in Section 6.2. Afterwards, our conclusion follows. Proofs are given in the Appendix A.

2. Changepoint in Errors-In-Variables

Errors-in-variables (EIV) or also called measurement error model

X = Z + Θ (M)

and
Y = Zβ + ε (H0)

is considered, where β ∈ Rp is a vector of unknown regression parameters possibly subject
to change, X ∈ Rn×p and Y ∈ Rn×1 consist of observable random variables (X are covariates
and Y is a response), Z ∈ Rn×p consists of unknown constants and has full rank, ε ∈ Rn×1

and Θ ∈ Rn×p are random errors. This setup can be extended to a multivariate case, where
β ∈ Rp×q, Y ∈ Rn×q, and ε ∈ Rn×q, q ≥ 1, see Section 3.3.

The EIV modelM–H0 with non-random unknown constants Z is sometimes called
functional EIV model [2,15]. On the other hand, a different approach may handle Z as
random covariates, which is called structural EIV model [9]. As stated by [16]: ‘However,
functional models played an important role in the study of measurement error models
and in statistics more generally.’ In addition, here, we will concentrate on the functional
EIV model not because of this matter-of-fact quote, but because we wish to demonstrate
a distributional-free approach, where ‘no, or only minimal, assumptions are made about
the distribution of the Xs’ [4], as challenged in the introduction. Nevertheless with respect
to derivation of the forthcoming theory for the functional EIV model, changing some
technical assumptions would allow proving suitable results for the structural case as well.

To estimate the unknown parameter β, one usually minimizes the Frobenius matrix
norm of the errors [Θ, ε], see [17]. This approach leads to a total least squares (TLS) estimate
β̂ = (X>X − λmin([X, Y ]>[X, Y ])Ip)−1X>Y , where λmin(M) is the smallest eigenvalue of
an matrix M and Ip is a (p× p) identity matrix. Geometrically speaking, the Frobenius
norm tries to minimize the orthogonal distance between the observations and the fitted hy-
perplane. Therefore, the TLS are usually known as orthogonal regression. One can generalize
this method by replacing the Frobenius norm by any unitary invariance matrix norm, which
surprisingly yields the same TLS estimate, with interesting invariance and equivariance
properties [18]. The TLS estimate is shown to be strongly and weakly consistent [1,19,20]
as well as to be asymptotically normal [21–23] under various conditions.

We aim to detect a possible change in the linear relation parameter β. The interest
lies in testing the null hypothesis H0 of all observations Yi’s being random variables with
expectations Zi,•β’s. Our goal is to test against the alternative of the first τ outcome
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observations have expectations Zi,•β’s and the remaining n− τ observations come from
distributions with expectations Zi,•(β + δ)’s, where δ 6= 0. A ‘row-column’ notation for
a matrix M is used in this manner: Mi,• denotes the ith row of M and M•,j corresponds to
the jth column of M. Furthermore, if i ∈ N0, then Mi stays for the first i rows of M and
M−i represents the remaining n− i rows of M, when the first i rows are deleted. Now
more precisely, our alternative hypothesis is

Yτ = Zτ β + ετ and Y−τ = Z−τ(β + δ) + ε−τ . (HA)

Here, δ ≡ δ(n) 6= 0 is an unknown vector parameter representing the size of change
and is possibly depending on n. The changepoint τ ≡ τ(n) < n is also an unknown scalar
parameter, which depends on n as well, although β is considered to be independent of n.
One may also think of the changepoint in errors-in-variables framework as segmented
regression with measurement errors, cf. [10].

2.1. Intercept and Fixed Regressors

Please note that the EIV model M–H0 has no intercept and all the covariates are
encumbered by some errors. To overcome such a restriction, one can think of an extended
regression model, where some explanatory variables are subject to error and some are mea-
sured precisely. i.e., Y = Wγ + Zβ + ε, where W are observable true and Z are unobservable
true constants, both with full rank. Regression parameters γ and β remain unknown.
Then, the non-random (fixed) intercept can be incorporated into the regression model by
setting one column of the matrix W equal to [1, . . . , 1]>. Consequently, we may project out
exact observations using projection matrix R := In −W(W>W)−1W>. Notice that R is
symmetric and idempotent. Finally, one may work with RY = RZβ + Rε instead ofH0.

2.2. Motivations

The proposed class of models—errors-in-variables with changepoint—is very rich and
general. Our approach and results are motivated in the context of several applications
taken from chemistry, biological sciences, medicine, epidemiological studies, and finance.

Application 1: Assessing agreement in clinical measurement

Direct measurement of cardiac stroke volume or blood pressure without adverse
effects is difficult or even impossible. The true values remain unknown. Indirect methods
are, therefore, used instead. When a new measurement technique is developed, it has to be
evaluated by comparison with an established technique rather than with the true quan-
tity [24]. Clinicians need to test whether both measurement techniques agree sufficiently.
Thereafter, the old technique may be replaced by the new one.

Application 2: Nutritional epidemiology

Data from a nutritional study were analyzed in [10], where the relation between dietary
folate intake (calories adjusted µg/day) on plasma homocysteine concentration (µmol/liter
of blood) was investigated. There exists a suspicion that serum homocysteine is significantly
elevated when ingested folate is below a certain changepoint. Moreover, the analysis used
estimates of folate that were developed with a food frequency questionnaire, which is
recognized to be imperfect.

Application 3: Psychometric testing

Let us think of two psychometric instruments: unspeeded 15-item vocabulary tests
and highly speeded 75-item vocabulary tests, cf. [25]. The results of both tests are error-
prone. Within a group of people, there is a speculation that individuals with an unspeeded
test’s result exceeding some unknown level should perform dramatically better in the
highly speeded test.
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Application 4: Environmental toxicology

A threshold limiting value in toxicology is the dose of a toxin or a substance under
which there is harmless or insignificant influence on some response. In a dose-response
relationship, both of them are measured with errors. In addition, the goal is to set the
threshold limiting value. Such a problem was dealt in [12] using fully Bayesian approach.
Moreover, a similar task regarding the NO2 concentration is discussed in [16].

Application 5: Device calibration

Later on in Section 6.1, we concentrate in more details on the calibration task and
exemplify the proposed methodology through analysis of data from a calibrated device and
a casual device (needs to be calibrated) in order to demonstrate practical efficiency of our
detection method.

Application 6: Randomly spaced time series

Randomly spaced time series can come from a situation when the observation times
are driven by the series itself. For instance, cumulative counts of occurrences of a disease
in a given area [26] or aggregated claim amounts for a specific line of business in non-life
insurance as illustrated in Section 6.2.

Besides that, there are many other applications of the changepoint within the linear
relations framework in, for instance, glaciology [27], empirical economics [9], dietary
assessment [11], image forensics [28], or healthcare industry [29–31].

3. Spectral Weak Invariance Principle

A theoretical device is going to be developed in order to construct the changepoint
tests. The smallest eigenvalue of Σ−1[X, Y ]>[X, Y ]—the squared smallest singular value of
the matrix [X, Y ]Σ−1/2, i.e., the data matrix [X, Y ] multiplied by the inverse of a matrix
square root from the error variance structure (cf. subsequent Assumption E )—plays a key
role. We proceed to the assumptions that are needed for deriving forthcoming asymptotic

results. Henceforth, P−→ denotes convergence in probability, D−→ convergence in distribution,
D[0,1]−−−→
n→∞

weak convergence in the Skorokhod topology D[0, 1] of càdlàg functions on [0, 1],

and [x] denotes the integer part of the real number x.

3.1. Assumptions

Firstly, a design assumption on the unobservable regressors is needed.

Assumption D. ∆t := lim
n→∞

n−1Z>[nt]Z[nt], ∆−t := lim
n→∞

n−1Z>−[nt]Z−[nt] for every t ∈ (0, 1),

and ∆ := lim
n→∞

n−1Z>Z are positive definite.

It basically says that the error-free design points do not concentrate to close to each
other (i.e., strict positive definiteness) and, simultaneously, they do not spread-out too
far (i.e., existence of limits). For example in one-dimensional case (i.e., p = 1), a simple
equidistant design, where Zi,1 = i/(n + 1), provides ∆t = t3/3 and ∆ = 1/3.

Prior to postulating an errors’ assumption, we summarize the notion of strong mix-
ing (α-mixing) dependence in more detail, which will be imposed on the model’s errors.
Suppose that {ξn}∞

n=1 is a sequence of random elements on a probability space (Ω,F ,P).
For sub-σ-fields A,B ⊆ F , let α(A|B) := supA∈A,B∈B |P(A ∩ B)− P(A)P(B)|. Intuitively,
α(·|·) measures the dependence of the events in B on those in A. There are many ways
in which one can describe weak dependence or, in other words, asymptotic independence
of random variables, see [32]. Considering a filtration Fn

m = σ{ξi ∈ F , m ≤ i ≤ n},
sequence {ξn}∞

n=1 of random variables is said to be strong mixing (α-mixing) if α(ξ◦, n) =
supk∈N α(F k

1 |F∞
k+n) → 0 as n → ∞. A class of m-dependent processes was comprehen-

sively analyzed in [33]. They are α-mixing, since they are finite order ARMA processes with
innovations satisfying Doeblin’s condition ([34], p. 168). Finite order processes, which do
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not satisfy Doeblin’s condition, can be shown to be α-mixing ([35], pp. 312–313). General
conditions under which stationary Markov processes are α-mixing are provided in [36].
Since functions of mixing processes are themselves mixing [32], time-varying functions of
any of the processes just mentioned are mixing as well. This means that the class of the
α-mixing processes is sufficiently large for the further practical applications and that is
why we chose such a mixing condition.

Assumption E . {[Θn,•, εn]}∞
n=1 is a sequence of α-mixing absolutely continuous random vectors

with zero mean and a variance matrix σ2Σ with an unknown σ2 > 0 and a known positive

definite Σ =

[
ΣΘ ΣΘ,ε

Σ>Θ,ε 1

]
such that α([Θ◦,•, ε◦], n) = O(n−1−v) as n → ∞ for some v > 0,

sup
n∈N

Z2
n,j < ∞, sup

n∈N
E |Θn,j|4+ω < ∞, j ∈ {1, . . . , p}, and sup

n∈N
E |εn|4+ω < ∞ for some ω > 0

such that ωv > 2.

Let us emphasize that the sequence of the errors do not have to be stationary. The as-
sumption of an unknown σ2 and a known Σ implies that we know the ratio of any pair of
covariances in advance. In the simplest situation, a homoscedastic covariance structure of
the within-individual errors [Θn,•, εn] can be assumed (i.e., Σ = Ip+1), if prior experience or
essence of the analyzed problem allow for that. On the other hand, if the covariance matrix
Σ is unknown, it can be estimated when possessing replicate measurements or validation
data as commented in [16]. There are various approaches proposed to serve this purpose.
In order to mention at least some of them, we refer to [22,37,38], or [39]. On the top of that,
we have to bear in mind that Σ cannot be completely unspecified. If Σ is unrestricted, no
strongly consistent estimator for β can exist even under normally distributed errors [40].

Relaxations of Assumption E with respect to the known and constant Σ are provided
and discussed in Section 4.4—unknown covariance matrix—and in Section 4.5—changing
covariance structure.

Furthermore, a variance assumption for the misfit disturbances is stated. It can be
considered to be a typical assumption for the long-run variance of residuals. Let us denote

Σ−1/2 =

[
Σ̄Θ Σ̄Θ,ε

Σ̄>Θ,ε Σ̄ε

]
a symmetric square root of Σ−1, where Σ̄ε ∈ R is a scalar.

Assumption V . There exist φ := Σ̄ε − Σ̄>Θ,ε(Σ̄Θ + βΣ̄>Θ,ε)
−1(Σ̄Θ,ε + βΣ̄ε) 6= 0 and υ :=

limn→∞ n−1 Var ‖Y − Xβ‖2
2 > 0.

Let us remark that Σ̄Θ,ε = 0 for the uncorrelated error structure and, then, φ = Σ̄ε.

3.2. Swip

Finally, the spectral weak invariance principle (SWIP) [41] for the smallest eigenvalues
is provided. Let us denote λi := λmin(Σ

−1[Xi, Yi]
>[Xi, Yi]) for 2 ≤ i ≤ n, λ0 := λ1 := 0

and λ̃i := λmin(Σ
−1[X−i, Y−i]

>[X−i, Y−i]) for 0 ≤ i ≤ n− 2, λ̃n := λ̃n−1 := 0. Please note
that λn ≡ λ̃0.

Proposition 1 (SWIP). LetM andH0 hold. Under Assumptions D, E , and V ,{
1√
n

(
λ[nt] − [nt]σ2

)}
t∈[0,1]

D[0,1]−−−→
n→∞

{
φ2υ

1 + ‖α‖2
2
W(t)

}
t∈[0,1]

and {
1√
n

(
λ̃[n(1−t)] − [n(1− t)]σ2

)}
t∈[0,1]

D[0,1]−−−→
n→∞

{
φ2υ

1 + ‖α‖2
2
W̃(t)

}
t∈[0,1]

,
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where {W(t)}t∈[0,1] is a standard Wiener process , W̃(t) = W(1) −W(t), and α = (Σ̄Θ +

βΣ̄>Θ,ε)
−1(Σ̄Θ,ε + βΣ̄ε).

3.3. Extension to Multivariate Case

Suppose that β ∈ Rp×q, Y ∈ Rn×q, and ε ∈ Rn×q, q ≥ 1. Let the singular value
decomposition (SVD) of the partial transformed data be

[X[nt], Y[nt]]Σ
−1/2 = U(t)Γ(t)V>(t) =

p+q

∑
i=1

ς(t)(i)u(t)(i)v(t)(i)>,

where u(t)(i)’s are the left-singular vectors, v(t)(i)’s are the right-singular vectors, and
ς(t)(i)’s are the singular values in the non-increasing order. One may replace λ[nt] by

Λ[nt] :=
q

∑
j=1

(
ς(t)(p+j)

)2

in Proposition 1 (and analogously for λ̃[n(1−t)]). Then, the SWIP can be derived again
(see the proof of Proposition 1), provided adequately extended assumptions on the errors
{εn,1}∞

n=1, . . . , {εn,q}∞
n=1 instead of the original ones {εn}∞

n=1. However, the consequent
proofs would become more technical.

4. Nuisance-Parameter-Free Detection

Consistent estimation of β can be performed via the generalized TLS approach [19,42].
The optimizing problem

[b, Θ̂, ε̂] := arg min
[Θ,ε]∈Rn×(p+1),β∈Rp

∥∥∥[Θ, ε]Σ−1/2
∥∥∥

F
s.t. Y − ε = (X −Θ)β,

where ‖ · ‖F stands for the Frobenius matrix norm, has a solution consisting of the estimator

b = (X>X − λnΣΘ)−1(X>Y − λnΣΘ,ε) (1)

and the fitted errors [Θ̂, ε̂] such that∥∥[Θ̂, ε̂]Σ−1/2∥∥2
F = λn. (2)

We construct the changepoint test statistics based on property (2).

4.1. Changepoint Test Statistics

Let us think of two TLS estimates of β: The first one based on the first i data lines [Xi, Yi]
and the second one based on the first k data lines [Xk, Yk] such that 1 ≤ i ≤ k ≤ n. Under the
nullH0, these two TLS estimates should be close to each other. On the other hand, under the
alternative HA such that τ ∈ {i, . . . , k}, they should be somehow different. A similar
conclusion can be made for the goodness-of-fit statistics coming from (2). It means that

λi −
i
k

λk

should be reasonably small under the null H0. Under the alternative HA such that τ ∈
{i, . . . , k}, it should be relatively large. For the multivariate case described in previous
Section 3.3, one has to replace λk by Λk = ∑

q
j=1

(
ς(k/n)(p+j))2.



Mathematics 2021, 9, 89 7 of 25

We rely on self-normalized test statistics introduced in [43], because the unknown
quantity φ2υ/(1+ ‖α‖2

2) from Proposition 1 cancels out in the test statistics. Our supremum-
type self-normalized test statistic based on the goodness-of-fit is defined as

Sn := max
1≤k<n

∣∣λk − k
n λn

∣∣
max1≤i<k

∣∣λi − i
k λk
∣∣+ maxk<i≤n

∣∣λ̃i − n−i
n−k λ̃k

∣∣ (3)

and the integral-type self-normalized test statistic is defined as

Tn :=
n−1

∑
k=1

(
λk − k

n λn
)2

∑k−1
i=1

(
λi − i

k λk
)2

+ ∑n
i=k+1

(
λ̃i − n−i

n−k λ̃k
)2 . (4)

Let us note that evaluations of the above defined test statistics require just several
singular value decompositions, which is reasonably quick. Our new test statistics involve
neither nuisance parameters nor tuning constants (i.e., nuisance-parameter-free) and will work
for non-stationary and weakly dependent data. On the top of that, no boundary issue is
present meaning that the tests can detect the change close to the beginning or to the end
of the studied regime. Furthermore, the power at the boundaries can be improved by
introducing weight functions, see, e.g., [44].

Under the null hypothesis and the technical assumptions from Section 3.1, the test
statistics defined in (3) and (4) converge to non-degenerate limit distributions (their quantiles
are in Section 4.2).

Theorem 1 (Under the null). LetM andH0 hold. Under Assumptions D, E , and V ,

Sn
D−−−→

n→∞
sup

t∈[0,1]

∣∣W(t)− tW(1)
∣∣

sups∈[0,t]
∣∣W(s)− s

tW(t)
∣∣+ sups∈[t,1]

∣∣W̃(s)− 1−s
1−t W̃(t)

∣∣ (5)

and

Tn
D−−−→

n→∞

∫ 1

0

{
W(t)− tW(1)

}2∫ t
0

{
W(s)− s

tW(t)
}2ds +

∫ 1
t
{
W̃(s)− 1−s

1−t W̃(t)
}2ds

dt, (6)

where {W(t)}t∈[0,1] is a standard Wiener process and W̃(t) =W(1)−W(t).

The null hypothesis is rejected at significance level α for large values of Sn and Tn.
The critical values can be obtained as the (1− α)-quantiles of the asymptotic distributions
from (5) and (6). To describe limit behavior of the test statistics under the alternative,
an additional changepoint assumption is required.

Assumption C. For some ζ ∈ (0, 1), as n→ ∞,

‖δ‖2 → 0 and (ηκ −ϕ>ϕ)
√

n→ ∞, (7)

where

κ := (Σ̄>Θ,ε + Σ̄εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε) + (Σ̄>Θ,ε + Σ̄ε β̃>)∆−ζ(Σ̄Θ,ε + β̃Σ̄ε),

ϕ := (Σ̄Θ + Σ̄Θ,εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε) + (Σ̄Θ + Σ̄Θ,ε β̃>)∆−ζ(Σ̄Θ,ε + β̃Σ̄ε),

η := λmin((Σ̄Θ + Σ̄Θ,εβ>)∆(Σ̄Θ + βΣ̄>Θ,ε) + σ2 Ip)− σ2, and β̃ := β + δ.

This assumption may be considered to be a changepoint detectability requirement for
local alternatives, because it manages the relationship between the size of the change,
the location of the change, and the noisiness of the data in order to be able to detect the
changepoint. In case of uncorrelated error structure, the previous formulae become simpler
due to Σ̄Θ,ε = 0. Assumption C is automatically fulfilled, for instance, for an arbitrary
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δ→ 0 and the one-dimensional equidistant design points Zi’s on (0, 1) with homoscedastic
error structure, because then ηκ−ϕ>ϕ = β2{ζ3 +(1− ζ)3}{1− ζ3− (1− ζ)3}/9+O(δ) as
δ→ 0. Furthermore, let us remark that ϑ := Σ̄Θ + βΣ̄>Θ,ε has full rank under Assumption V .

A practical purpose should not lie in the detection of changes that are eminent or
evident, but rather concealed or hidden. The tests based on Sn and Tn are shown to be
consistent, as the test statistics converge to infinity under some local alternatives, provided
that the size of the change does not convergence to zero too fast, cf. Assumption C where κ
and ϕ depend on δ.

Theorem 2 (Under local alternatives). Let M and HA hold such that τ = [nζ] for some
ζ ∈ (0, 1). Under Assumptions C, D, E , and V ,

Sn
P−−−→

n→∞
∞ P←−−−

n→∞
Tn. (8)

Assumption C can be sharpened as remarked below with the corresponding proof in
the Appendix A.

Remark 1. The second part of relation (7) can be replaced by

√
n
{

κ + η −
√
(κ + 2σ2 + η)2 − 4(κ + σ2 −ϕ>(ϑ>∆ϑ + σ2 Ip)−1ϕ)(σ2 + η)

}
→ ∞ (9)

and the assertion of Theorem 2 still holds.

Basically, Theorem 2 discloses that in presence of the structural change in linear
relations, the test statistics explode above all bounds. Hence, the asymptotic distributions from
Theorem 1 can be used to construct the tests, although explicit forms of those distributions
stated in (5) and (6) are unknown.

4.2. Asymptotic Critical Values

The critical values may be determined by simulations from the limit distributions Sn
and Tn from Theorem 1. Theorem 2 ensures that we reject the null hypothesis for large
values of the test statistics. We have simulated the asymptotic distributions (5) and (6) by
discretizing the standard Wiener process and using the relationship of a random walk to the
standard Wiener process. We considered 1000 as the number of discretization points within
[0, 1] interval and the number of simulation runs equals to 100, 000. In Table 1, we present
several critical values for the test statistics Sn and Tn.

Table 1. Simulated asymptotic critical values for Sn and Tn.

100(1 − α)% 90% 95% 97.5% 99% 99.5%

S -based 1.209008 1.393566 1.571462 1.782524 1.966223
T -based 5.700222 7.165705 8.807070 10.597625 11.755233

4.3. Changepoint Estimator

If a change is detected, it is of interest to estimate the changepoint. It is sensible to use

τ̂n := argmax
1≤k≤n−1

∣∣λk − k
n λn

∣∣+ ∣∣λ̃k − n−k
n λ̃0

∣∣
max1≤i<k

∣∣λi − i
k λk
∣∣+ maxk<i≤n

∣∣λ̃i − n−i
n−k λ̃k

∣∣
as a changepoint estimator. Our next theorem shows that under the alternative, the change-
point τ is consistently estimated by the estimator τ̂n with the corresponding optimal
convergence rate.
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Corollary 1 (Consistency). Let the assumptions of Theorem 2 hold. If

ψn :=
√

n inf
t∈(ζ,1)

{η(t)κ(t)−ϕ(t)>ϕ(t)} n→∞−−−→ ∞; (10)

ψ̃n :=
√

n inf
t∈(0,ζ)

{η̃(t)κ̃(t)− ϕ̃(t)>ϕ̃(t)} n→∞−−−→ ∞, (11)

where κ(t), κ̃(t), ϕ(t), ϕ̃(t), η(t), and η̃(t) are defined in the proof, then

τ̂n/n− ζ = OP

(
(ψn ∧ ψ̃n)

−1), n→ ∞. (12)

Conditions (10) and (11) serve as a uniform intermediary between the size of the
change, the location of the change, the sample size, and the heteroscedasticity of the
disturbances (cf. the proof of Corollary 1 in the Appendix A) for assuring changepoint
estimator’s consistency. These assumptions are again automatically fulfilled for the case
discussed below Assumption C. Other concepts of the changepoint estimator’s construction
relying on the ratio type statistics [45] or on the different dependency structures [46] can be
adopted as well.

4.4. Unknown Covariance Matrix

If the true covariance matrix of the errors is unknown, possessing a surrogate co-
variance matrix, which is not far away from the original one, can help to overcome such
an issue.

Assumption E1. The same as Assumption E , except that the matrix Σ is unknown. Moreover,
there exists a known positive definite Σ such that limn→∞ ‖Σ−1/2ΣΣ−1/2 − Ip+1‖2 = 0.

Here, ‖ · ‖2 is the induced matrix norm by the Euclidean vector norm. Please note that
‖M‖2 ≤ ‖M‖F and ‖M‖2

2 = λmax(M>M), where λmax(·) stands for the largest eigenvalue.

For example, if Σ =

[
1 1

log n
1

log n 1

]
and Σ = I2, then ‖Σ−1/2ΣΣ−1/2 − I2‖2 = 1/ log n→ 0.

To practically achieve Assumption E1 without any prior knowledge about the cor-
relation structure, it is reasonable to re-scale (e.g., normalize or standardize) the original
data, to choose Σ = Ip+1, and, then, to suppose that we deal with transformed errors with
common variance and covariances vanishing sufficiently fast to zero as the sample size
increases.

Let us denote λi := λmin(Σ
−1[Xi, Yi]

>[Xi, Yi]) for 2 ≤ i ≤ n, λ0 := λ1 := 0 and
λ̃i := λmin(Σ

−1[X−i, Y−i]
>[X−i, Y−i]) for 0 ≤ i ≤ n− 2, λ̃n := λ̃n−1 := 0. Please note that

λn ≡ λ̃0.

Lemma 1. If Assumption E1 holds instead of Assumption E , then Proposition 1, Theorem 1,
Theorem 2, and Corollary 1 are valid when λi’s and λ̃i’s are replaced by λi’s and λ̃i’s, respectively.

4.5. Simultaneously Changing Relation and Covariance Structure

Practically speaking, it is plausible that the covariance structure could disrupt along-
side the abruptly changed parameter of the linear relations. Suppose that the covariance
matrix of the errors is σ2

~
Σ up to the changepoint τ, such that

~
Σ ≡ Σ, and it becomes σ2

~
Σ

after the changepoint τ, where the bottom-right element of
~
Σ does not have to be equal 1.

Now,
~

Σ and
~
Σ are considered to be unknown.

Let us construct a transformed data matrix

[
˜
X,

˜
Y ] :=

[
[Xτ , Yτ ]

~
Σ−1/2

[X−τ , Y−τ ]
~
Σ−1/2

]
.
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In the analogous manner, we define [
˜
Θ,

˜
ε]. It holds that Var[

˜
Θi,•, ˜

εi] = σ2 Ip+1 for i =

1, . . . , n. Consequently, put
˜
Z :=

˜
X −

˜
Θ. The EIV model M–H0 implies

(
[X, Y ] −

[Θ, ε]
)[ β
−1

]
= 0. With respect to the alternative HA, we define

˜
β such that

(
[
˜
Xτ ,

˜
Yτ ]−

[
˜
Θτ ,

˜
ετ ]
)[

˜
β

−1

]
= 0. Thus,

˜
β =

( ˜
~

ΣΘβ− ˜
~

ΣΘ,ε
)
/
( ˜

~
Σε − ˜

~
Σ>Θ,εβ

)
, (13)

where
~

Σ1/2 :=
[ ˜

~
ΣΘ

˜
~

ΣΘ,ε
˜
~

Σ>Θ,ε
˜
~

Σε

]
is a symmetric square root of

~
Σ. Similarly, we define

˜
δ such

that
(
[
˜
X−τ ,

˜
Y−τ ]− [

˜
Θ−τ ,

˜
ε−τ ]

)[
˜
β +

˜
δ

−1

]
= 0. Hence,

˜
δ =

( ˜
~
ΣΘ(β + δ)− ˜

~
ΣΘ,ε

)
/
( ˜
~
Σε − ˜

~
Σ>Θ,ε(β + δ)

)
−

˜
β, (14)

where
~
Σ1/2 :=

[ ˜
~
ΣΘ

˜
~
ΣΘ,ε

˜
~
Σ>Θ,ε

˜
~
Σε

]
is a symmetric square root of

~
Σ. A technical requirement

assuring that
˜
β and

˜
δ are well-defined is needed, cf. (13) and (14).

Assumption B. ˜
~

Σε − ˜
~

Σ>Θ,εβ 6= 0 6= ˜
~
Σε − ˜

~
Σ>Θ,ε(β + δ).

This assumption basically implies that the changepoint EIV problem can be correctly
postulated for the transformed data [

˜
X,

˜
Y ].

Furthermore, let us denote
˜
λi := λmin([ ˜

Xi, ˜
Yi]
>[

˜
Xi, ˜

Yi]) for 2 ≤ i ≤ n,
˜
λ0 :=

˜
λ1 := 0

and ˜̃λi := λmin([ ˜
X−i, ˜

Y−i]
>[

˜
X−i, ˜

Y−i]) for 0 ≤ i ≤ n− 2, ˜̃λn := ˜̃λn−1 := 0. Please note that

˜
λn ≡ ˜̃λ0 and all these

˜
λ’s are unknown. Clearly, if one appropriately changes Assumptions

C, D, E , and V for the ‘under-tilde’ versions of the involved entities, the corresponding
Proposition 1, Theorem 1, Theorem 2, and Corollary 1 come into force. On one hand,
Assumptions C, E , and V become even simpler due to the homoscedastic covariance matrix
of [

˜
Θi,•, ˜

εi]. On the other hand, the transformed data [
˜
X,

˜
Y ] are simply not observable.

Since a local alternative for the change in the parameter β is considered, a local
alternative for the change of the unknown covariance matrix is assumed as well. Besides
that, a known covariance matrix close in some sense to the true changing covariance matrix
is required.

Assumption E2. The same as Assumption E , except the fact that Z is replaced by
˜
Z, Var[Θi,•, εi] =

σ2

~
Σ ≡ σ2Σ under the null hypothesis H0, and Var[Θi,•, εi] = σ2(

~
Σ1{i ≤ τ}+

~
Σ1{i > τ})

under the alternative HA for i = 1, . . . , n. The matrices
~

Σ,
~
Σ are unknown positive definite

and σ2 > 0 is also unknown. Moreover, there exists a known positive definite Σ such that
limn→∞ ‖Σ−1/2

~
ΣΣ−1/2 − Ip+1‖2 = 0 = limn→∞ ‖Σ−1/2

~
ΣΣ−1/2 − Ip+1‖2.

One wishes to work with the observable data [X, Y ]Σ−1/2, to calculate the smallest
eigenvalues from Σ−1[Xi, Yi]

>[Xi, Yi], and consequently to plug-in them into the original
test statistics and changepoint estimator preserving the derived properties.

Theorem 3 (Under local alternatives of relation and covariance). LetM andHA hold such
that τ = [nζ] for some ζ ∈ (0, 1). Suppose that Assumption E2 is satisfied instead of Assumption
E . Moreover, suppose that Assumptions C, D, and V are fulfilled for

˜
Z and the covariance matrix

σ2 Ip+1 instead of Z and σ2Σ, respectively. If Assumption B holds and
˜
δ 6= 0, then Theorem 2 and

Corollary 1 are valid when λi’s and λ̃i’s are replaced by λi’s and λ̃i’s, respectively.
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5. Simulation Study

We are interested in the performance of the tests based on the self-normalized test
statistics Sn and Tn that are completely nuisance-parameter-free. We focused on the
comparison of the accuracy of critical values obtained by the simulation from the limit
distributions.

In Figures 1–4, one may see size-power plots considering the test statistics Sn and Tn
under the null hypothesis and under the alternative. Figures 1 and 2 correspond to one
input covariate (i.e., p = 1) with choices of β = 1 and Zi,1 = 100i/(n + 1). A case with
four error-prone regressors (i.e., p = 4) is illustrated in Figures 3 and 4 for choices of
β = [1, 1, 1, 1]> and Zi,• = 100× [i/(n + 1), (i/(n + 1))3/2, (i/(n + 1))4/3, (i/(n + 1))5/4].
Next, n ∈ {200, 1000} and τ ∈ {n/4, n/2}. The size of change is δ ∈ {0.1, 0.5} for p = 1
and δ ∈ {[0.1, 0.1, 0.1, 0.1]>, [0.5, 0.5, 0.5, 0.5]>} for p = 4. Especially smaller values of
the break should represent the situations under the local alternatives. In Figures 1 and 3,
the empirical rejection frequency under the null hypothesis (actual α-errors) is plotted
against the theoretical size (theoretical α-errors with α ∈ {1%, 5%, 10%}), illustrating the
size of the tests. The ideal situation under the null hypothesis is depicted by the straight
diagonal dotted line. The empirical rejection frequencies (1−errors of the second type)
under the alternative (with different changepoints and values of the change) are shown
in Figures 2 and 4, illustrating the power of the tests. Under the alternative, the desired
situation would be a steep function with values close to 1. For more details on the size-
power plots we may refer, e.g., to [47]. The standard deviation of the random disturbances
was set to σ ∈ {0.5, 1.0} and the random error terms {Θn,1}∞

n=1, . . . , {Θn,p}∞
n=1, and {εn}∞

n=1
were independently simulated as three time series:

• IID . . . independent and identically distributed random variables;
• AR(1) . . . autoregressive (AR) process of order one with a coefficient of autoregres-

sion equal 0.5;
• ARCH(1) . . . autoregressive conditional heteroscedasticity (ARCH) process with

the second coefficient equal 0.5.
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Figure 1. Size-power plots for Sn and Tn underH0 (p = 1).
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Figure 3. Size-power plots for Sn and Tn underH0 (p = 4).

The standard normal distribution and the Student t-distribution with 3 degrees of
freedom are used for generating the innovations of the models’ errors. All of the time series
are standardized such that they have variance equal σ2. Let us remark that the setup of
Student t3-distribution does not satisfy Assumption E . However, it can be considered to
be a misspecified model and one would like to inspect performance of our procedures on
such a model that violates our assumptions. In the simulations of the rejection rates, we
used 10, 000 repetitions.

In all of the subfigures of Figures 1 and 3 depicting a situation under the null hypothe-
sis, we may see that comparing the accuracy of α-levels (sizes) for different self-normalized
test statistics, the integral-type (T -based) method seems to keep the theoretical significance
level more firmly than the supremum-type (S -based) method. Comparing the case of
N(0, 1) innovations with the case of t3 innovations, the rejection rates under the null tend
to be slightly higher for the t3-distribution. Despite the fact that the t3-distributed errors
violate Assumption E , the performance of our tests is still surprisingly satisfactory in such
case. As expected, the accuracy of the critical values tends to be better for larger n and
smaller p. The more complicated dependence structure of errors is assumed, the worse
performance of the tests is obtained. Furthermore, the less volatile errors are set, the better
tests’ sizes are attained.

The T -method performs better under the null. However under the alternative,
the S -method has a tendency to have slightly higher power than the T -method (see
Figures 2 and 4). We may also conclude that underHA with less volatile errors, the power
of the test increases. The power decreases when the changepoint is closer to the beginning
or the end of the input-output data. The heavier tails (t3 against N(0, 1)) give worse results
in general for both test statistics. Moreover, ‘more dependent’ scenarios reveal worsening
of the test statistics’ performance. Furthermore, the smaller size of the change is considered,
the lower power of the test is achieved. In addition, again, the power gets higher for
smaller p and larger n.

Afterwards, a simulation experiment is performed to study the finite sample properties
of the changepoint estimator for a change in the linear relations’ parameter. We numerically
present only the case of p = 1. In particular, the interest lies in the empirical distributions
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of the proposed estimator visualized via boxplots, see Figure 5 (bars correspond to the
interquartile range). The simulation setup is kept the same as described above.
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Figure 4. Size-power plots for Sn and Tn underHA (p = 4).
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Figure 5. Boxplots of the estimated changepoint τ̂n (p = 1).
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It can be concluded that the precision of our changepoint estimate is satisfactory
even for relatively small sample sizes regardless of the errors’ structure. Less volatile
model errors provide more precise changepoint estimate. The less complicated dependence
structure is assumed, the higher accuracy of the estimator is obtained. Furthermore, the dis-
turbances with heavier tails yield less precise estimates than innovations with light tails.
One may notice that higher precision is obtained when the changepoint is closer to the
middle of the data. It is also clear that the precision of τ̂n improves markedly as the size of
change increases.

6. Applications

6.1. Device Calibration

A company has two industrial devices, where the first one is calibrated according to
some institute of standards and the second one is just a casual device. We want to test
whether the second device is calibrated according to the first one. In this calibration problem,
it means to know whether the second device has approximately the same performance up
to some unknown multiplication constant as the first one. Consequently, other devices of the
same type are needed to be calibrated as well. For some reasons, e.g., economic or logistic,
it is only possible to calibrate one device by the official authorities.

Our data set, provided by a Czech steelmaker, contains 100 couples of speed values of
two hammer rams (see Figure 6), where the first forging hammer is calibrated. We set the
same power level on both hammers and measure the speed of each hammer ram repeatedly
changing only the power level. Our measurements of the speed are encumbered with
errors of the same variability in both cases, because we use the same device for measuring
the speed and both forging hammers are of the same type. Since the power set for the
forging hammer is directly proportional to the speed of the hammer ram, our goal is to test
whether the ratio of two hammer rams’ speeds is kept constant over changing the power level
or not. Therefore, our changepoint in the EIV model is very suitable for this setup—a linear
dependence and errors in both measured speeds (with the same variance).
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Figure 6. Speeds of two hammer rams, where the first one displayed on the x-axis is calibrated—without (left) and with
(right) the estimated trend. The changepoint estimate corresponding to the technical issues is depicted by the vertical line.



Mathematics 2021, 9, 89 17 of 25

Both our changepoint tests—Sn = 28.42 and Tn = 127.53—reject the null hypothesis
of a constant linear coefficient between two hammer rams’ speed values at the significance
level of α = 5% (cf. Table 1), indicating a changed performance of the second non-calibrated
hammer ram, although there is no visible change in trend present—the left part of Figure 6.

As an estimate for our change, we obtain τ̂n = 60 (depicted by a vertical line in
Figure 6—right), which corresponds to the 60th measurement of pair of speeds. After this
particular measurement, we have background information that a technical issue appeared
to the second hammer ram—one of its oil tubes started to leak. Our procedure is indeed
capable of detecting and, consequently, estimating the (hardly visible, but present) change-
point in the ratio of the hammer rams’ speeds. In addition, this is done fully automatically
without expert knowledge about the oil tube issue and also without setting tuning param-
eters. Moreover, the estimated ratio via the TLS approach before the change is 1.000891
(the slope of the green line in Figure 6), which basically says that the hammer rams work
approximately in the same way. However, the estimated ratio via the TLS approach after
the change is 0.9941487 (the slope of the red line in Figure 6), which is significantly different
from constant 1 (see a formal statistical test from [22]). In contrast, a significant change in
trend is not detected using the ratio type changepoint test for the regression parameter [48].
A possible reason could be that such a detection approach misleadingly considers the
covariates as error-free (i.e., measured precisely).

Other calibration examples, where our methodology is applicable, can be found in,
e.g., [37] or [38].

6.2. Randomly Spaced Time Series in Insurance

An insurance company records developments of the paid claim amounts coming
from car accidents over time. Two types of claims with respect to car insurance are
considered: material damage and bodily injury. The interest lies in disorder recognition between
aggregated claim amounts paid for these two types of claims comprising two lines of
insurance business.

Two claims (material damage and bodily injury) can come of one car accident and the
corresponding claim amounts are expected to be related. We possess a data set from the
Guarantee Fund of the Czech Insurers’ Bureau for car insurance. The aggregated claim
amounts from the bodily injuries are monitored every time after the aggregated claim
payments from the material damages exceed a threshold of CZK 2.5M (≈ e100,000). This is
performed by the bureau from the beginning of 2018 up to the end of 2019. The observation
times (n = 96) of the cumulative bodily injury claim amounts are random and irregularly
spaced, because these time points are driven by a series of the cumulative material damage
claim amounts.

Identification of structural breaks in the claim amounts and their development helps
us to tie in specific legal, economic, or natural changes to the time epochs in which they
occurred [49–51]. Our task is to test whether there is a common linear time trend of the
cumulative bodily injury claim amounts or this trend has abruptly changed inside the
monitoring regime [52–55]. Both our changepoint tests—Sn = 4.55 and Tn = 22.75—reject
the null hypothesis of a constant linear trend at the significance level of α = 5% (cf. Table 1),
indicating a changed payment development of the bodily injury claims.

As an estimate for the change, we obtain τ̂n = 63 (depicted by a vertical line in
Figure 7), which corresponds to 18 April 2019. The bureau for car insurance set some
regulatory procedures forcing the insurance companies to change their reporting policy
since the second quarter of 2019. This can result in a change of the bodily injury claim
payments’ development and our detection procedures automatically reveal such regime
switching. Additionally to that, Easter 2019 could also contribute to the change in the claim
amounts. For example, Easter customs in the Central Europe and occasional drivers after
the winter period cause more car accidents in general.
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Figure 7. Cumulative claim amounts (y-axis) at unequally spaced non-deterministic time points (x-axis). The detected
changepoint of the time trend is depicted by the vertical line.

The data were firstly re-scaled in order to reach a common empirical variance yielding
satisfiable Assumption D and, then, inversely transformed back. The estimated linear time
trend via the TLS approach before the change is 189, 599.2 (the slope of the green line in
Figure 7) and after the change becomes 211, 885.2 (the slope of the red line in Figure 7).
In contrast, a significant change in trend is not detected using the ratio type changepoint
test for the regression parameter [48]. Again, a possible explanation could be that such
a traditional detection approach misleadingly considers the time points as deterministic
and error-free.

7. Conclusions

Our changepoint problem in linear relations is linearly defined, but comes with
a highly non-linear solution and inference. We have proposed two tests for changepoints
with desirable theoretical properties: The asymptotic size of the tests is guaranteed by
a limit theorem even under non-stationarity and weak dependency; the tests and the
related changepoint estimator are consistent. We are not aware of any similar results even
for independent and identically distributed errors. By combining self-normalization and
the proposed spectral weak invariance principle, there are neither tuning constants nor
nuisance parameters involved in the whole testing procedure. Unknown or changing
covariance structure of the errors is allowed. Therefore, the detection methods are com-
pletely data-driven, which makes this framework effortlessly applicable as demonstrated.
In our simulations, the tests show reliable performance. Practical implementations of
the developed detection techniques are demonstrated on two problems from calibration
and insurance.
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Appendix A. Proofs

Proof of Proposition 1. Let the singular value decomposition of the transformed ‘partial’
data matrix be

[X[nt], Y[nt]]Σ
−1/2 = U(t)Γ(t)V(t)> =

p+1

∑
i=1

ς(t)(i)u(t)(i)v(t)(i)>

for some t ∈ (0, 1]. Please note that we are in a situation of no change in the parameter β.
Bearing in mind Assumptions D and E , Lemma 2.1 in [1] and Theorem 3.1 in [20] provide
that 0 6= vp+1(t)(p+1) (i.e., the last element of the last right-singular vector v(t)(p+1)

corresponding to the smallest singular value) with probability tending to one as n increases.
According to proof of Lemma 4.2 in [1], one gets

1√
n

(
λ[nt] − [nt]σ2

)
=
(

vp+1(t)(p+1)
)2

[a>t ,−1]
{

1√
n
(Dt − E Dt)

}[
at

−1

]
(A1)

+
(

vp+1(t)(p+1)
)2√

n[a>t ,−1]Σ−1/2

[
Ip

β>

]
1
n

Z>[nt]Z[nt][Ip, β]Σ−1/2

[
at

−1

]
, (A2)

where at := (X̃>[nt]X̃[nt] − λ[nt] Ip)−1X̃>[nt]Ỹ[nt] is the TLS estimator for the transformed data

[X̃[nt], Ỹ[nt]] := [X[nt], Y[nt]]Σ
−1/2 and, additionally, Dt := [X̃[nt], Ỹ[nt]]

>[X̃[nt], Ỹ[nt]]. With
respect to [20], we have(

vp+1(t)(p+1)
)2

= 1−
∥∥∥[v1(t)(p+1), . . . , vp(t)(p+1)]>

∥∥∥2

2
→ 1

1 + ‖α‖2
2

almost surely as n → ∞. Moreover,
√

n(at − α) = OP(1) as n → ∞ by [56]. The strong
law of large numbers for α-mixing by [57] together with Theorem 3.1 by [20] lead to
at − α = o(1) almost surely. Since Assumption D holds, the expression in (A2) is oP(1).
Furthermore, the expression on the right hand side of (A1) is o(1) away from

1
1 + ‖α‖2

2
[α>,−1]

{
1√
n
(Dt − E Dt)

}[
α
−1

]
(A3)

as n→ ∞. Hence, the process from the left hand side of (A1) in D[0, 1] has approximately
the same distribution as the process (A3).

Please note that

[α>,−1]Dt

[
α
−1

]
= (Σ̄ε − Σ̄>Θ,εα)2∥∥Y[nt] − X[nt]β

∥∥2
2.

Using the functional central limit theorem for α-mixing by [58] or Corollary 3.2.1 in [59] in
an analogous fashion as in the proof of Theorem 2.3 by [56], one gets{

[α>,−1]
{

1√
n
(Dt − E Dt)

}[
α
−1

]}
t∈[0,1]

D[0,1]−−−→
n→∞

{φ2υW(t)}t∈[0,1]

due to Assumption V .
Similarly for

{
1√
n

(
λ̃[n(1−t)] − [n(1− t)]σ2

)}
t∈[0,1]

and {W̃(t)}t∈[0,1].

Proof of Theorem 1. The SWIP (Proposition 1) and Lemma 1 from [60] in combination
with the continuous mapping device complete the proof.
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Proof of Theorem 2. UnderHA, let us find a lower bound for the smallest eigenvalue of
the positive semi-definite matrix

1
n

Σ−1/2[X, Y ]>[X, Y ]Σ−1/2 =
1
n

[
X̃>X̃ X̃>Ỹ
Ỹ>X̃ Ỹ>Ỹ

]
=:
[

A c
c> d

]
, (A4)

where [X̃, Ỹ ] := [X, Y ]Σ−1/2. With respect to Theorem 1 in [61], we get

λmin

([
A c
c> d

])
≥ d + `

2
−
√

(d− `)2

4
+ c>c, (A5)

where ` is any lower bound on the smallest eigenvalue of the matrix A. Recall that
Assumption E and the proof of Theorem 3.1 by [20] provide

1
n

ε̃> ε̃→ σ2,
1
n

Θ̃> ε̃→ 0,
1
n

Θ̃>Θ̃→ σ2 Ip,
1
n

Z̃> ε̃→ 0,
1
n

Z̃>Θ̃→ 0 (A6)

almost surely as n→ ∞, where [Θ̃, ε̃] := [Θ, ε]Σ−1/2 and

Z̃ := Z[Ip, β]

[
Σ̄Θ

Σ̄>Θ,ε

]
.

By Assumptions C and D, one can obtain

λ(A)min = λmin

(
1
n
(Z̃ + Θ̃)>(Z̃ + Θ̃)

)
→ λmin

(
[Σ̄Θ, Σ̄Θ,ε]

[
Ip
β>

]
∆[Ip, β]

[
Σ̄Θ

Σ̄>Θ,ε

]
+ σ2 Ip

)
= σ2 + η (A7)

almost surely as n→ ∞. Relation (A7) immediately provides a limit of a candidate for `.
Now, (A4) and (A5) lead to

lim inf
n→∞

λmin

(
1
n

Σ−1/2[X, Y ]>[X, Y ]Σ−1/2
)
≥

lim
n→∞

1
n

Ỹ>Ỹ + σ2 + η

2

−

√√√√√(
lim

n→∞

1
n

Ỹ>Ỹ − σ2 − η
)2

4
+ lim

n→∞

∥∥∥∥ 1
n

X̃>Ỹ
∥∥∥∥2

2
. (A8)

Assumptions C, D, and relations (A6) yield

1
n

Ỹ>Ỹ =
1
n

Ỹ>τ Ỹτ +
1
n

Ỹ>−τỸ−τ = (Σ̄>Θ,ε + Σ̄εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε)

+ σ2 + (Σ̄>Θ,ε + Σ̄ε(β + δ)>)∆−ζ(Σ̄Θ,ε + (β + δ)Σ̄ε) + o(1) = κ + σ2 + o(1)

and

1
n

X̃>Ỹ =
1
n

X̃>τ Ỹτ +
1
n

X̃>−τỸ−τ = (Σ̄Θ + Σ̄Θ,εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε)

+ (Σ̄Θ + Σ̄Θ,ε(β + δ)>)∆−ζ(Σ̄Θ,ε + (β + δ)Σ̄ε) + o(1) = ϕ+ o(1)

almost surely as n→ ∞. Thus,
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1
n Ỹ>Ỹ + σ2 + η

2
−

√√√√( 1
n Ỹ>Ỹ − σ2 − η

)2

4
+

∥∥∥∥ 1
n

X̃>Ỹ
∥∥∥∥2

2

=
κ + η −

√
(κ − η)2 + 4ϕ>2 ϕ2

2
+ σ2 + o(1) (A9)

almost surely as n→ ∞. Hence, combining (A8) and (A9) ends up with

lim inf
n→∞

λmin

(
1
n
[X̃, Ỹ ]>[X̃, Ỹ ]

)
− σ2 ≥ lim

n→∞

2{ηκ −ϕ>ϕ}

κ + η +
√
(κ − η)2 + 4ϕ>ϕ

.

Then,
1√
n
|λn − nσ2| a.s.−−−→

n→∞
∞ (A10)

by Assumption C.
With respect to Assumptions D, E , V and according to the underlying proof of

Theorem 1, 1√
n max1≤i<τ

∣∣λi − i
τ λτ

∣∣ and 1√
n maxτ<i≤n

∣∣λ̃i − n−i
n−τ λ̃τ

∣∣ are OP(1) as n → ∞.

Moreover, 1√
n

∣∣λτ − τσ2
∣∣ = OP(1) as n→ ∞ due to Proposition 1.

Please note that there are no changes in the linear parameter corresponding to the
first τ observations as well as to the last (remaining) n− τ observations. Let k = τ. Thus,
underHA,

Sn ≥
∣∣λτ − τ

n λn
∣∣

max1≤i<τ

∣∣λi − i
τ λτ

∣∣+ maxτ<i≤n
∣∣λ̃i − n−i

n−τ λ̃τ

∣∣
≥

1√
n

∣∣∣∣∣λτ − τσ2
∣∣− τ

n

∣∣nσ2 − λn
∣∣∣∣∣

1√
n max1≤i<τ

∣∣λi − i
τ λτ

∣∣+ 1√
n maxτ<i≤n

∣∣λ̃i − n−i
n−τ λ̃τ

∣∣ P−−−→
n→∞

∞,

because of (A10).
Furthermore, again underHA,

Tn ≥
(
λτ − τ

n λn
)2

∑τ−1
i=1

(
λi − i

τ λτ

)2
+ ∑n

i=τ+1
(
λ̃i − n−i

n−τ λ̃τ

)2

≥
1
n

(∣∣λτ − τσ2
∣∣− τ

n

∣∣nσ2 − λn
∣∣)2

1
n ∑τ−1

i=1

(
λi − i

τ λτ

)2
+ 1

n ∑n
i=τ+1

(
λ̃i − n−i

n−τ λ̃τ

)2
P−−−→

n→∞
∞,

because of similar arguments as in the case of Sn.

Proof of Remark 1. It is sufficient to replace Theorem 1 by [61] with Theorem 3.1 by [62]
in the proof of Theorem 2.

Proof of Corollary 1. First of all, let us define β̃ := β + δ,

κ(t) := (Σ̄>Θ,ε + Σ̄εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε) + (Σ̄>Θ,ε + Σ̄ε β̃>)(∆t − ∆ζ)(Σ̄Θ,ε + β̃Σ̄ε),

κ̃(t) := (Σ̄>Θ,ε + Σ̄εβ>)∆−ζ(Σ̄Θ,ε + βΣ̄ε) + (Σ̄>Θ,ε + Σ̄ε β̃>)(∆−t − ∆−ζ)(Σ̄Θ,ε + β̃Σ̄ε),

ϕ(t) := (Σ̄Θ + Σ̄Θ,εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε) + (Σ̄Θ + Σ̄Θ,ε β̃>)(∆t − ∆ζ)(Σ̄Θ,ε + β̃Σ̄ε),

ϕ̃(t) := (Σ̄Θ + Σ̄Θ,εβ>)∆−ζ(Σ̄Θ,ε + βΣ̄ε) + (Σ̄Θ + Σ̄Θ,ε β̃>)(∆−t − ∆−ζ)(Σ̄Θ,ε + β̃Σ̄ε),

η(t) := λmin((Σ̄Θ + Σ̄Θ,εβ>)∆t(Σ̄Θ + βΣ̄>Θ,ε) + tσ2 Ip)− tσ2,

η̃(t) := λmin((Σ̄Θ + Σ̄Θ,εβ>)∆−t(Σ̄Θ + βΣ̄>Θ,ε) + (1− t)σ2 Ip)− (1− t)σ2.
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The estimator can be rewritten as

τ̂n = argmax
1≤k≤n−1

1
n

∣∣λk − k
n λn

∣∣+ 1
n

∣∣λ̃k − n−k
n λ̃0

∣∣
max1≤i<k

1√
n

∣∣λi − i
k λk
∣∣+ maxk<i≤n

1√
n

∣∣λ̃i − n−i
n−k λ̃k

∣∣ . (A11)

We will treat the numerator Nn(k) and the denominator Dn(k) of the above stated ratio
separately. Let us use notations from the previous proofs and let us recall Assumption C, D,
and relations (A6). If [nt] ≤ τ, then

1
n

Ỹ>[nt]Ỹ[nt] = (Σ̄>Θ,ε + Σ̄εβ>)∆t(Σ̄Θ,ε + βΣ̄ε) + tσ2 + o(1)

almost surely as n→ ∞. Otherwise, if [nt] > τ, then

1
n

Ỹ>[nt]Ỹ[nt] = (Σ̄>Θ,ε + Σ̄εβ>)∆ζ(Σ̄Θ,ε + βΣ̄ε) + tσ2

+ (Σ̄>Θ,ε + Σ̄ε(β + δ)>)(∆t − ∆ζ)(Σ̄Θ,ε + (β + δ)Σ̄ε) + o(1)

almost surely as n→ ∞. In both cases, we have

1
n
[X̃[nt], Ỹ[nt]]

>[X̃[nt], Ỹ[nt]]
a.s.−−−→

n→∞

[
ϑ>∆tϑ + tσ2 Ip G

G> (Σ̄>Θ,ε + Σ̄εβ>)∆t(Σ̄Θ,ε + βΣ̄ε) + tσ2

]
= tσ2 Ip+1 + Σ−1/2

[
Ip
β>

]
∆t[Ip, β]Σ−1/2,

where G := (Σ̄Θ + Σ̄Θ,εβ>)∆t(Σ̄Θ,ε + βΣ̄ε). Therefore, for the Frobenius matrix norm ‖ · ‖F,

lim
n→∞

∣∣∣∣∣λmin

(
1
n
[X̃[nt], Ỹ[nt]]

>[X̃[nt], Ỹ[nt]]

)
− [nt]

n
λmin

(
1
n
[X̃, Ỹ ]>[X̃, Ỹ ]

)∣∣∣∣∣
=: λdi f (t) ≤

∥∥∥∥Σ−1/2
[

Ip
β>

]
∆−t[Ip, β]Σ−1/2

∥∥∥∥
F

uniformly in t almost surely, because |λmin(A)− λmin(B)| ≤ ‖A− B‖F due to proof of
Lemma 2.3 in [21].

For k = τ, Proposition 1 together with the continuous mapping theorem yield that the
denominator from (A11)

Dn(τ)
D−−−→

n→∞

φ2υ

1 + ‖α‖2
2

{
sup

0≤t≤ζ

∣∣∣∣W(t)− t
ζ
W(ζ)

∣∣∣∣+ sup
ζ<t≤1

∣∣∣∣W̃(t)− 1− t
1− ζ

W̃(ζ)

∣∣∣∣} =: W,

where the limit W is strictly positive almost surely. We conclude that Nn(τ)/Dn(τ) con-
verge in distribution to the random variable {λdi f (ζ) + λ̃di f (ζ)}/W such that λ̃di f (t) :=

limn→∞ |λ̃[nt] −
n−[nt]

n λ̃0|. For k = [nt] with t > ζ, we obtain

max
1≤i<[nt]

1√
n

∣∣∣∣λi −
i

[nt]
λ[nt]

∣∣∣∣+ max
[nt]<i≤n

1√
n

∣∣∣∣λ̃i −
n− i

n− [nt]
λ̃[nt]

∣∣∣∣
≥ 1√

n

∣∣∣∣λ[nζ] −
[nζ]

[nt]
λ[nt]

∣∣∣∣ ≥ 1√
n

∣∣∣∣∣
∣∣∣∣λ[nζ] − [nζ]σ2

∣∣∣∣− [nζ]

[nt]

∣∣∣∣λ[nt] − [nt]σ2
∣∣∣∣
∣∣∣∣∣

≈
∣∣∣∣∣OP(1)−

√
n

ζ

t

∣∣∣∣λ[nt]

n
− tσ2

∣∣∣∣
∣∣∣∣∣
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≈
∣∣∣∣∣OP(1)− 2

√
n

ζ

t

∣∣η(t)κ(t)−ϕ(t)>ϕ(t)
∣∣

κ(t) + η(t) +
√
(κ(t)− η(t))2 + 4ϕ(t)>ϕ(t)

∣∣∣∣∣ P−−−→
n→∞

∞

according to the proof of Theorem 2 and assumption (10). The convergence holds uniformly
for all t outside any right ε-neighborhood of ζ. It follows that for an arbitrary ε > 0,

max
k:(k−τ)≥nε

Nn(k)
Dn(k)

= OP

(
1√

n inft∈(ζ,1) |η(t)κ(t)−ϕ(t)>ϕ(t)|

)
. (A12)

Similar arguments can be applied in the case t < ζ. Assumption (11) provides, for an
arbitrary ε > 0,

max
k:(τ−k)≥nε

Nn(k)
Dn(k)

= OP

(
ψ̃−1

n

)
. (A13)

Relation (12) is equivalent to the statement that for every ε̃ > 0, there exists M̃ > 0,
such that P[(ψn ∧ ψ̃n)|τ̂/n− ζ| > M̃] < ε̃. Thus, it is sufficient to show for any ε̃ > 0,
there exists M̃ > 0, such that

P

[
max

k:(ψn∧ψ̃n)|k−τ|≥M̃n

Nn(k)
Dn(k)

>
Nn(τ)

Dn(τ)

]
< ε̃. (A14)

By choosing ε = M̃/(ψn ∧ ψ̃n), relations (A12) and (A13) yield

max
k:(ψn∧ψ̃n)|k−τ|≥M̃n

Nn(k)
Dn(k)

= OP

(
1

ψn ∧ ψ̃n

)
. (A15)

Since Nn(τ)/Dn(τ) is bounded in probability, (A15) implies (A14).

Proof of Lemma 1. The relative Weyl theorem [63] applied on the multiplicative perturba-
tion matrix Σ1/2Σ−1/2 provides

|λi − λi| ≤ λi‖Σ−1/2ΣΣ−1/2 − Ip+1‖2, i = 1, . . . , n.

Then, realizing λi = OP(
√

n) as n→ ∞ completes the proof.

Proof of Theorem 3. Since [
˜
Θ,

˜
ε] are the linearly transformed original errors [Θ, ε], the se-

quence {[
˜
Θn,•,

˜
εn]}∞

n=1 is α-mixing with the coefficients α([
˜
Θ◦,•,

˜
ε◦], n) = O(n−1−v) as n→

∞ due to [32]. Moreover, supn∈N E |
˜
Θn,j|4+ω < ∞, j ∈ {1, . . . , p} and supn∈N E |

˜
εn|4+ω <

∞. Then, Assumption E is satisfied for {[
˜
Θn,•,

˜
εn]}∞

n=1 with Σ = Ip+1. Theorem 2 and
Corollary 1 can be applied to [

˜
X,

˜
Y ], where the resulting assertions hold for

˜
λi’s and ˜̃λi’s

instead of λi’s and λ̃i’s, respectively.
Let us realize that

˜
λi = OP(

√
n) as n → ∞. Finally, it is sufficient to employ the

relative Weyl theorem [63] and we get

|λi − ˜
λi| ≤ ˜

λi‖Σ−1/2

~
ΣΣ−1/2 − Ip+1‖2, i = 1, . . . , τ;

|λi − ˜
λi| ≤ ˜

λi‖Σ−1/2

~
ΣΣ−1/2 − Ip+1‖2, i = τ + 1, . . . , n.

Therefore, one can replace
˜
λi’s and ˜̃λi’s by λi’s and λ̃i’s, respectively, in the test

statistics and changepoint estimator.
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