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Abstract
In this study, we present a stochastic programming asset–liability management model which
deals with decision-dependent randomness. The model focuses on a pricing problem and
the subsequent asset–liability management problem describing the typical life of a consumer
loan. Such problems are frequently tackled by many companies, including multinationals.
When doing so, they must consider numerous factors. These factors include the possibility
of their customer rejecting the loan, the possibility of the customer defaulting on the loan
and the possibility of prepayment. The randomness associated with these factors have a clear
relationshipwith the offered interest rate of the loanwhich is the company’s decision and thus,
induces decision-dependent randomness. Another important factor, which plays a major role
for liabilities, is the price of money in the market. This is determined by the market interest
rates. We captured their evolution in the form of a scenario tree. In summary, we formulated
a non-linear, multi-stage stochastic program with decision-dependent randomness, which
spanned the lifetime of a typical consumer loan. Its solution showed us the optimal decisions
that the company shouldmake. In addition,we performed a sensitivity analysis demonstrating
the results of the model for various parameter settings that described different types of
customers. Finally, we discuss the losses caused if companies do not act in the optimal way.
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1 Introduction

Stochastic programming is a quickly developing area of mathematical optimization that is
applied in various fields, especially the area of financial planning and control. One such
application occurred in 1986 when Kusy and Ziemba published their famous paper dealing
with a bank asset–liability model (Kusy and Ziemba 1986). Two years later, Dempster and
Ireland (1988) introduced a differentmodel that focused on the immunisation of liabilities and
for the first time took into account the risks that are associatedwith financial problems. Carino
et al. (1994) presented the very first asset–liability model for an insurance company, which
was later followed by many others. There have also been several applications focused on
insurance companies (Hoyland 1998; Pliska and Ye 2007; Broeders et al. 2009) and pension
funds (Dert 1995; Consigli and Dempster 1998; Geyer and Ziemba 2008; Dupačová and
Polívka 2009); these are the two types of financial institutions where stochastic programming
was used most often.

These works, however, do not exhaust the potential of applications for stochastic program-
ming in asset–liability management. For example, Consigli (2008) investigated the problem
of an individual investor who needed to undertake investment decisions and manage his
consumption. Kopa et al. (2018) analysed the effect of new, modern risk constraints on the
optimal solution as they applied a second-order stochastic dominance constraint. An impor-
tant aspect of the modelling exercise is to focus on the accuracy of model formulation. Vitali
et al. (2017) and Moriggia et al. (2019) paid a lot of attention to this aspect, considering a
variety of investment possibilities. Recently, Consigli et al. (2019) studied optimal decisions
from the household point of view and Zapletal et al. (2019) investigated optimal policies in
emission management of a steel company.

So far, in all the stochastic programming models of asset–liability management that we
have seen, authors look for optimal decisions of a single agent (insurance company, pension
fund, etc) in the market. Such market is always considered large enough to justify assuming
independence of evolving market prices from agent’s strategies, and thus risk sources are
treated as exogenous. In our work, we focus on a stochastic programming formulation of
an asset–liability management problem describing a consumer loan that a company gives
to its customer. This acknowledges a relationship between the two parties. In this situation,
the customer’s behaviour is affected by the company’s actions. This phenomenon is known
as decision-dependent/endogenous uncertainty/randomness within the stochastic program-
ming; it has not yet been considered in stochastic programming models of asset–liability
management. The formulation and the analysis of such a model is the main contribution of
this article.

The issue of endogenous uncertaintywasfirst addressed byPflug (1990)who investigated a
general Markovian process in which states depended on the decision parameter of the model.
In the following years, more models with decision-dependent randomness have emerged;
these can be generally divided into two types. In the first type, decisions taken in the program
help to determine uncertainty in themodel. This case was tackled, for example, by Jonsbraten
et al. (1998), Goel and Grossmann (2004) and Tarhan et al. (2009) who all described models
for finding the optimal strategy in an offshore oil field development plan. The general idea
was that companies could decide to run exploratory analyses on potential oil fields, obtain
a better estimate of how much oil is available and determine where it is more profitable to
set up a plant. In the second type, as is the case of our problem, decisions affect scenario
probabilities. This type of endogenous uncertainty was thoroughly investigated, for example,
in network flows problems (Ahmed 2000; Held andWoodruff 2005; Vishwanath et al. 2004).
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Fig. 1 Economic agents which enter the optimization model

Under this setting, the probabilities of scenarios depend directly on decisions taken and they
can be also considered as variables in the program.

In financial problems, the decision-dependent uncertainty is typically observed within a
bilateral relationship as in our case. One party acts as a price setter and its pricing decision
affects the demand for some good of the second party. In mathematical terms, this can
be translated to observing a change in the underlying probability distribution of the demand
(endogenous randomness). Apart fromdemand distribution, probabilities of some subsequent
events such as default and prepayment can also be affected.Other decisions, such asmarketing
decisions or branding investments, also indirectly affect the company’s books and lead to
decision-dependent uncertainty.

In this paper, we analyse a program describing the lifecycle of a loan which a company
provides to an individual customer. We present the model formulation in detail in Sect. 2.
Among other things, we also discuss what decisions can be taken and how they affect the
uncertainties the company faces. The main decision is the offered interest rate which affects
the probabilities of random events (accepting the loan, prepayment, default). We describe
scenarios of all random processes, their implementation into the program and all constraints
which are part of the model formulation. Thereafter, in Sect. 3, we show the results of this
program for one parameter’s setting to illustrate the optimal decisions and how the loan value
would evolve depending on the company decisions. Furthermore, we discuss the effect of the
customer’s properties on the model solution, especially on the offered interest rate and the
expected value of the loan. We also mention the losses which are incurred by the company
if it does not behave in the optimal way. Our findings are then summarized and concluded in
Sect. 4.

2 Model formulation

2.1 Model environment and objective

First, let us describe the situation and the time-frame on which the optimization model is
built. We consider three economic agents:

– A credit institution operating in the interbank market,
– A company, or lending entity within this problem framework, that will borrow money in

the interbank market and give loans to consumers,
– Customers, or borrowing agents, who through the loan will be in condition to finalize the

purchase of a good.

We illustrate the relationship of these three agents in Fig. 1. The individual customer
approaches the company and asks for a loan. On the other hand, the company borrows
money from the financial market to obtain sufficient funds.

The primary objective of this paper is to construct and analyse an optimizationmodel (often
called a program) which a company can use to determine its decisions. These decisions shall
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be taken so the company maximises the expected value of the loan (the expected profit) at the
agreed loan maturity. More specifically, at every point in time, we define the term value of
the loan as the sum of cash and present value of assets and liabilities resulting from the loan
contract with the customer (see, later, Eq. (14)). Consequently, all the loans from the market
which are used to finance the consumer loan are also included. The value of the loan changes
over time. This depends on the market interest rate evolution and the customer’s behaviour
(possible loan default or prepayment). These factors are, however, not known a-priori, so
they are treated as random.

Next, let us highlight where the main difficulty in the asset–liability stochastic program-
ming model arises. Usually, random effects are assumed to be exogenous. In other words, no
decisions taken by the decisionmaker in the optimizationmodel affect the uncertain elements
entering the model. However, this is not the case in this situation. Here, the company’s initial
decision is to offer the customer a loan with a fixed interest rate. This decision directly affects
the probability of the customer accepting the loan offer. This is a random event (from the
company’s point of view), and it is endogenous—dependent on the initial decision. The prob-
ability of the customer prepaying or defaulting also depends on the offered interest rate. The
strength of this relationship and how this endogenous uncertainty is dealt with is discussed
in detail in Sect. 2.2.

In such loan operations, a common practice is for the lending agencies to borrow in
the market so that they can match asset and liability cash flows from the start of the loan.
However, Rusy and Kopa (2019) showed that such a strategy is not optimal as there are
alternative strategieswhich have better risk properties and higher profitability. For this reason,
we give numerous options to the company on how to form and optimize its liability side. The
fact that we jointly optimize the initial interest rate decision and the company’s borrowings
allows us to consider the different probabilities of cash flows that stem from the decision-
dependent randomness and adjust the company’s borrowing strategy accordingly. This joint
optimization of the pricing problem and the consequent asset–liability problem is a key
feature of the model and the main contribution of this paper. It provides us with the optimal
decisions corresponding to the genuine nature of the problem.

In thiswork,we restrict ourselves to the simplest loan type—anon-collateralized consumer
loan with fixed maturity and fixed interest rate. However, this framework can easily be
extended to a variety of other problemswhich combine pricing decision of somegood together
with subsequent action depending on the demand for the good. There, we have a decision-
dependent randomness between the price and the demand. The framework of stochastic
programming is then flexible enough to take into account numerous features which are
connected to special properties of the good. From the financial perspective, other products
which could be modelled are, for example, mortgages or pension/building savings. There,
the structure of the resulting actions and cash flows is more complex, but the general idea is
the same.

We assume that a customer comes to the company and wants to borrow N0 amount of
money for a period of T months.1 Afterwards, the company offers the customer an interest
rate r for such a loan. We assume this is the only cost the company charges the customer.
Next, the customer decides whether to accept or reject the offer. If the loan is agreed upon,
we proceed further to model the life of the consumer loan, which is repaid regularly each
month t, t = 1, . . . , T by equal instalments.

1 Note that usually the principal N0 is set by the company. However, as it enters the model only as a scale
parameter (multiplier of the objective function), we treat it as fixed—for example, determined by a risk
management unit of the company.
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Themulti-stage stochastic optimization programwill, however, consist only from K+1 ≤
T + 1, K ∈ N stages, 0 = t0 < . . . < tK = T . At these times, scenarios of other random
quantities (interest rate evolution, customer’s loan default or prepayment) will be observed
and the company will be able to make decisions. In other times, no decisions are made; only
instalments are paid. The decisions will define cash flows between the company and the
market and form the liability side of the company. In this paper, we use time index t, t ∈
{0, . . . , T } to denote months within the duration of the loan; index k, k ∈ {0, . . . , K } and
times tk denote decision stages of the optimization program. We have {tk, k = 0, . . . , K } ⊂
{0, . . . , T }. In some cases, indices i, j are also used to iterate over the set of decision times.

2.2 Random elements, scenarios and decision-dependent randomness

In this section, we will describe four random elements which are part of the life of the loan
in the model. They are represented by the following questions:

– Will the customer accept the loan?
– If yes, will he afterwards prepay the loan?
– Will he default on the loan?
– What will be the evolution of market interest rates?

The first three elements describe uncertain customer behaviour. They are all considered
endogenous as they depend on the interest rate decision. The fourth element, which is con-
sidered exogenous, captures the evolution of prices in the financial market.

2.2.1 Probability of accepting the loan

Once the customer is offered a loan with a specific interest rate, there is the possibility that he
will either accept or reject it. The probability that the customer accepts the loan offer and enters
into a contractwith interest rate r is denoted by p(r).This function is customer-specific.Here,
multiple customer-dependent factors can play a role, for example the customer’s knowledge
of market conditions or alternative offers from other market participants. We assume that the
relationship p(r) is estimated by logistic regression, where one of the regressors is the interest
rate offered to the customer. However, in general, any functional form which describes the
desired relationship could be used. We employ a function:

p(r) = exp{b1(b0 − r)}
1 + exp{b1(b0 − r)} = 1

1 + exp{−b1(b0 − r)} , (1)

where b0 and b1 are [customer-dependent] parameters. Parameter b0 represents the rate
at which the customer is indifferent to accepting or rejecting the loan. We will call this
midrate and it holds that p(b0) = 0.5. The second parameter, b1, expresses the customer’s
sensitivity to interest rates as it captures the effect on the probability of accepting the loan
whenwe deviate frommidrate by a certain amount. This can be quantified exactly by the usual
interpretation of logistic regressionmodels.When b1 = 100, an increase of 1% in the offered
rate r implies a decrease in the odds ratio (accept/reject) by a factor of e−b1/100 = e−1.

For a given client, one can estimate the value of midrate and sensitivity by a simple
logistic regression. Consider a dataset where the response is a successful or unsuccessful
offer while regressors are the offered interest rate and customer’s properties. Then, a model
can be formulated, such that the first order terms of customer’s properties define the midrate
and covariate interactions with the interest rate specify the sensitivity relationship. The fitted
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model together with covariates of new customer would generate estimates of parameters b0
and b1.

This random event (accepting/rejecting the loan) is realized before issuing the loan. If the
customer’s decision is to reject, no cash-flows take place and the value of the loan is 0. On
the other hand, if the decision is to accept, then the loan is issued, the company makes an
initial decision on how to borrow at the market and cash-flows are exchanged.

The quantity p(r) captures the essence of endogeneity of this random event. It links the
company’s decision to the random variable’s distribution.

2.2.2 Interest rate evolution

Next, we introduce market interest rates which express the cost of money at the market.
We denote yτ

t to be the annualized, risk-free interest rate with time-to-maturity τ at time t .
For t > 0, this quantity is random. It is considered exogenous because the company is not
thought to be able to affect its evolution. We also denote mτ

t to be the rates for which the
company can borrow from a market participant—a bank. We define: mτ

t = yτ
t + m(τ ).

Quantity m(τ ) represents the spread between the risk-free rates and the rates which the
bank charges the company. This is fixed over time and can be interpreted as the mark-up of
the bank. In other words, we assume that the company has a contract with the bank regarding
floating rate borrowing. In the numerical part, the values ofmark-upm(τ )were set as follows.
We defined m(0) = 0.0048,m(2) = 0.0096 and m(5) = 0.0132, where τ is in years. Values
in between were obtained by linear interpolation.

The risk-free rates yτ
t are modelled by the Hull–White model formulated by Hull and

White (1990), which belongs to the class of one-factor short-rate models introduced by
Vasicek (1977). It is defined by the following stochastic partial differential equation:

drt = (θ(t) − αrt )dt + σdWt ,

where rt stands for short-rate and Wt is the standard Brownian motion. Parameter α stands
for the mean reversion factor and σ summarizes the volatility of the short-rate. Finally, θ(t)
is set such that the observed market prices are fitted perfectly, i.e:

θ(t) = ∂ f M (0, u)

∂u

∣
∣
∣
u=t

+ α f M (0, t) + σ 2

2α

(

1 − e−2αt) ,

where f M (0, t) is the market instantaneous forward rate at time 0 for time t . We employ
the usual starting condition r0 = f M (0, 0) and calculate the yields yτ

t via the formulas
for zero-coupon bond prices (Brigo and Mercurio 2001). Thanks to the fact that the Hull–
White model uses exogenous information in the form of the observed market yield curve,
predictions of yields based on this model are close to market expectations. The calibration
of the model’s parameters was inspired by Chen and Scott (1993) who estimated the Cox–
Ingersoll–Ross model of Cox et al. (1985) by the maximum likelihood method on observed
yields. For this estimation, we used the daily PRIBOR rates observed on the Czech mar-
ket from 28th June 2015 to 1st March 2018. The estimated values of the parameters were
α̂ = 0.1346, σ̂ = 0.006427. Such an estimation procedure is built on numerous model
assumptions. The normality of short-rate movements and their autocorrelation require par-
ticular attention. From acf and pacf plots, we concluded that no autocorrelation is present,
which is a consequence of the fact that the Hull–White model uses the observed market curve
for future predictions. For testing normality, we used the Shapiro–Wilk test, which gave us
a p value of 0.00545. At the usual significance level, we would reject the normality hypoth-
esis. This is mainly due to 4 outliers, which correspond to jumps that are a little larger than
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one would expect in normal distributions. However, because prediction based on this model
looked reasonable, we decided to accept and use it in the scenario generation procedure.

In our model, we capture the interest rate evolution in the form of a regular scenario tree,
often seen in multi-stage stochastic programming, such that in each stage every node has the
same number of successors. Moreover, in such a tree, all scenarios are equiprobable. We will
denote Sk, k ∈ {0, . . . , K } as the set of nodes of the interest-rate tree in a decision stage tk
and ai (sk) as the time ti ancestor of a node sk ∈ Sk, 0 ≤ i < k. We will also denote yτ

tk (sk)
as the risk-free interest rate and mτ

tk (sk) = yτ
tk (sk) + m(τ ) as the rates for the company at

time tk with time to maturity τ in the scenario node sk ∈ Sk .
The scenarios of the short-rate were chosen to be the quantiles of the model-implied

distribution (conditioned on the observed value of the short-rate in the ancestor node). We
derived the term structure yτ

tk (sk) and discount factors P(tk, tk +τ ; sk), τ > 0 from the short-
rate based on well-known formulas for zero-coupon bond prices implied by the Hull–White
model (see, for example, Brigo and Mercurio (2001) for more details).

2.2.3 Probability of default and prepayment

The final two types of randomness which enter the model are loan prepayments and customer
defaults. We treat these effects as endogenous, as they are closely connected to the offered
rate of the loan. This, however, introduces another decision-dependent randomness into the
model, which is present in all stages of the multi-stage program. First, let us describe why
we need to take these effects into account in the model.

Customer defaults are generally considered to be the biggest risk factor affecting the
profitability of a loan. This is simply because it can happen that the customer becomes unable
to fulfil his commitments. Under such an event, the company loses not only the interest rate
charged to the customer but also a part of its principal. Such a proportion is called loss given
default and we include it in the model as a fixed parameter, denoted as lgd and set to a value
of 0.5. If the customer defaults at time tk , the company is modelled to receive (1− lgd) times
the remaining principal as the recovered part of the loan. Scenarios of customer defaults will
be added to the model. Thereafter, we assign them probabilities so they match our initial
assumption about hazard rates h(tk, r)—the probability of default at time tk given that the
loan with interest rate r survived up to time tk−1.

Prepayment means that the customer repays more money than it was scheduled in the
original contract. Usually, such a prepayment comes from one of the two following reasons:

– The customer has spare money which he can afford to use for loan prepayment.
– The customer finds a cheaper loan and he refinances it.

The first reason is unconnected to the decision variables or random quantities in the
problem. On the other hand, the second reason is closely related to the interest rate of the
loan. Naturally, if the price of the loan is too high, the customer is more likely to look for
cheaper options at the market and, thus, more likely to repay the loan earlier. Therefore, this
random effect is also endogenous. Similar to customer defaults, we add scenarios of loan
prepayments into the model and assign them probabilities to match our assumptions about
the hazard rate g(tk, r) of prepayment at time tk of the loan with interest rate r . By loan
prepayment, we mean only full prepayment of the loan, so when it occurs, the remaining
principal is repaid to the company.

Next, let us describe howwe determine the hazard rates for default h(tk , r) and prepayment
g(tk, r). We formulate both the default and the prepayment model on the following ideas:
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Fig. 2 Prepayment and default rates and fitted probabilities in analysed dataset. Dashed lines show the fitted
logistic model

– The probability depends on the interest rate, time to maturity of the loan and the initial
rating of the customer.

– There might be an interaction between the interest rate and the rating of the customer.

From there, we formulate a logistic regression model:

prob(tk, r , ρ) = exp(η)

1 + exp(η)
, η = β0 + β1r + β2ρ + β3tk + β4ρ · r , (2)

where ρ = {1, 2, 3, 4} denotes rating of the customer2 and β0, β1, β2, β3, β4 are parameters.
Symbol prob(tk, r , ρ) stands for the probability that a loan with interest rate r of a customer
with rating ρ will be defaulted/prepaid by the time tk, given that it survived till time tk−1.

We fitted the model to real market data of a Czech company operating in the industry and
tested whether models in (2) could be used to capture the relationship. The data consisted of
all [17 554] consumer loans of the company with maturity between 5 and 6 years active at
one point in time. We had the initial rating of the customer (which was valid when the loan
was agreed) and we observed whether the loans were repaid or defaulted in the following
year. The observed and fitted default and prepayment probabilities are summarized graphi-
cally in Fig. 2, while the estimated parameters are shown in Table 1. For better readability
and interpretation, values of interest rate r are thought to be in percent. To obtain values of

2 We should note that we considered four different ratings of a customer, from the best rating (1) up to the
worst rating (4). A few customers with a rating worse than 4 on the usual scale 1 − 8 were assigned rating 4
for this analysis.
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Table 1 Estimated parameters of models for probability of default and prepayment together with McFadden
R2

Model Symbol R2 β0 β1 β2 β3 β4

Prepayment g(tk , r) 0.053 −1.93∗∗∗ 0.18∗∗∗ −0.17∗ −0.21∗∗∗ −0.028∗∗∗
Default h(tk , r) 0.106 −2.93∗∗∗ −0.033 0.20. −0.22∗∗∗ 0.031∗∗∗

Asterisks denote a statistical significance of the coefficient: ∗∗∗ denotes a p value smaller than 0.001, ∗ smaller
than 0.05, and . smaller than 0.1

g(tk, r) and h(tk, r), one needs to use a given value of rating ρ. The corresponding inter-
cept and coefficients for interest rate and time will be denoted β

g
0 , β

g
1 , β

g
3 and βh

0 , βh
1 , βh

3
respectively.

Let us briefly comment on the interpretation of this model. The coefficient estimates
are very much in-line with our expectations. The parameter estimates show that defaults
occur in early stages of the loan duration and that there is a strong relationship between
interest rate and default for customers with bad rating. On the other hand, for prepayment,
we can see that customers with good rating have high prepayment rate for high interest rate
loans. This interaction also has reasonable interpretation. In some of the plots, the fitted
values seem to be far from the observed quantities. This is partly due to few observations in
these areas (for example, low- and high-interest rate). Finally, we would like to stress that
this analysis was performed in order to get a reasonable (real) estimate of the relationship
between interest rates and default/prepayment probabilities. We could have described the
econometric relationship in more detail. However, this will increase model complexity and
we might lose its computational tractability.

Now, let us discuss how we implement the scenarios of loan prepayments and customer
defaults into the program. First, we already have |SK | interest rate scenarios from the initial
decision period to thematurity of the loan. Take one scenario as fixed and on every node/stage,
loan prepayment or customer default can occur. Note that during the life of the loan, only
one customer default or loan prepayment can take place. Hence, each program scenario can
be defined as a pairing of the interest rate scenario and the event specification. Events are
formulated to be loan prepayments or customer defaults at any stage tk �= t0. For example,
default at stage t2 is considered to be one event. This implies, that we have in total 2 · K
events. We should also mention that loan prepayment at time tK = T corresponds to the loan
being repaid at the initially agreed time.

Mathematically speaking, we define set E as a set of all possible events. For event e ∈ E,

we define t(e) to be the time when the event occurs, d(e) an indicator function which is
1 when the event is customer default and 0 when the event is full prepayment. So, for
example, for the event that the customer defaults at stage t2, we have t(e) = t2, d(e) = 1.
These functions are important for determining scenario probabilities as in (3) (calculated
from conditional probabilities of default and prepayment) and for the specification of the
budget equation given in (11). The scenario of a program is then uniquely defined by a pair
(s, e), s ∈ SK , e ∈ E .

What is important to realize under this parametrisation is that at time tk, we cannot
distinguish between two program scenarios (s, e1), (s, e2), s ∈ SK , e1, e2 ∈ E such that
tk < min{t(e1), t(e2)}. This is simply because by time tk, we do not observe the nature of
event e. Such a property will lead to the inclusion of non-anticipativity constraints into the
program.
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2.2.4 The probabilities of scenarios

In the final part of this section, we will comment on how we calculate probabilities of
scenarios p(s, e, r), s ∈ SK , e ∈ E where r is the initial interest rate decision. These are
obtained iteratively by the multiplication of hazard rates in each node—a probability that
one reached this node multiplied by the probability that from this node, one moves to its
child. For event e ∈ E and time tk ≤ t(e), we use hazard rate h(tk, r) if default occurs:
I[t(e)=tk ] = 1, d(e) = 1, hazard rate g(tk, r) if prepayment occurs: I[t(e)=tk ] = 1, d(e) = 0
and finally hazard rate 1 − h(tk, r) − g(tk, r) if the event is not yet observed: I[t(e)>tk ] = 1.
Otherwise, when I[t(e)<tk ] = 1, probabilities are distributed equally depending only on the
branching of the interest rate tree given by |Sk−1|/|Sk |. The formula is as follows:

p(s, e, r) =
K

∏

k=1

(

I[t(e)=tk ]d(e)h(tk, r) + I[t(e)=tk ]
(

1 − d(e)
)

g
(

tk, r
)

+ I[tk<t(e)]
(

1 − h(tk, r) − g(tk, r)
) + I[tk>t(e)]

)(|Sk−1|/|Sk |
)

,

s ∈ SK , e ∈ E . (3)

We require that ∀k ∈ 1, . . . , K it holds that h(tk, r) ≥ 0, g(tk, r) ≥ 0 and also that
(

1 − h(tk, r) − g(tk, r)
) ≥ 0. Moreover, in the last stage, we must have g(tK , r) =

1 − h(tK , r),∀s ∈ SK . Under such conditions, the probabilities p(s, e, r) of scenarios are
non-negative and sum up to one for all values of interest rate decision r .

The Eq. (3) provides another link between the decision variable r and scenario probability.
First, we have a model measuring the effect of the interest rate decision on the probability of
moving from each node to its successor as in (2). Then, we calculate the probability of each
scenario bymultiplication of the hazard rates. Here we use Bayesian conditional probabilities
and the Bayes’ theorem. This captures the effect of the decision-dependent randomness in
defaults and prepayments into the multi-stage program.

2.3 Stochastic programmingmodel formulation

In this section, we will complete the formulation of the asset–liability stochastic program-
ming model. We have already introduced the interest rate decision r and the probability of
accepting the loan p(r). We described the time structure of the model—we have months
t, t ∈ {0, . . . , T },where T is the maturity of the loan, and decision times tk, k ∈ {0, . . . , K }.
See Sect. 2.1 for more details.

Scenarios are defined as a pair (s, e), s ∈ SK , e ∈ E, where s captures the interest rate
evolution and e the event which realizes on the side of the customer. For a scenario (s, e) and
offered interest rate r we have the scenario’s probability p(s, e, r), see Sect. 2.2.

In the next part, we will describe the evolution of the principal of the loan (Sect. 2.3.1) and
define how the company can borrow and lendmoney in the financialmarket (Sect. 2.3.2) at the
prevailing interest rates. Apart from defining which decisions can be made by the company,
we will also derive quantities (such as income at given time and scenario) corresponding to
the cash-flows between the company and the market.

In Sect. 2.3.3, we introduce the current account Eq. (11), which links the company’s cash-
flows with both the customer and the market. Other constraints, such as the non-anticipativity
constraints, are also introduced. All the decisions, quantities and equations are then summa-
rized in Sect. 2.3.4, where the entire model is presented in the compact form.
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2.3.1 Loan instalment and principal

First, we calculate the value of a single instalment π. This is constant for the duration of
the loan. It depends on the interest rate decision r and it is calculated as in Eq. (4). Next,
we denote Nt , t = 1, . . . , T , the principal which stays on the account after payment of the
instalment in month t . The interest credited from month t − 1 to t is equal to Nt−1 · (r/12),
while the amortization is π − Nt−1 · (r/12).We can also determine the value of N1 and other
principal amounts Nt , t = 1, . . . , T .

N0 =
T

∑

t=1

π

(1 + r/12)t
⇒ π = N0(r/12)

(

1 − (1 + r/12)−T
)−1

, (4)

Nt = N0

(

1 − (1 + r/12)t − 1

(1 + r/12)T − 1

)

, t = 1, . . . , T . (5)

The principal behaves as we calculated only in the case when the loan is repaid in the
way as agreed at the beginning of the contract. In case of a default of the customer or a full
prepayment of the loan, the evolution is different. If default occurs at time tk, the company
is thought to receive lgd · Ntk−1 at time tk, while no cash-flows are exchanged between the
consumer and the company inmonths between decision stages tk−1 and tk .When prepayment
occurs, the company receives the remaining principal Ntk .

2.3.2 Cost of financing the loan

Another aspect which needs to be considered is the cost of financing such a loan. To obtain
sufficient funds, the company could enter exactly the same contract with themarket, a practice
often seen in the industry. Rusy and Kopa (2019) showed that such a simple approach is
not efficient. Hence, we go beyond it and give the company many possibilities to form its
liability side, so the company can find the optimal financing strategy. Consider now two
time instances ti and t j , ti < t j ≤ TK of the program. At time ti , in each node of every
scenario (si , e), si ∈ Si , e ∈ E, i = 0, . . . , K −1, the company will have two possibilities of
borrowingmoney from themarket. It could borrow from ti to t j and repay themoneymonthly
with regular instalments (typically funded by the loan with matched dates) or reimburse all
costs at the expiry. We will denote such amounts as uti ,t j (si , e) and vti ,t j (si , e) respectively.
We can calculate the amount uti ,t j (t; si , e) repaid at time t, ti < t ≤ t j from a loan uti ,t j (si , e)
as

uti ,t j (t; si , e) = uti ,t j (si , e)
∑t j−ti

τ=1

(

1 + mτ
ti (si )/12

)−τ
, t = ti + 1, . . . , t j . (6)

On the contrary, at time t j , the company pays back vti ,t j (t j ; si , e) such that

vti ,t j (t j ; si , e) = vti ,t j (si , e)
(

1 + m
t j−ti
ti (si )/12

)t j−ti
. (7)

We also make it possible for the company to invest spare money and gain interest. Such an
opportunitymay arise, for example,when the client unexpectedly prepays the loan.Wedenote
wti ,t j (si , e) as the amount of money lent to others for the market risk-free yield y

t j−ti
ti (si ).

This money will be repaid at time t j , as the company would receive amount wti ,t j (t j ; si , e) :

wti ,t j (t j ; si , e) = wti ,t j (si , e)
(

1 + y
t j−ti
ti (si )/12

)t j−ti
. (8)
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These decisions allow the company to freely initiate numerous contracts. However, we still
require the company tomeet all obligations fromall previous decisions—i.e. there is no option
for prepayment on the company’s side. This is summarized in the following equations, which
express both the amount of the company’s income (I ) and expenditure (J ) at time instance
tk, k = 0, . . . , K and node (sk, e), sk ∈ Sk, e ∈ E from the financial market. These are:

Itk (sk, e) =
∑

ti :ti<tk

wti ,tk (tk; ai (sk), e) +
∑

t j :tk<t j

utk ,t j (sk, e) +
∑

t j :tk<t j

vtk ,t j (sk, e), (9)

Jtk (sk, e) =
∑

t j :tk<t j

wtk ,t j (sk, e) +
∑

t,ti ,t j :
ti≤tk−1<t≤tk≤t j

uti ,t j (t; ai (sk), e) +
∑

ti :ti<tk

vti ,tk (tk; ai (sk), e). (10)

In the income Eq. (9), we sum themoney returned from loans provided to other institutions
operating in the interbank market maturing at time tk with the inflows from loans provided
to the company by the market in that scenario. In the expenditures Eq. (10), the company
needs to pay instalments from loans provided by the market in previous times and also pay
the money lent to the market in the given scenario.

The mismatch between the assets and liabilities could cause duration gaps in the optimal
solution. Such a portfolio composition may be considered risky and volatile. This property
can be controlled by introducing various risk constraints restricting the space of the decision
vector in the model. This is, however, a well-studied area of stochastic programming and it
goes beyond the aims and objectives of this paper.

2.3.3 Constraints and objective function

We continue with the specification of the remaining constraints implemented in the model.
Let us denote Btk (sk, e) as the amount of money the company has in its account immediately
after time tk in scenario (sk, e) and Ctk as the company’s operating costs of the loan from
time tk to tk+1. We have:

Btk (sk, e) = Btk−1(ak−1(sk), e) − Ctk + Itk (sk, e) − Jtk (sk, e) − I[k=0]N0

+ I[tk<t(e)](tk − tk−1)π + I[tk=t(e)]d(e) · lgd · Ntk−1

+ I[tk=t(e)](1 − d(e))
(

(tk − tk−1)π + Ntk

)

, (11)

for k = 0, . . . , K , where Bt−1 = 0, and also CtK = 0. The relationship on the first line of
(11) expresses the initial exchange of the principal and the cash-flows between the bank and
the company. On the second and the third line, the amount of funds the company receives
from the customer in different stages under the scenario e ∈ E is described. The indicator
functions mean the same as described in Sect. 2.2.4.

The definition of the company’s cash account brings us to a very natural survival condition
such that the company’s cash account must not be lower than 0.We require this only in stages
from 0, . . . , K −1 as, in the last stage, the loan is concluded and we look at the final balance,
its performance through its life and asses its profitability. We require:

Btk (sk, e) ≥ 0, e ∈ E, sk ∈ Sk, k = 0, . . . , K − 1. (12)

Next, we move to the cash-flows which take place between decision stages. The company
has to make sure it has enough money to cover its expenditures up to the next decision stage.
Such a liquidity constraint can be implemented only by checking whether the company has
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enough funds in the month before the next decision stage as all the cash-flows in between
the decision stages are the same every month. The constraint is as follows:

0 ≤ Btk (sk, e) −
∑

t,ti ,t j :
ti≤tk<t<tk+1≤t j

uti ,t j (t; ai (sk), e) + I[tk<t(e)](tk+1 − tk − 1)π,

k = 0, . . . , K − 1. (13)

The next step is to express the value of the loan in each node. Such a value is calculated
as the sum of discounted cash-flows from loans running at the given time. Let us denote
P(tk, tl ; sk) as the discount factor from time tk to time tl at a node sk ∈ Sk . For easier
formulation, we divide payments between assets Atk (sk, e) and liabilities Ltk (sk, e). These
can be calculated as follows:

Atk (sk, e) =
∑

ti ,t j :
ti≤tk<t j

P(tk, t j ; sk)wti ,t j (t j ; ai (sk), e) + I[tk<t(e)]
∑

t :tk<t≤T

P(tk, t; sk)π,

Ltk (sk, e) =
∑

t,ti ,t j :
ti≤tk<t≤t j

P(tk, t; sk)uti ,t j (t; ai (sk), e) +
∑

ti ,t j :
ti≤tk<t j

P(tk, t j ; sk)vti ,t j (t j ; ai (sk), e).

Assets are calculated as the sum of discounted cash-flows stemming from loans provided
to the market and payments the customer is yet to make—before the event e is observed. For
liabilities, we total all instalments which the company is yet to make. The difference between
values of assets and liabilities (the asset–liability gap) together with the amount of money
in the current account Btk (sk, e) gives us the value of the portfolio Vtk (sk, e) at node (sk, e).
This reads as:

Vtk (sk, e) = Btk (sk, e) + Atk (sk, e) − Ltk (sk, e). (14)

In the final stage, whenwe have no running contracts, this turns into the net income—the total
loan profit. This leads us to the formulation of the objective function f (r , u, v, w), which
expresses the value of the loan at the final time horizon. We have:

f (r , u, v, w) = p(r) ·
∑

sK∈SK ,e∈E
p(sK , e, r)VtK (sK , e), (15)

where variables u, v, w symbolically stand for the sets of decision variables as defined above.
In (15), we weigh each scenario according to its probability p(sK , e, r) and we multiply the
entire sum by the probability p(r) that the loan is agreed to.

To complete the model formulation, we need to specify the final set of constraints. This
will consist of the already-mentioned non-anticipativity constraints, as we need to make sure
that the decisions of the company in times and scenarios where the event has not yet been
observed are the same. We impose:

uti ,t j (si , e1) = uti ,t j (si , e2), vti ,t j (si , e1) = vti ,t j (si , e2),
wti ,t j (si , e1) = wti ,t j (si , e2),

∀si ∈ Si , e1, e2 ∈ E : ti < min{t(e1), t(e2)}, t j > ti , i = 0, . . . , K .

(16)

Finally, we would like to comment on model limitations. The model is specifically
designed to capture the relationship between an individual person and the lending com-
pany. For other borrower-lender relationships, the model would need to be slightly adjusted.
For example, for peer-to-peer lending, the liability side would need to be formulated differ-
ently, as individual people usually do not have the borrowing options that are specified in the
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model. On the other hand, the borrowing of small companies also has its specifics. Further-
more, individual approaches and a more detailed analysis of the relevant data are necessary,
especially for larger loans.

2.3.4 Stochastic programmingmodel formulation

Let us now summarize the decision variables and present the complete program. We have
months t, t ∈ {0, . . . , T } and decision times tk, k ∈ {0, . . . , K }. In the first decision stage
t0, the company offers a loan to the customer. If it is accepted, the company borrows money
at the market at observed (known) interest rates. In the next decision stages (t1, . . . tK−1),
we model the evolution of interest rates by the interest rate tree, where at decision time tk
we have a set of nodes Sk . Finally, in the last stage tK , no decisions are made as we only
evaluate the final position at the end of the loan contract. Time ti ancestor of a node sk, i < k,
is denoted as ai (sk). Set SK denotes all final-stage nodes and, hence, also denotes interest
rate scenarios. In these future stages (tk, k > 0), the rate of the consumer loan does not
change. We only evaluate all contracts of the company, which can also initiate new contracts
at a price determined by the interest rates in the given scenario. Set E describes all events
which can happen to the customer. We have functions d(e) identifying whether it is default
or prepayment and t(e) specifying at which decision stage it is observed. These are important
mainly for calculation of scenario probabilities and specification of cash flows between the
company and the customer in different stages. Finally, the pair (sK , e), sK ∈ SK , e ∈ E
denotes the program scenario. We have introduced four types of decisions over which we
optimize:

– r—the interest rate decision

For times ti , t j , i < j ∈ 0, . . . , K and each node (si , e), si ∈ Si , e ∈ E :
– uti ,t j (si , e)—amount borrowed at ti , repaid monthly with maturity t j
– vti ,t j (si , e)—amount borrowed at ti , repaid in total at time t j
– wti ,t j (si , e)—amount lent at ti , repaid in total at time t j

We also defined the following quantities:

– b0, b1—midrate and interest rate sensitivity of the customer
– p(r)—probability of accepting the loan by the customer
– h(tk, r)—hazard rate for default of the customer at tk with rate r
– βh

0 , βh
1 , βh

3—coefficients for logistic regression model for h(tk, r)
– g(tk, r)—hazard rate for loan prepayment at tk with rate r
– β

g
0 , β

g
1 , β

g
3—coefficients for logistic regression model for g(tk, r)

– p(sK , e, r)—probability of scenario (sK , e), if loan with interest r is agreed
– π—instalment of the consumer loan
– Nt—the principal remaining at time t from the consumer loan
– yτ

t ,mτ
t —risk-free rates and rates the company pays for loans at the market at time t with

time-to-maturity τ

– uti ,t j (t; si , e)—amount repaid at time t from loan uti ,t j (si , e)
– vti ,t j (t j ; si , e)—amount repaid at t j from loan vti ,t j (si , e)
– wti ,t j (t j ; si , e)—amount repaid at t j from loan wti ,t j (si , e)
– Itk (sk, e)—income on the market side at tk, node (sk, e)
– Jtk (sk, e)—expenditures on the market side at tk, node (sk, e)
– Ctk—operating costs of the loan from time tk to time tk+1
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– Btk (sk, e)—amount on current account at tk, node (sk, e)
– Atk (sk, e)—value of assets at tk, node (sk, e)
– Ltk (sk, e)—value of liabilities at tk, node (sk, e)
– Vtk (sk, e)—value of the loan at tk, node (sk, e)

From here, we formulate the asset–liability multi-stage stochastic program as:

max
r ,u,v,w

p(r) ·
∑

sK∈SK ,e∈E
p(sK , e, r)VtK (sK , e),

s.t. p(r) = 1

1 + exp{−b1(b0 − r)} ,

h(tk, r) = 1

1 + exp{−(βh
0 + βh

1 r + βh
3 tk)}

,

g(tk, r) = 1

1 + exp{−(β
g
0 + β

g
1 r + β

g
3 tk)}

, k = 1, . . . , K ,

p(sK , e, r) =
K

∏

k=1

(

I[t(e)=tk ]d(e)h(tk, r) + I[t(e)=tk ]
(

1 − d(e)
)

g
(

tk, r
)

+ I[tk<t(e)]
(

1 − h(tk, r) − g(tk, r)
) + I[tk>t(e)]

)(|Sk−1|/|Sk |
)

,

sK ∈ SK , e ∈ E,

π = N0(r/12)
(

1 − (1 + r/12)−T
)−1

,

Nt = N0

(

1 − (1 + r/12)t − 1

(1 + r/12)T − 1

)

, t = 1, . . . , T ,

uti ,t j (t; si , e) = uti ,t j (si , e)
∑t j−ti

τ=1

(

1 + mτ
ti (si )/12

)−τ
, t = ti + 1, . . . , t j ,

vti ,t j (t j ; si , e) = vti ,t j (si , e)
(

1 + m
t j−ti
ti (si )/12

)t j−ti
,

wti ,t j (t j ; si , e) = wti ,t j

(

1 + y
t j−ti
ti (si )/12

)t j−ti
, i, j = 0, . . . , K , i < j,

Itk (sk, e) =
∑

ti :ti<tk

wti ,tk (tk; ai (sk), e) +
∑

t j :tk<t j

utk ,t j (sk, e) +
∑

t j :tk<t j

vtk ,t j (sk, e),

Jtk (sk, e) =
∑

t j :tk<t j

wtk ,t j (sk, e) +
∑

t,ti ,t j :
ti≤tk−1<t≤tk≤t j

uti ,t j (t; ai (sk), e) +
∑

ti :ti<tk

vti ,tk (tk; ai (sk), e),

Btk (sk, e) = Btk−1(ak−1(sk), e) − Ctk + Itk (sk, e) − Jtk (sk, e) − I[k=0]N0

+ I[tk<t(e)](tk − tk−1)π + I[tk=t(e)]d(e) · lgd · Ntk−1

+ I[tk=t(e)](1 − d(e))
(

(tk − tk−1)π + Ntk

)

,

Atk (sk, e) =
∑

ti ,t j :
ti≤tk<t j

P(tk, t j ; sk)wti ,t j (t j ; ai (sk), e) + I[tk<t(e)]
∑

t :tk<t≤T

P(tk, t; sk)π,

Ltk (sk, e) =
∑

t,ti ,t j :
ti≤tk<t≤t j

P(tk, t; sk)uti ,t j (t; ai (sk), e) +
∑

ti ,t j :
ti≤tk<t j

P(tk, t j ; sk)vti ,t j (t j ; ai (sk), e),

Vtk (sk, e) = Btk (sk, e) + Atk (sk, e) − Ltk (sk, e), k = 0, . . . , K , sk ∈ Sk, e ∈ E,
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Btk (sk, e) ≥
∑

t,ti ,t j :
ti≤tk<t<tk+1≤t j

uti ,t j (t; ai (sk), e) − I[tk<t(e)](tk+1 − tk − 1)π,

Btk (sk, e) ≥ 0, k = 0, . . . , K − 1, sk ∈ Sk, e ∈ E,

uti ,t j (si , e1) = uti ,t j (si , e2), vti ,t j (si , e1) = vti ,t j (si , e2),

wti ,t j (si , e1) = wti ,t j (si , e2),

i, j = 0, . . . , K , i < j, si ∈ Si , e1, e2 ∈ E : ti < min{t(e1), t(e2)}.

Note especially the first four equations in the model definition, which capture the endo-
geneity in the random variables induced by the initial interest rate decision r .There is another
non-linearity in the program in the equations for π and Nt . The other equations form a usual
asset–liability multi-stage stochastic program.

3 Numerical results

In this section, we present the results of the model. We focus on how decision-dependent
uncertainty and the parameters associated with it affect the model solution, especially the
interest rate decision. We also discuss the losses connected to offering a non-optimal interest
rate for the loan.

For this model, we set the notional to be N0 = 50,000 CZK with maturity T = 5 years.
We set decision stages to be at the end of each year (K = 5). The branching of the interest
rate tree was chosen to be 5 − 4 − 3 − 2 − 1, leading to |SK | = 120 interest rate scenarios.
There is no branching to the final stage, as no decision is made there and we only evaluate the
final value of a loan. Given that we have 5 “future” decision stages and that, in each stage,
we can have default or prepayment, we have a total of |E | = 2 · K = 10 events leading up
to |SK | · |E | = 120 · 10 = 1200 scenarios.

The program was written in GAMS and solved by CONOPT3 on a standard laptop (Intel
Core i5 2.60 GHz, 8GB RAM). Scenario generation and results’ analysis were performed
in R. The model itself had 58690 variables and 45619 constraints with 322783 Jacobian
elements, 4989 of which were non-linear. The Hessian of the Lagrangian had 1 element on
the diagonal, 4250 elements below the diagonal and 3052 non-linear variables.

3.1 Model solution

Here, we will give a detailed description of the solution and its properties for a single model.
For this purpose, we chose parameter values as midrate b0 = 0.14, interest rate sensitivity
b1 = 100 and rating ρ = 2. The optimal solution of the program was to offer the customer
a rate r = 12.24%, with the probability of accepting the loan as p(r) = 0.853. The optimal
borrowing and lending strategy of the company was to close only one-year loans. If spare
money is available, then the company should lend to themarket for the longest period possible
(until the final time horizon). That is due to interest rate tree having relatively constant
expected future rates and also because the shorter the loan, the cheaper. If the rates were,
for example, increasing, the company would tend to close longer loans with the market. The
optimal value of the program showed that expected profit from the loan was 7392 CZK on the
considered 50000 CZK loan. This approximates to an annual gain of 0.028 CZK per 1 CZK
borrowed. However, note that this depends greatly on the characteristics of the customer.
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Fig. 3 Interest rate and the optimal loan value evolution in time

To analyse the results, we investigated loan performance in different interest rate scenarios
for different events. First, we divided interest rate scenarios into five groups—purple, blue,
green, yellow and red—depending on their first-stage node (see top-left figure in Fig. 3). This
will help us to illustrate the dependency of the optimal loan value on interest rate evolution.
We looked into performance when the customer complied with the original terms of the loan.
Because of the one-year borrowing strategy, the company profits on an interest rate decrease
and it loses money when the interest rate increases. However, it is also able to use a high
(purple) interest rate environment to compensate for the initial loss by lending money earned
from the loan in order to earn high interest in latter stages of the loan. The bottom figures
in Fig. 3 show the performance of a loan when it is fully repaid/defaulted at the end of the
first year. One can see that a high interest rate environment is preferred for loan prepayment
because the company can then reinvest money for higher interest. It is the complete opposite
for the case of customer defaults. Then, the company is required to borrow additional money
to finance its liabilities and this costs more in an environment with higher interest rates.

We also shortly investigated sensitivity on the mark-up m(τ ), which the market charges
the company. Our hypothesis was that increasing the mark-up increases the costs of the loan
for the company and hence, “not accepting” the loan is relatively less expensive. This should
lead to higher interest rate decision. However, the company would not increase the interest
rate by the same margin as the client would be discouraged from entering the loan. This
was confirmed by the program, as when we set the mark-up twice the analysed value, the
objective value of the program decreased to 6725 CZK and the optimal offered interest rate
was 12.34% with p(r) = 0.840.

A question arises about what the added value of the inclusion of decision-dependent
randomness is. First, note that it is not possible to formulate the model without decision-
dependent randomness in the probability of accepting the loan, as this would not really make
sense. Therefore, we have solved a model without decision-dependent randomness in default
and prepayment. There, the results depend heavily on the strength of the relationship between
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the offered interest rate and the default by the customer. For our particular case, the objective
value of the non-decision-dependent randomness model was 7348 CZK, which means a
difference of 44 CZK. However, for ratings 3 and 4, the difference was 2209 and 5635 CZK
respectively. From this, we can conclude that it is advantageous to reflect the relationship,
especially in cases where the initial decision has a greater impact on the random variable.

The framework we have introduced allows us to take into account all the elements of
the life of a consumer loan (customer properties, event probabilities, interest rate evolution,
etc.), assess their costs depending on the company’s decisions and then select the optimal
ones. Division of this joint optimization into sub-problems is a simplification which does
not produce accurate results. For example, if the company would be forced to replicate the
customer’s loan at the market, then, it would pay more interest than it would be required for
the case of customer’s prepayment. This higher cost of prepayment would make the company
conservative and cause them to offer rate lower than the optimal one.

3.2 Sensitivity analysis

In this section, we will investigate the behaviour of the optimal decisions and optimal value
of the model when we modify the characteristics of the customer. Parameters ρ and b1 are of
the main interest, as they capture the decision-dependent randomness in the model. We will
look into how the offered interest rate depends on the probability distribution of accepting
the loan. Moreover, we will analyse how much the company loses when it makes a wrong
decision regarding the offered interest rate. This will be studied for all possible values of the
rating.

We consider rating ρ = {1, 2, 3, 4}, which defines the probability of default and pre-
payment as given in (2) and (3). Then, we specify the probability of accepting the loan by
parameters midrate b0 and interest rate sensitivity b1, as described in Sect. 2.2.1. Interest rate
sensitivity is the parameter which captures the strength of decision-dependent randomness in
the probability of accepting the loan.We see that a higher value of b1 implies that the customer
ismore sensitive—hehas good information about currentmarket conditions and any deviation
from the midrate means either a large increase or a large decrease in the probability of accept-
ing the loan. Midrates are considered to be from a sequence {0.1, 0.12, 0.14, 0.16, 0.18},
while sensitivities will take on values of {25, 35, 50, 75, 100, 125, 150, 175, 200}.

In Figs. 4 and 7, 9, 11 and 13 in Sect. 5 of the Appendix, we show the results of the model
for each midrate, each interest rate sensitivity and each rating listed above. The figures report
the results of runs of the program with a common midrate and consist of four plots. First,
in the top-left one, we show logistic curves which are generated by the pair b0 and b1.
There, one can note that all the curves intersect at one point—the common midrate with
50% probability. Second, in the top-right plot, we show how the optimal interest rate varies
for different ratings across all sensitivity values. Finally, in the bottom two figures, the loan
probability (probability that the customer accepts the offered interest rate) and the objective
value of the program as given by the optimal solution are shown.

From there, we can observe several properties of the optimization problem:

– It is always more profitable to have a consumer with a better rating.
– A consumer with a better rating gets better rates from the company.
– The higher the interest rate sensitivity b1, the higher the loan probability. This is simply

because it is less costly to ensure the customer has a greater probability of accepting the
loan.
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Fig. 4 Sensitivity analysis results for midrate 0.1

– The objective function is not monotone in b1. For some settings (see Fig. 4 for midrate
0.1), the company makes money on the fact that the customer is willing to accept higher
rates.

We can see that all these findings have real application which is required for any practical
use of the model. It is clear that the shape of the “probability of accepting the loan” curve
is absolutely crucial for the model to produce the most realistic results. We believe that the
set of curves we chose approximate most of the options which can practically happen. In
the end, only local properties of the curve around the “almost optimal rate” are what matters
most.

We also investigated how important it is for the company to set the interest rate correctly.
In other words, how much the company loses when it offers a non-optimal interest rate to
the customer. To answer this question, we present Fig. 5, which depicts the dependence of
the objective value of the program when fixing the interest rate r and also the interest rate
sensitivity b1 on certain values. The figure is given for a customer with midrate b0 = 0.1 and
rating 2. Figures for other midrates are presented in Sect. 5 of the Appendix.

The conclusion which we obtain from Fig. 5 is that the difference between objective
values of the optimal solution and a solution with fixed r depends greatly on the interest rate
sensitivity of the customer. It is apparent that when the customer is sensitive (large b1) it is
extremely important to “hit” the optimal rate with the offer, otherwise the company loses
a significant amount of money. What can also be seen from Fig. 5 is that it is more costly
to offer a higher interest rate than a lower interest rate compared to the optimal rate. The
potentially missed opportunity on a loan has greater impact on the objective than smaller
revenue from a loan with a lower interest rate.

In order to quantify the loss which is incurred by offering a non-optimal interest rate, we
present Table 2, 3, 4, 5 and 6. Here, we show for each considered customer, the loss incurred
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Fig. 5 Contour plot constructed from objective values of the program when fixing offered interest rate r for
different values of b1

Table 2 Differences in objective function for±1% change in offered rate against the optimal value for midrate
10%

Rating → b1 ↓ Absolute (CZK) Relative (%)

1 2 3 4 1 2 3 4

−1% 25 66 62 57 52 1.9 2 2 2.2

35 107 102 95 86 3.2 3.4 3.7 4.1

50 177 169 158 142 5.3 5.8 6.4 7.3

75 296 286 272 250 8.2 9.1 10.5 12.8

100 401 391 377 353 10.3 11.6 13.7 17.3

125 489 481 467 445 11.8 13.4 16 20.7

150 564 557 544 522 13 14.8 17.7 23.2

175 628 621 608 588 13.9 15.8 19 25

200 683 676 663 643 14.6 16.6 20 26.4

+1% 25 57 54 50 44 1.7 1.7 1.8 1.8

35 95 89 81 70 2.9 3 3.2 3.3

50 163 151 136 117 4.9 5.1 5.5 6

75 304 282 252 211 8.4 9 9.8 10.8

100 472 439 392 327 12.1 13 14.3 16.1

125 666 619 552 460 16.1 17.3 19 21.4

150 881 819 730 605 20.2 21.7 23.8 26.9

175 1117 1037 923 761 24.6 26.4 28.9 32.4

200 1372 1270 1128 927 29.3 31.2 34 38

123



Annals of Operations Research (2021) 299:241–271 261

Table 3 Differences in objective function for±1% change in offered rate against the optimal value for midrate
12%

Rating → b1 ↓ Absolute (CZK) Relative (%)

1 2 3 4 1 2 3 4

−1% 25 75 72 68 63 1.6 1.7 1.8 1.9

35 125 120 112 103 2.7 2.8 3 3.3

50 200 195 186 173 4.1 4.4 4.8 5.4

75 319 314 304 289 5.9 6.4 7.2 8.4

100 423 417 406 391 7.2 7.9 8.9 10.5

125 511 504 494 478 8.2 9 10.2 12.1

150 586 580 568 552 9 9.8 11.1 13.3

175 649 642 631 614 9.6 10.5 11.9 14.2

200 703 697 685 668 10.1 11.1 12.6 14.9

+1% 25 69 65 61 55 1.5 1.5 1.6 1.7

35 115 109 101 91 2.5 2.6 2.7 2.9

50 200 190 176 157 4.1 4.3 4.6 4.9

75 370 353 328 294 6.8 7.2 7.8 8.5

100 569 544 509 458 9.7 10.3 11.1 12.3

125 797 764 713 643 12.8 13.6 14.7 16.3

150 1053 1008 943 849 16.2 17.1 18.5 20.4

175 1341 1282 1196 1076 19.9 21 22.6 24.9

200 1655 1581 1472 1321 23.9 25.2 27 29.6

by missing the optimal interest rate by ±1%—i.e. by ±100 bps. From an initial glance, we
can learn that the losses increase with the value of interest rate sensitivity. This means the
more sensitive a customer is, the more careful the company should be with its offer. We can
also see the effect of the rating. Here, absolute costs are greater with a better rating. On the
contrary, relative costs increase with lower ratings. This is due to the smaller objective value
of a loan for worse customers. The tables also confirm that it is generally better to offer
lower rates than higher rates, which is something we explored in the previous paragraph. We
also compare losses across midrates. Here, we see that they become larger with increasing
midrate in absolute values, but the opposite is true in relative terms. This imbalance is due
to the absolute change of 1% which is applied. This has a stronger relative effect for lower
midrates. However, the fact that we “play” for more money for higher midrates implies a
greater absolute effect there.

The relationship between the loss incurred to the company and the distance of the offered
interest rate from the optimal value can be exploited in more detail in Fig. 6. Here, one can
see the effect of rating, interest rate sensitivity, midrate and the distance of the offered rate
from the optimal decision. We can draw a similar conclusion as that from the numbers in
Table 2; it is more costly to offer a higher interest rate than a lower one and the loss depends
largely on the interest rate sensitivity of the customer. Moreover, we can see that the loss
appears to be concave in distance from the optimal interest rate decision, meaning the loss
increases with increasing rate when moving away from the optimal decision.

In summary, we investigated the effect of customer’s properties such as the expected
offered rate, interest rate sensitivity and credit quality on a loan provided by a company.
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Fig. 6 Comparison of losses to the company caused by not offering optimal interest rate to the customer
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Table 4 Differences in objective function for±1% change in offered rate against the optimal value for midrate
14%

Rating → b1 ↓ Absolute (CZK) Relative (%)

1 2 3 4 1 2 3 4

−1% 25 84 82 78 73 1.4 1.5 1.6 1.7

35 136 132 127 119 2.2 2.3 2.5 2.7

50 215 210 203 193 3.2 3.4 3.7 4.1

75 336 331 322 310 4.5 4.8 5.3 5.9

100 439 433 424 410 5.5 5.9 6.4 7.3

125 525 519 510 495 6.2 6.6 7.3 8.3

150 599 594 583 568 6.8 7.3 8 9.1

175 663 657 646 629 7.3 7.8 8.6 9.7

200 718 711 699 682 7.7 8.3 9 10.2

+1% 25 79 76 72 66 1.4 1.4 1.4 1.5

35 133 128 121 111 2.2 2.3 2.4 2.5

50 228 220 208 192 3.4 3.6 3.8 4.1

75 416 403 383 356 5.6 5.9 6.3 6.8

100 636 617 589 548 7.9 8.4 8.9 9.7

125 889 864 824 769 10.5 11.1 11.8 12.9

150 1179 1142 1092 1017 13.4 14 15 16.3

175 1503 1457 1388 1293 16.6 17.3 18.4 20

200 1866 1808 1721 1600 20.1 21 22.3 24

These properties are essential as they capture the decision-dependent uncertainty which is
present in the optimization model.We focused on calculation of losses caused by not offering
optimal interest rate. We saw that especially for the more interest rate-sensitive customers,
the losses can be very high and any kind of simplification of the joint optimization model can
lead to wrong decisions. That implies that it is important to consider the decision-dependent
nature of the model in its entirety and ignoring it, even only in parts, can lead to a significant
reduction of profits for the company.

4 Conclusion

In this article, we have considered an asset–liabilitymanagement problemof a consumer loan,
where, due to the possibility of the customer not accepting the loan and, upon acceptance,
prepaying or defaulting on the loan, we formulate the problem as a non-linear multistage
stochastic program with endogenous source of uncertainty. There, two groups of decisions
appear: first, the initial fixed rate decision and second, the decisions associated with the
asset–liability management policy. The fixed rate decision on the loan affects the future
(uncertain) loan evolution and hence its value. The presented optimization problem allows the
determination of such interest rate and optimal loan management taking all the contingencies
into account through a set of conditional, decision-dependent scenario probabilities. We
focused on the formulation of the problem in the theoretical part, where all the features of
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Table 5 Differences in objective function for±1% change in offered rate against the optimal value for midrate
16%

Rating → b1 ↓ Absolute (CZK) Relative (%)

1 2 3 4 1 2 3 4

−1% 25 93 90 87 82 1.3 1.3 1.4 1.4

35 147 144 139 132 1.9 2 2.1 2.2

50 228 224 218 209 2.7 2.8 3 3.3

75 349 345 337 327 3.6 3.9 4.1 4.6

100 452 447 440 427 4.4 4.6 5 5.5

125 540 535 526 512 5 5.3 5.7 6.3

150 615 609 599 583 5.5 5.8 6.2 6.9

175 679 673 662 645 5.9 6.2 6.7 7.4

200 734 728 716 699 6.2 6.6 7.1 7.8

+1% 25 89 87 82 77 1.2 1.3 1.3 1.4

35 149 145 138 129 1.9 2 2.1 2.2

50 253 246 236 221 3 3.1 3.2 3.5

75 456 444 428 404 4.8 5 5.3 5.6

100 693 677 652 618 6.7 7 7.4 8

125 967 944 911 863 8.9 9.3 9.9 10.6

150 1281 1251 1205 1144 11.4 11.9 12.6 13.5

175 1637 1599 1541 1459 14.2 14.8 15.6 16.7

200 2040 1992 1916 1811 17.3 18 19 20.2

this problem, especially the decision-dependent randomness and its implementation into the
program, were described.

The practical part was then devoted to the solutions of the program. First, we have inves-
tigated the performance of a single optimal solution in the stochastic program’s scenarios.
The optimal strategy was to borrow only for the shortest time period as these loans are,
in general, the cheapest. Such a strategy also allows great flexibility, which is beneficial,
for example, when the loan is prepaid. As a drawback, it increases interest rate risk. The
exposure to interest rate risk could possibly be addressed by the implementation of vari-
ous risk constraints (e.g. a chance constraint (Telser 1955), a Value-at-Risk constraint (Risk
Metrics 1995), a conditional Value-at-Risk constraint (Rockafellar and Uryasev 2000, 2002)
a second-order stochastic dominance constraint (Hadar and Russell 1969; Dentcheva and
Ruszczynski 2003)) or application of robustness or contamination approaches (Dupačová
and Kopa 2012, 2014). This however falls out of the scope of this paper and applying it
would make our problem even more computationally demanding, possibly intractable.

Second, we have implemented and solved the stochastic program under several parameter
settings, capturing different customer’s properties to determine what the implications of such
a model would be on decisions made by the company. There, we noticed different actions on
customers with different strengths in decision-dependent uncertainty. This was the case for
both the changes in interest rate sensitivity and the changes in rating. This demonstrates that
decision-dependent randomness needs to be considered in this problem and that the model
which takes it into account produces strong results.
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Table 6 Differences in objective function for±1% change in offered rate against the optimal value for midrate
18%

Rating → b1 ↓ Absolute (CZK) Relative (%)

1 2 3 4 1 2 3 4

−1% 25 100 98 95 90 1.1 1.2 1.2 1.3

35 157 154 149 143 1.6 1.7 1.8 1.9

50 239 236 230 222 2.2 2.4 2.5 2.7

75 361 357 351 340 3.1 3.2 3.4 3.7

100 465 461 453 441 3.7 3.9 4.1 4.4

125 554 549 539 526 4.2 4.4 4.7 5

150 630 624 614 598 4.6 4.8 5.1 5.5

175 695 690 678 661 5 5.2 5.5 6

200 751 745 733 715 5.3 5.5 5.8 6.3

+1% 25 99 96 92 87 1.1 1.1 1.2 1.2

35 164 159 153 145 1.7 1.8 1.8 1.9

50 274 268 259 246 2.6 2.7 2.8 3

75 489 479 464 443 4.1 4.3 4.5 4.8

100 740 725 704 672 5.8 6.1 6.4 6.8

125 1029 1011 982 938 7.8 8.1 8.5 9

150 1364 1340 1298 1243 10 10.4 10.8 11.5

175 1748 1713 1664 1589 12.5 12.9 13.5 14.3

200 2186 2143 2073 1979 15.3 15.8 16.5 17.4

Finally, we were interested in the incurred losses which are caused by the company not
offering the optimal interest rate. We found that such costs depend greatly on interest rate
sensitivity. Moreover, we saw that it is more costly to offer a higher rate than a lower rate
compared to the optimal rate . This is due to two reasons—a lower probability of accepting
the loan hurts more than lower interest rate revenues and the default rate increases with the
higher interest rate. Both effects are a consequence of decision-dependent uncertainty. This,
again, underlines the need to capture the dependence between the offered interest rate and
default probability correctly and not neglect the relationship.

5 Appendix

In the figures and tables below, we present the results of the sensitivity analysis for other
midrates as discussed in Sect. 3.2. First, we show optimal solutions of the program for each
rating and interest rate sensitivity of the customer. Then, we present the tables with losses
associated with ±1% difference from the optimal interest rate, the objective value contour
plot for the programwith a customer of rating 2 and a fixed initial interest rate decision (Figs.
7, 8, 9, 10, 11, 12, 13, 14 ). Objective function surfaces can be seen in the interactive mode
available at https://plot.ly/~rusy/.
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Sensitivity Results for Midrate 0.12

Fig. 7 Sensitivity analysis results for midrate 0.12

Fig. 8 Contour plot constructed from objective values of the program when fixing offered interest rate r for
different values of interest rate sensitivity b1
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Sensitivity Results for Midrate 0.14

Fig. 9 Sensitivity analysis results for midrate 0.14

Fig. 10 Contour plot constructed from objective values of the program when fixing offered interest rate r for
different values of interest rate sensitivity b1
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Sensitivity Results for Midrate 0.16

Fig. 11 Sensitivity analysis results for midrate 0.16

Fig. 12 Contour plot constructed from objective values of the program when fixing offered interest rate r for
different values of interest rate sensitivity b1
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Fig. 13 Sensitivity analysis results for midrate 0.18

Fig. 14 Contour plot constructed from objective values of the program when fixing offered interest rate r for
different values of interest rate sensitivity b1
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