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Abstract
The stochastic reconstruction approach for point processes aims at producing independent
patterns with the same properties as the observed pattern, without specifying any par-
ticular model. Instead a so-called energy functional is defined, based on a set of point
process summary characteristics. It measures the dissimilarity between the observed pat-
tern (input) and another pattern. The reconstructed pattern (output) is sought iteratively
by minimising the energy functional. Hence, the output has approximately the same val-
ues of the prescribed summary characteristics as the input pattern. In this paper, we focus
on inhomogeneous point patterns and apply formal hypotheses tests to check the quality
of reconstructions in terms of the intensity function and morphological properties of the
underlying point patterns. We argue that the current version of the algorithm available in
the literature for inhomogeneous point processes does not produce outputs with appropriate
intensity function. We propose modifications to the algorithm which can remedy this issue.
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1 Introduction

Simulations are often used in spatial statistics for Monte Carlo testing and studying the per-
formance of different inferential procedures. A fully specified model is required to perform
the simulations, e.g. a benchmark model such as the Complete Spatial Randomness model
for spatial point processes or perhaps a model fitted to the observed data. However, some-
times a particular model may not be available or the principal interest may lie in producing
independent realisations with the same properties as the observed data rather than in fitting a
parametric model. In such a case it is possible to use the so-called stochastic reconstruction
approach to produce such realisations. It has been used for nearly two decades in statistical
physics to generate random closed sets, typically as models for porous media, see Torquato
(2002).

In this paper we focus on the stochastic reconstruction for point processes, also called
pattern reconstruction in this setting. For stationary point processes, it has been proposed in
Tscheschel and Stoyan (2006) and in a slightly different version in Pommerening (2006).
The paper Tscheschel and Stoyan (2006) also suggests the so-called conditional recon-
struction which enables to extend the observed point pattern outside the boundaries of
the observation window, conditionally on the observed point pattern, see also Illian et al.
(2004). This has been used in the literature as a form of quasi-plus-sampling for mitigating
the edge-effects, see e.g. Lilleleht et al. (2014) or Tscheschel and Chiu (2008). Stochastic
reconstruction has found another application in ecological works in Monte Carlo testing of
independence in a bivariate point process, see e.g. Getzin et al. (2014) and Jacquemyn et al.
(2012) or Mundo et al. (2013). On similar grounds, a non-parametric test of isotropy of a
stationary point process based on stochastic reconstruction is proposed in Wong and Chiu
(2016).

The stochastic reconstruction algorithm aims at producing a pattern (output) with the
same properties as the observed pattern (input). The user needs to choose which properties
are to be maintained by the algorithm, by selecting a collection of summary characteris-
tics f1, . . . , fJ such as the pair-correlation function, spherical contact distribution function,
etc. These characteristics are then used to construct the so-called energy functional which
measures the dissimilarity between the input and another point pattern in terms of discrepan-
cies between the summary characteristics estimated from the two patterns. Then the energy
functional is iteratively minimised so that the summary characteristics of the output pattern
match those of the input as closely as possible. The ultimate goal is that the reconstruc-
tions have the same distribution as the input, i.e. any possible summary characteristic of the
output is close to that of the input.

An interesting application of stochastic reconstruction can be found in Wiegand et al.
(2013) where the authors investigate which summary characteristic carries the most infor-
mation about given datasets. This enables them to make suggestions which characteristics
should be used in ecological studies to describe the point patterns under study. Their
approach is based on reconstructing the patterns using a small set of summary characteristics
and studying how well other characteristics of the outputs match those of the input.

Also, the paper Wiegand et al. (2013) discusses, to the best of our knowledge, for the
first time how to perform stochastic reconstruction for inhomogeneous point processes, i.e.
for processes with non-constant intensity function. Working with inhomogeneous point pat-
terns brings in difficult problems such as, for clustered patterns, the relationship between
clustering and inhomogeneity. This cannot be disentangled based on the observed pattern
only, without expert knowledge of the problem at hand. The user has to decide whether
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local changes in the intensity of point occurrence result from clustering or inhomogeneity
and adapt the inference accordingly.

For visual check of the quality of reconstructions the paper Wiegand et al. (2013) uses
envelopes for summary characteristics constructed from several outputs. However, a for-
mal test was not considered there. We elaborate on this by applying a rank envelope test
(Mrkvička et al. 2018; Myllymäki et al. 2017) which can provide a p-value as well as a
graphical interpretation indicating the reason for possible rejection.

Furthermore, we focus on inhomogeneous point processes and propose a formal hypoth-
esis test to investigate if the intensity function of outputs matches correctly the intensity
function of the input. Based on previous experiments in Koňasová (2018) we believe that
the version of the algorithm proposed in Wiegand et al. (2013) is often not successful in
reconstructing the intensity function. Therefore we propose modifications to the algorithm
that can remedy this issue. We illustrate this in the current paper by means of simulation
experiments.

Although we consider several different energy functionals in our simulations, it is not
our intention here to identify a single best energy functional and optimal version of the algo-
rithm (if such things exist at all, since different patterns may require different approaches).
Instead, we believe that a user of stochastic reconstruction should first perform a simulation
study with a model producing point patterns similar to the pattern of interest and use the
tests described here to identify which summary characteristics to incorporate to the energy
functional, with which weights, which stopping rule to use, etc.

We remark that in this paper we consider the improvement only version of the iterative
optimisation procedure which makes it impossible to leave a local minimum of the energy
functional. This version is the one most frequently appearing in the literature. However,
several authors have remarked that a version using the Metropolis-Hastings algorithm can
be used instead. Our experience indicates that properly tuning up such an algorithm is a
challenging task and the outcome is most likely not worth the effort, despite good theoretical
properties of theMarkov chain, see Koňasová (2018, Chapter 4). In fact we believe that good
mixing properties of the Markov chain, i.e. the ability to explore well the whole space of
point configurations, prevents the chain from regularly visiting states with very low energy.
The simulated tempering method seems to provide a reasonable alternative.

The paper is organised as follows. In Section 2 the necessary theory about spatial point
processes and their summary characteristics is reviewed. Section 3 introduces the stochastic
reconstruction algorithm and its possible modifications for inhomogeneous point processes.
In Section 4 a methodology for assessing the quality of reconstruction is discussed and formal
tests are proposed. The performance of the stochastic reconstruction algorithm is studied in
the simulation experiments in Section 5. We conclude with a discussion in Section 6.

2 Background on Spatial Point Processes

In this section, we introduce the notation and recall basic definitions regarding spatial
point processes and their summary characteristics. For more detailed exposition about
point processes see e.g. Daley and Vere-Jones (2008), Illian et al. (2004), and Møller and
Waagepetersen (2004).

We consider a simple spatial point process X to be a random locally finite subset of R2.
The points x ∈ X correspond to certain objects or events occurring at x ∈ R

2. The Borel
σ -algebra on R

2 is denoted by B2. The area of B ∈ B2 is denoted by |B| and 1 is the
indicator function.
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2.1 Moment Properties and Summary Characteristics of Point Processes

The intensity measure Λ of the point process X is given by the formula

Λ(B) = E [NX (B)] , B ∈ B2,

where NX (B) is the (random) number of points of the process X in the set B. Similarly,
we denote by N(A) the (non-random) number of elements in a deterministic finite set A.
If Λ is absolutely continuous with respect to the two-dimensional Lebesgue measure, there
exists a non-negative measurable function λ such that

Λ(B) =
∫

B

λ(u) du ∀ B ∈ B2.

The function λ is called the intensity function of X.
The process X is said to be homogeneous if its intensity measure Λ is translation invari-

ant. Otherwise, X is said to be inhomogeneous. Moreover, X is stationary if the whole
distribution of X is translation invariant. Note that stationarity of X implies its homogeneity
but not vice versa. For a homogeneous point process, the intensity function λ exists and is
constant. This constant is called the intensity of X.

The second-order factorial moment measure α(2) is given by

α(2)(C) = E

∑ �=

x,y∈X

1 {(x, y) ∈ C} , C ∈ B2 ⊗ B2.

The symbol �= indicates that the summation is over pairs of distinct points. If α(2) is abso-
lutely continuous with respect to the four-dimensional Lebesgue measure, there exists a
non-negative measurable function λ(2) such that

α(2)(C) =
∫
R2

∫
R2

1 {(u, v) ∈ C} λ(2)(u, v) du dv, C ∈ B2 ⊗ B2.

The function λ(2) is called the second-order product density of X.
Assuming that λ and λ(2) exist we define the pair correlation function g as

g(u, v) = λ(2)(u, v)

λ(u)λ(v)
, for u, v ∈ R

2 such that λ(u), λ(v) > 0.

If λ(u) = 0 or λ(v) = 0 we set g(u, v) = 0. If the pair correlation function g(u, v) is
translation invariant we write with slight abuse of notation g(u, v) = g(u−v) and we define
the K- and L-functions as

K(r) =
∫

b(o,r)

g(z) dz, r > 0, L(r) =
√

K(r)

π
, r > 0,

where b(o, r) denotes the ball centred at the origin o with radius r . The assumption
g(u, v) = g(u − v) is fulfilled for stationary point processes or the second-order inten-
sity reweighted stationary (SOIRS) point processes (Baddeley et al. 2000). Note that the
K-function can be also defined in a more general way, see e.g. Illian et al. (2004).

The functions g, K and L introduced above are second-order summary characteris-
tics and contain information about the interactions between pairs of points. For a Poisson
process in R

2 with a (constant or non-constant) intensity function we have that g(u) ≡
1,K(r) = πr2 and L(r) = r, r > 0. These values serve as a benchmark of no interactions
between pairs of points.
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The nearest-neighbour distance distribution function D1, which is a characteristic based
on interpoint distances, is defined for a stationary point process as

D1(r) = 1

λ|A| E
∑

x∈X∩A

1
{
NX\{x} (b(x, r)) > 0

}
, r > 0,

where A ∈ B2 is an arbitrary set satisfying 0 < |A| < ∞. Stationarity implies that the
definition does not depend on the choice of A. D1 can be interpreted as the distribution
function of the distance from a typical point of the process X to its nearest neighbour (see
Appendix C of Møller and Waagepetersen (2004) for further details). We remark that the
nearest neighbour distance distribution function is often denoted G but we follow here the
notation from the paper (Tscheschel and Stoyan 2006). Similarly, the k-th nearest neigh-
bour distance distribution functions Dk, k = 2, 3, . . . , can be defined for stationary point
processes, see Stoyan and Stoyan (1994, p.267).

The spherical contact distribution function F of a stationary point process X is the dis-
tribution function of the distance from the origin (or, due to stationarity, any fixed point in
R
2) to the nearest point of the process. It carries information about the size of gaps between

the points of the process and is formally defined as

F(r) = P [NX (b(o, r)) > 0] , r > 0.

2.2 Non-Parametric Estimation

Assume now that the point process X is observed on a compact observation window W ⊂
R
2 such that 0 < |W | < ∞. In the following, we recall the non-parametric estimators of

the summary characteristics discussed above.
If X has a constant intensity function λ a natural estimator of λ is λ̂ = NX(W)/|W |.

If X has a non-constant intensity function λ̂ can be obtained using a kernel estimator. Let
k be a probability density function on R

2 and define the kernel with bandwidth b > 0 as
kb(x) = k( x

b
)/b2. The estimator of λ is given by

λ̂(x) = 1

CW,b(x)

∑
y∈X∩W

kb(x − y), x ∈ W, (1)

where CW,b(x) = ∫
W

kb(x − y) dy is the edge-correction factor.
The classical estimator of the pair correlation function g, assuming its translation

invariance, is given by

ĝ(r) =
∑ �=

x,y∈X∩W

ub (r − ‖x − y‖)
2πrλ̂(x)λ̂(y)

1

|W ∩ (W + x − y) | , r > 0,

where ub is a one-dimensional kernel function with bandwidth b > 0 and we employ
the translation edge-correction. For other edge-correction methods see Illian et al. (2004,
Section 4.2.2). The estimator of the K-function, again using the translation edge correction,
has the form

K̂(r) =
∑�=

x,y∈X∩W

1 {‖x − y‖ ≤ r}
λ̂(x)λ̂(y)|W ∩ (W + x − y) | , r > 0.

The estimator of L(r) is obtained by L̂(r) =
√

K̂(r)
π

, r > 0.
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Under stationarity of X, the raw estimator of the k-th nearest-neighbour distance
distribution function Dk, k = 1, 2, . . . , is given by

D̂k(r) = 1

NX(W)

∑
x∈X∩W

1 {ek(x) ≤ r} , r > 0, (2)

where ek(x) is the distance of the point x ∈ X to its k-th nearest neighbour in X ∩ W .
For estimation of the spherical contact distribution function F , under the stationarity

assumption, consider a regular grid Ia of points in R2,

Ia = y + aZ2 =
{
(y1 + a1z1, y2 + a2z2) ∈ R

2 : zi ∈ Z

}
, r > 0,

where y = (y1, y2) ∈ R
2 and a = (a1, a2) ∈ R

2 such that a1, a2 > 0. The estimator of F

is given by

F̂ (r) = 1

N (Ia ∩ W)

∑
x∈Ia∩W

1 {d (x, X ∩ W) ≤ r} , r > 0, (3)

where d (x,X ∩ W) denotes the distance from x to the nearest point of the process X lying
in W . This is again the so-called raw estimator with no edge-correction. For edge-correction
methods such as the reduced-sample approach or the Kaplan-Meier estimator see e.g.
Møller and Waagepetersen (2004, Section 4.3.6).

2.3 Morphological Characteristics of Point Patterns

For checking the quality of reconstructions we use in this paper the three Mecke’s morpho-
logical characteristics of point patterns (Mecke and Stoyan 2005) defined in the following
way. Let ζ be a point pattern in the observation window W and let Z(r) = (ζ ⊕ b(o, r)) ∩
W, r > 0, where b(o, r) is the ball of radius r centred at the origin, i.e. Z(r) is the union
of discs with radius r centred at the points of ζ , intersected with W . Denote A(r), L(r) and
χ(r) the area, boundary length and the Euler-Poincaré characteristic of Z(r), respectively,
as functions of the radius r .

3 Stochastic Reconstruction

Stochastic reconstruction is an algorithmic procedure that aims at producing point pat-
terns with similar properties as the observed point pattern. To achieve this we define a
dissimilarity measure, called the energy functional in the following, and apply an itera-
tive optimisation scheme for its minimisation. The choice of summary characteristics to be
incorporated into the energy functional determines which properties of the observed pattern
(input) are required to be similar in the reconstructed patterns (outputs).

From now on we assume that we observe a realisation X of a point process X on a
compact observation window W ⊂ R

2 such that 0 < |W |. We also assume that the intensity
function λ and the second-order product density λ(2) of X exist.
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We first describe in Section 3.1 the stochastic reconstruction algorithm for stationary
point processes as given in Tscheschel and Stoyan (2006) and Illian et al. (2004) and briefly
mention the conditional reconstruction in Section 3.2. Then we discuss in Section 3.3 a
version for inhomogeneous point processes given in Wiegand et al. (2013) and we propose
some further modifications in Section 3.4.

3.1 The Algorithm

In this section, we assumeX is a realisation of a stationary point processX. Take J ∈ N and
choose functional summary characteristics fj , j = 1, 2, . . . , J, such as those described in
Section 2.1. Numerical characteristics can be also incorporated in a natural way. For every
functional characteristic fj choose an upper bound Rj for its domain, possibly depending
on the size of the observation window W and the assumed scale of effects to be investigated.
By f̂j (X , r) we denote the empirical estimate of fj (r) computed from X . We remark that
the use of the stochastic reconstruction does not require any explicit assumptions on the
theoretical model for observed data since in fact only the empirical estimates f̂j (X , r) will
be used.

The algorithm aims at creating an artificial pattern ζ in W such that

f̂j (ζ, r) ≈ f̂j (X , r), 0 < r ≤ Rj , j = 1, 2, . . . , J .

Also, the algorithm is designed such that the number of points in the point patterns is fixed,
N(ζ ∩ W) = N(X ∩ W). The dissimilarity between X and ζ is measured by the energy
functional E which is given by the weighted sum

E(X , ζ ) =
J∑

j=1

wfj

Rj∫

0

[
f̂j (X , r) − f̂j (ζ, r)

]2
dr, (4)

where wfj
> 0, j = 1, 2, . . . , J, are the weights determining the relative importance of the

individual terms. Note that the weights should also reflect the possibly different scales of
the values of different summary characteristics. The weights can be chosen experimentally,
after several trial runs of the algorithm, or based on the expert knowledge of the data. We
remark that using only empirical distribution functions in the energy functional makes the
choice of weights very straightforward. Instead of scalar weights one might consider weight
functions and use the terms

Rj∫

0

wfj
(r)

[
f̂j (X , r) − f̂j (ζ, r)

]2
dr

to construct the energy functional. This choice can be beneficial e.g. to compensate for the
possibly non-constant variance of f̂j (·, r).

Example 1 Suppose that we have observed a point pattern X in the observation window
W = [0, 1]2 and that, based on the prior knowledge of the problem at hand, the pair cor-
relation function g describes the properties of X that are of the main interest. Thus J = 1,
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f1 = g, wg = 1 and R1 = 0.25 (based on the standard recommendations related to the size
of W ). Then, for a point configuration ζ in W , we have

E(X , ζ ) =
0.25∫

0

[
ĝ(X , r) − ĝ(ζ, r)

]2 dr .

Denote by n = N(X ∩W) the number of observed points. The (random) initial state ζ (0)

of the stochastic reconstruction algorithm is a configuration of n points in W placed inde-
pendently with uniform distribution in W . The sequence of configurations ζ (1), ζ (2), . . . , is
obtained iteratively as follows. Suppose the current state is ζ (l), then

• choose randomly, with probabilities 1
n
, a point z from the configuration ζ (l) to be

deleted,
• generate a new point y uniformly in W ,
• set ζ new = (

ζ (l) \ {z}) ∪ {y},
• if E (X , ζ new) ≤ E

(
X , ζ (l)

)
, set ζ (l+1) = ζ new; otherwise ζ (l+1) = ζ (l).

The proposals for deleting and adding points are independent of each other and also
independent of the proposals made in other iteration steps. The algorithm is stopped when a
given stopping criterion is met, e.g. a specified maximum number of iterations is reached, or
E

(
X , ζ (l)

)
< ε for some fixed ε > 0, or the proposed configuration ζ new was not accepted

for m ∈ N consecutive steps.
The proposals for deleting a point and adding a new one can be of course interpreted

as a proposal to move a single point. Clearly, the number of points does not change during
an iteration step. The stopping rule should be specified so that every point of the initial
configuration has a chance to be moved several times.

Example 1 (continued) Suppose we observed a clustered point pattern given in Fig. 1 (left).
We define the energy functional based on the pair-correlation function only as in the Exam-
ple 1 above. The algorithm is stopped if a new configuration has not been accepted for 100
times in a row. Three different outputs from three independent runs of the stochastic recon-
struction algorithm (stationary version) are given in Fig. 1. Evolution of the values of the
energy functional during these three runs of the algorithm is depicted in Figure S1 in Online
Resource 1.

The core of the algorithm above is the minimisation of the energy functional E(X , ζ )

w.r.t. ζ while keeping the input X fixed. During the run of the algorithm, a local minimum

Fig. 1 Illustration of the stochastic reconstruction approach in the stationary context. From left to right: input
of the algorithm, three different outputs from three different runs of the algorithm. The energy functional is
based on the pair correlation function g only, see Example 1
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of E(X , ·) is reached. With the improvement-only type of algorithm given above it is not
possible to leave a local minimum since no configurations with higher energy are accepted.
This can be remedied by running k ∈ N independent runs of the algorithm with the same
input but different initial configurations, producing k candidate outputs corresponding to
different local minima and selecting the candidate with the lowest energy.

Of course E(X ,X ) = 0 and hence at least one global minimum of the energy functional
exists. However, the aim is not to obtain a copy of the observed data but a different pat-
tern with the same properties and the outputs from local minima with very low energy are
satisfactory for this purpose.

3.2 Conditional Reconstruction

The algorithm given above can be easily extended to the situation where the pattern X is
observed in the window W but the reconstructed pattern ζ is required in a bigger window
W̃ ⊃ W while keeping X ⊂ ζ (Tscheschel and Stoyan 2006; Illian et al. 2004). We use
the term conditional reconstruction for this modification as in Illian et al. (2004) while in
Tscheschel and Stoyan (2006) it is called conditional simulation. We prefer the former term
since the procedure is in spirit closer to the reconstruction (producing independent replicates
with the same properties) than to simulation from a specific model.

Assuming thatX is a realisation of a stationary processX observed inW , we estimate the
intensity ofX as λ̂ = N(X ∩W)/|W |. The number of points for the configuration ζ we seek
is then chosen to be m = �̂λ|W̃ |� and it will be fixed during the iterative procedure. Let n =
N(X ∩W) and take ξ a configuration of m− n independent points distributed uniformly in
W̃ \W . Then ζ (0) = ξ ∪X will be the initial configuration for the reconstruction algorithm.
In the iteration steps only the points in ζ (l) \ X can be deleted with equal probabilities and
new points are proposed only in W̃ \ W .

The energy functional given by (4) can be used also in this context. However, we stress
that the configurations X and ζ (l) have a different number of points and correspond to dif-
ferent observation windows. Hence only edge-corrected empirical estimates of the summary
characteristics must be used so that comparing f̂j (X , ·) to f̂j (ζ

(l), ·) makes sense.

3.3 Stochastic Reconstruction for Inhomogeneous Point Patterns

We now discuss the extension of the stochastic reconstruction algorithm to the processes
with non-constant intensity function. We describe first the version proposed in Wiegand
et al. (2013). Suppose thatX is a realisation of a SOIRS process X observed in W for which
the functions λ, λ(2) and g exist and that λ is not constant.

Let λ̂X be the non-parametric estimate of the intensity function based on X , as given in
(1). Also, let the observed number of points be denoted by n. The stochastic reconstruction
algorithm is the same as given in Section 3.1 with only two changes:

• the initial configuration ζ (0) of the stochastic reconstruction algorithm is now a config-
uration of n independent points in W distributed according to the probability density
function proportional to λ̂X restricted to W ,

• the proposals for new points are not made uniformly in W but according to the
probability density function proportional to λ̂X as above.
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3.4 ProposedModification

In the simulation experiments in Section 5 we will show that the two modifications dis-
cussed above are not sufficient to produce satisfactory outputs – the intensity function is
not matched correctly. This is not surprising since the inhomogeneity is incorporated into
the algorithm only in the proposals. Hence we propose below a further improvement to the
algorithm. The modification consists of adding an extra term to the energy functional which
enforces the correct shape of the intensity function.

Consider a regular pixel grid {v1, . . . , vI } ⊂ W with pixel area a and a finite point
configuration ζ ⊂ W . Let

Δ(X , ζ ) =
I∑

i=1

a
[̂
λX (vi) − λ̂ζ (vi)

]2

be the Riemann approximation to the integral of the squared difference between the esti-
mated intensity functions computed from the input X and the configuration ζ . The term
Δ(X , ζ ) can be added to the energy functional (4) with weight wΔ. It contains information
about the whole surface of the intensity function, thus enforcing the same values of intensity
function to appear at the same places in both the input and the outputs. Example of the run
of the algorithm based on energy functional incorporating Δ is given in Online Resource 1,
see Figure S2.

In certain situations it may be appropriate to allow some changes in the intensity function
to occur during the reconstruction process – e.g. in clustered point patterns, it may be rele-
vant to let the clusters appear at different locations in the outputs than in the input. In such
a case the term Δ(X , ζ ) in (4) can be replaced by the empirical distribution function Γ of
the values of the estimated intensity function λ̂ sampled in the pixel grid {v1, . . . , vI } ⊂ W .
With this modification, the correct values of the intensity function are forced to appear in
the outputs in correct proportions in places possibly different from the input. Note that in
this context we somewhat abuse the term intensity function and in fact mean, in case of clus-
tered point processes assumed to be Cox processes, the realisation of the random driving
field rather than its expectation.

4 Checking the Quality of Reconstruction

In Wiegand et al. (2013) envelopes for summary characteristics constructed from several
outputs were used for visual assessment of the quality of reconstruction. We elaborate
on this by proposing a formal hypothesis test using the Monte Carlo approach and either
scalar or functional test statistics. We distinguish two cases: either the model generating the
observed pattern is not known (as common in practice) or it is known (as in simulation stud-
ies). For the latter case, we also propose a test for checking if the intensity function of the
inputs is matched correctly in the outputs.

4.1 Testing in Practice

The typical situation in applications is that the process X generating the observed pattern X
is not known. Assume that a set of N outputs ζ1, . . . , ζN based on the inputX has been pro-
duced. Heuristically speaking, the reconstruction procedure can be considered satisfactory
if the pattern X is typical among ζ1, . . . , ζN .
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Formally, let Z be a random output of the stochastic reconstruction based on a random
input (having the distribution which generated X ) and let T be a test statistic. The dis-
tribution of T (Z) can be approximated by T (ζ1), . . . , T (ζN). We aim at testing if T (X )

can be considered a realization coming from the distribution of T (Z). If this null hypoth-
esis is rejected, either the energy functional or the stopping rule were not appropriate and
should be chosen differently. This approach corresponds to the classical goodness-of-fit
tests; here the observed data is the input X and the model is the particular algorithm
(including the choice of the energy functional, the stopping rule, etc.) which produces the
outputs.

If the test statistic T is scalar it is straightforward to assess how typical or extreme T (X )

is with respect to T (ζ1), . . . , T (ζN), using empirical quantiles, see e.g. Loosmore and Ford
(2006). If the test statistics T is functional it is possible to apply e.g. the extreme rank length
version of the global envelope test (Mrkvička et al. 2018; Myllymäki et al. 2017), see also
Narisetty and Nair (2016).

The choice of the test statistic is arbitrary and should be guided by the context of the prac-
tical problem at hand. If we used for testing the characteristics incorporated in the energy
functional we would be essentially testing if the energy of the outputs is low enough, i.e.
if the stopping rule is appropriate and/or the algorithm reaches acceptable local minima.
While this is certainly of interest, non-rejection in such a test does not imply that other prop-
erties of the outputs match the properties of the input. Hence we believe it is beneficial to
use other characteristics for testing than those used in the reconstruction procedure.

4.2 Testing in Simulation Studies

Assume now that the theoretical model for the point process X is known, as usual in sim-
ulation studies, and that a set of N outputs ζ1, . . . , ζN based on possibly different input
patterns (generated from X) has been produced. If it is possible to generate a large number
of simulations X1, . . . ,XK from the model, we compare for individual outputs ζk the value
of the test statistics T (ζk) to the population T (X1), . . . , T (XK). Hence we, in fact, perform
one test for each output. In this way, we are able to assess how well the properties of the
outputs match those of the realisations from X. This is the key difference from the approach
described in Section 4.1. Note that it is important to investigate a set of outputs based on
different inputs in order to make the results less dependent on a particular realization of the
input pattern.

In the simulation experiments presented in Section 5 we use the functional test statistics
obtained by concatenating three morphological characteristics, area A(r), boundary length
L(r) and Euler-Poincaré characteristic χ(r), described in Section 2.3, see also Mecke and
Stoyan (2005)). The test statistics are their normalized versions: T1(r) = A(r)/n, T2(r) =
L(r)/n, T3(r) = χ(r)/n where n is the number of points of the point pattern in ques-
tion. The normalization by the number of points is necessary in the simulation studies to
achieve reasonable power of the test since the number of points in the simulated patterns
X1, . . . ,XK may vary greatly. We remark that this is not the case in Section 4.1 where the
number of points in the input pattern and all the outputs is the same — in that case, the
normalization by the number of points is not needed.

The three characteristics T1(r), T2(r), T3(r) are concatenated together and used to per-
form a single test on a specified significance level in order to avoid the multiple testing
problem. In the following, we denote by Hm the null hypothesis that the distribution
of the morphological characteristics of the output is the same as the distribution of the
characteristics of the realizations generated by the model in question.
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In the context of simulation studies, it is also possible to test whether the intensity func-
tion of the outputs matches the theoretical intensity function λ of the process X. We denote
in the following the corresponding null hypothesis byHλ. We stress that such a test cannot
be performed in practice where the theoretical intensity function is not known.

A test for detecting deviations from the assumed intensity function λ can be constructed
as follows. Using the notation of Section 3.4, define the scalar test statistics Tλ as

Tλ(ζ ) =
I∑

i=1

a
[
λ(vi) − λ̂ζ (vi)

]2
.

Comparing Tλ(ζk) to the population Tλ(X1), . . . , Tλ(XK) we obtain the result of the test
for ζk (rejection/non-rejection). Finally, it is necessary to assess if the number of rejections
is appropriate on a given significance level, using e.g. a confidence interval based on a
binomial distribution.

We remark that even though the test statistic Tλ corresponds to the term Δ from
Section 3.4, it is worth performing this test to assess if the required form of the intensity
function is actually achieved, even with energy functionals containing Δ. It may be the case
that the other terms in the energy functional outweigh Δ and the intensity function is not
matched correctly.

5 Simulation Experiments

The aim of this section is to illustrate how the tests introduced in the previous section can
be used to determine whether a given energy functional produces outputs that match the
properties of the input. We perform a set of four experiments, each dealing with a different
question. We focus on inputs generated from three different models (clustered, Poisson,
regular) described in Section 5.2, all of them being inhomogeneous. Examples of outputs
for the three models and several energy functionals are given in Online Resource 1, Figures
S3 to S5.

In Experiment 1 we investigate if the approach from Wiegand et al. (2013) produces
outputs that match the non-constant intensity function of the input (energy functionals E3
and E4, see Section 5.1). We compare the results with our approach from Section 3.4 where
a term controlling the intensity function is included in the energy functional (E3,Δ and
E3,Γ ). Here we only perform the test ofHλ concerning the intensity function of the outputs.

Experiment 2 involves a larger set of energy functionals in order to examine if it is
possible to reconstruct the inputs successfully, in terms of the morphological characteristics
and the intensity function, using only a small number of summary characteristics (Ei and
Ei,Δ for i = 1, 2, 3, 5, 6, 7). Here we perform both tests of Hm and Hλ to investigate both
the topological properties of the outputs and their intensity function.

In Experiment 3 we focus on energy functionals consisting solely of empirical distribu-
tion functions (E8, E8,Γ and E9). In this case, the choice of weights is straightforward, as
opposed to the general situation. Again we test both hypothesesHm andHλ.

Finally, we present Experiment 4 in which we elaborate on Experiment 3 and investi-
gate if the clustered model can be reconstructed more successfully if some prior knowledge
of its structure is used when defining the energy functional (E10, E10,Γ and E11). This
is motivated by not very convincing results for the clustered model in the previous
experiments.
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We stress here that the purpose of the simulation experiments is illustrative and we do
not aim at identifying a single best energy functional if such a thing exists at all. The choice
of the energy functional must always be related to the application at hand, including the
choice of the summary characteristics fj , weights wfj

and ranges Rj .

5.1 Choice of Energy Functionals

Different energy functionals used in the simulation experiments are described in Table 1.
Their choice is motivated by the conclusions of Wiegand et al. (2013) (roughly speaking,
pair-correlation function g carries the most information about the patterns considered in the
paper, but it should be combined with characteristics of a different distributional nature to
provide more detailed description of the patterns) and by the different questions investigated
in Experiments 1 to 4.

We consider the energy functional based solely on the inhomogeneous pair-correlation
function g (E1) and we also combine it with characteristicsDk based on interpoint distances
(E2, E3). Furthermore, we combine g with F which describes, loosely speaking, gaps in
the patterns and can carry some information about large-scale trends in the data (E4), and
also with the terms Δ,Γ proposed in this paper (E1,Δ, E2,Δ, E3,Δ, E3,Γ ).

We also investigate energy functionals obtained from the previous ones by replacing
the inhomogeneous pair-correlation function g by the inhomogeneous L-function (Ei and
Ei,Δ for i = 5, . . . , 7). The motivation is that both of them carry the same information,
only in a different form, and the non-parametric estimation of the L-function is much more

Table 1 Different energy functionals used in the simulation study

Energy functional Summary characteristics Weights Experiments

E1 g (inhomogeneous version) 1 2

E1,Δ g,Δ 102, 1 2

E2 g,D1 1, 10 2

E2,Δ g,D1,Δ 102, 103, 1 2

E3 g,D1, . . . , D10 1, 1, . . . , 1 1, 2

E3,Δ g,D1, . . . , D10,Δ 102, 102, . . . , 102, 1 1, 2

E3,Γ g,D1, . . . , D10, Γ 1, 12, . . . , 1, 10 1

E4 g,D1, . . . , D10, F 1, 12, . . . , 1, 1 1

E5 L (inhomogeneous version) 1 2

E5,Δ L,Δ 106, 1 2

E6 L,D1 103, 1 2

E6,Δ L,D1,Δ 106, 103, 1 2

E7 L,D1, . . . , D10 104, 1, . . . , 1 2

E7,Δ L,D1, . . . , D10,Δ 106, 102, . . . , 102, 1 2

E8 D1, . . . , D10 1, . . . , 1 3

E8,Γ D1, . . . , D10, Γ 1, . . . , 1, 10 3

E9 D1, . . . , D10, F 1, . . . , 1, 1 3

E10 D1, . . . , D5 1, . . . , 1 4

E10,Γ D1, . . . , D5, Γ 1, . . . , 1, 5 4

E11 D1, . . . , D5, F 1, . . . , 1, 1 4
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straightforward as it does not require the choice of a smoothing kernel and its bandwidth.
We use the L-function instead of the K-function since the variability of its estimate across
different r values is stabilized by square root transformation.

Finally, we consider energy functionals based solely on empirical distribution functions
(E8, E8,Γ , E9, E10, E10,Γ , E11). Here the choice of weights is straightforward since every
characteristic included in the energy functional contributes with values on the same scale
and it is easy to specify their relative importance.

While using the second-order characteristics g, L, the non-constant intensity function is
taken into account. However, one should be aware that the L and g functions are derived
in the context of SOIRS processes. We suggest using the empirical estimates of these char-
acteristics even outside this context as they carry valuable information about interactions
between pairs of points. In such a situation we treat them as empirical descriptors only,
without relation to any theoretical characteristic. Similarly, we use the empirical distribu-
tion functions D̂k, F̂ even outside the context of stationary processes, merely as empirical
descriptors rather than estimators of a theoretical characteristic, as they carry important
information about the geometry of the patterns in question.

Also, we use the estimators (2), (3) without any edge-correction to reduce the computa-
tional load. This means that the values of D̂k, F̂ are affected by the size and shape of the
observation window W . However, this is acceptable in this simulation study since all the
configurations, input, intermediate and output, are confined to the same window W .

The weights are given in the third column of Table 1 and were chosen based on prior
experiments so that each term contributes to the total energy by values on the same scale. We
use the same weights for all the three models considered below, which necessarily required
some compromise. If only a single model was considered the weights could be chosen more
specifically, resulting presumably in more successful reconstructions. The last column of
Table 1 provides an indication in which experiments the given energy functional was used.

5.2 Theoretical Models

The theoretical models for X considered in this study are a thinned Thomas process, an
inhomogeneous Poisson process and a geometrically transformed Matérn hard-core pro-
cess of type II, respectively (Daley and Vere-Jones 2008; Illian et al. 2004; Møller and
Waagepetersen 2004). Parameters of these models are chosen so that the three models have
the same intensity function. The observation window is W = [0, 1]2 in all cases.

The Thomas process is a typical example of clustered processes which are of particular
interest in ecological applications where the stochastic reconstruction approach has become
popular. The Poisson point process often serves as a benchmark model to which other pro-
cesses are compared. To cover also the case of regular processes we include the Matérn
hard-core process of type II. Figure 2 shows realizations simulated from the three models.

We first consider a stationary (modified) Thomas process in R2 with the intensity of par-
ents κ = 40, the mean number of offspring per parent μ = 6 and the standard deviation
of the bivariate Gaussian distribution governing the placement of offspring relative to the
parents σ = 0.015. The inhomogeneous Thomas process is then constructed by applying
location-dependent thinning using the thinning function f (x) specified below. Such a pro-
cess has the SOIRS property, see Baddeley (2000, p.331), and its intensity function is given
by

λ(x) = 240f (x), x ∈ R
2. (5)

Furthermore, we consider the inhomogeneous Poisson point process inR2 with the intensity
function (5). This process also has the SOIRS property.



Methodology and Computing in Applied Probability

Fig. 2 From left to right: realisation of the thinned Thomas process, the inhomogeneous Poisson process and
the transformed Matérn hard-core process of type II. For details see the main text

Finally, we consider the stationary Matérn hard-core process of type II in R
2 with the

intensity of the underlying Poisson point process κ = 300 and the hard-core distance r =
0.05. The intensity of the stationary hard-core process is

τ =
(
1 − e−κπr2

)
/
(
πr2

)
.

Then to each point we apply the exponential transformation

c (x) = 1

eb − 1

(
eb x1 − 1

)
, x = (x1, x2) ∈ R

2,

where b = 1.3, and restrict the process to the unit square W . The intensity function of the
transformed process on W is

τ(eb − 1)e−b x1/b.

Note that the hard-core distance in the transformed process changes along the x1-axis. This
process does not have the SOIRS property.

To obtain the same intensity function also for the clustered and Poisson models we need
to use in (5) the following function f (x):

f (x) = min
{
Ke−b x1 , 1

}
, x = (x1, x2) ∈ R

2, K = τ(eb − 1)

240b
.

Note that each of the three models considered here has specific properties, important in
the following experiments. The realizations of the clustered model have clusters of points
placed randomly in the observation window, resulting in a high variation of the estimated
intensity functions. When reconstructing inputs generated from the Poisson model, the start-
ing configuration—realization of the binomial point process with appropriate non-constant
intensity function—already has all the required properties and running the algorithm may
only violate them. In the transformedMatérn process the changing hard-core distance makes
it difficult to describe the interpoint interactions using summary characteristics designed for
stationary or SOIRS processes.

5.3 Design of the Simulation Study

For each of the three models described above, we simulate 50 independent realisations in the
observation window W = [0, 1]2. These are used as inputs of the stochastic reconstruction
algorithm. For each input and each energy functional we perform 20 independent runs of
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the stochastic reconstruction algorithm, obtaining 20 outputs. Multiple inputs are used to
capture the variability of the models, whereas multiple outputs deal with the variability
introduced by the algorithm itself.

In this manner, 1000 outputs are obtained for each model and each energy functional
considered in the individual experiments. For each output, we perform the two Monte Carlo
tests described in Section 4, if applicable in the given experiment. That is we simulate a
large number of independent realisations from the model and assess how typical or extreme
the given output is w.r.t. the population of simulated realisations. The test of Hm is based
on 999 simulations from the null model (in order to reduce the computational load), the
test of Hλ is based on 2499 simulations. Both tests are performed on the significance level
α = 0.05 and hence we expect approx. 50 outputs out of 1000 to result in rejection. In fact,
the 95% confidence interval for the number of rejections is (37,64). Therefore, we expect to
see between 3.7% and 6.4% of rejected outputs.

5.4 Software Implementation and Choice of Tuning Parameters

The source codes for the stochastic reconstruction algorithm discussed in this paper are
available upon request. This simulation experiments are performed in R (version 3.4.3) with
standard packages spatstat (version 1.55-0) and TDA (version 1.6) and package GET
(version 0.1, Myllymäki et al. 2018).

The intensity function of all realisations is estimated using the function density.ppp
from the spatstat package, with default settings. The pair-correlation function is esti-
mated using the pcfinhom from the same package, with default settings except from
the slight modification of the denominator described in Baddeley et al. (2015, p.229).
Translation edge-correction is used for estimation of the pair-correlation function and the
L-function.

The constants Rj are set to be 0.2 for the pair-correlation function and the L-function.
After plotting F̂ and D̂k(r) for several realisations from the given models we set Rj = 0.3
for F and Dk, k = 1, 2, . . . , 10, to cover almost the whole range of values of the empirical
distribution functions.

The stopping rule is chosen so that the run of the algorithm stops if proposed configura-
tions are not accepted for 100 times in a row.

The morphological characteristicsA(r),L(r) and χ(r) used for testingHm are computed
using functions dilated.areas, discs, perimeter from the spatstat pack-
age and the function alphaComplexDiag from the TDA package. The range of argument
r is for all three characteristics [0,0.2] for the clustered model and [0,0.15] for the Poisson
and regular model.

5.5 Results

The tables below report the percentage of rejected reconstructions for the considered energy
functionals in tests of Hm and Hλ. The input realisations are tested in the same way as
the outputs to determine how typical or extreme the realisation is w.r.t. the population of
simulated realisations.1 This is useful for a detailed inspection of the results since it often
happens that a single input, which is considered extreme w.r.t. the population of simulations

1Detailed tables containing the p-values of input realisations as well as the exact number of rejected recon-
structions for individual tests, models and energy functionals are available at http://msekce.karlin.mff.cuni.
cz/∼dvorak/supplementary/StochasticReconstruction.html

http://msekce.karlin.mff.cuni.cz/~dvorak/supplementary/StochasticReconstruction.html
http://msekce.karlin.mff.cuni.cz/~dvorak/supplementary/StochasticReconstruction.html
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(it has p-value ≤ 0.05 itself), produces most of the outputs causing rejections for a given
model and energy functional. Also, only 1 input out of 50 in our study produced p-value
≤ 0.05 in the test ofHλ for the Poisson model and also for the hard-core model. This results,
for some energy functionals, in the percentage of rejections of Hλ being considerably
smaller than 5 %, without indicating any issue.

Experiment 1

In this experiment we examine the approach of Wiegand et al. (2013) using the energy func-
tionals based on combination of g, Dk and F (E3, E4). We investigate, using the test ofHλ,
whether the intensity function of the outputs matches the intensity function of the inputs.
Table 2 indicates that the reconstructions are not adequate in terms of intensity function, the
percentage of rejections ranging from 20 % to 60 % for tests on the nominal 5 % level.

When considering energy functional E3 but incorporating a term controlling the inten-
sity function (E3,Δ, E3,Γ ) the reconstructions are more successful, see Table 2, and in fact
acceptable for E3,Δ. We observe that using the term Γ is relevant for the clustered pro-
cess which confirms our expectation, see Section 3.4. On the other hand, for the Poisson
and hard-core models the variability of the intensity function estimated from simulated
realizations is much smaller than for the clustered process and hence a term more strictly
controlling the intensity function, such as Δ, is required.

Experiment 2

In the second experiment we investigate a variety of different energy functionals combining
g or L with Dk (E1 to E3 and E5 to E7) and possibly with Δ (E1,Δ to E3,Δ and E5,Δ to
E7,Δ). The question of interest is whether using a combination of a small number of sum-
mary characteristics can produce appropriate reconstructions in terms of both Hm and Hλ

(using high number of characteristics makes the choice of weights more complicated and
increases the risk of overfitting—reducing the variability of the outputs below the variability
of realizations from the assumed model).

Table 3 indicates that only energy functionals incorporating the term Δ were successful
in matching the intensity function of the inputs. Only for these energy functionals the per-
centage of rejections in the test ofHλ is close to 5 %. Hence in the following discussion we
restrict our attention to the functionals Ei,Δ, i = 1, 2, 3, 5, 6, 7.

Generally speaking, including more summary characteristics in the energy functional
results in fewer rejections ofHm for all three models considered here, see Table 3.

For the Poisson model, all energy functionals containingΔ perform similarly and provide
satisfactory outputs. We observe that the properties of the starting configuration are not
violated by the algorithm.

Table 2 Experiment 1: percentage of rejections in the test of the hypothesisHλ on the nominal 5 % level for
selected energy functionals

Energy functional Thomas Poisson Matérn

E3 g,D1, . . . , D10 29.4 22.4 58.3

E4 g,D1, . . . , D10, F 28.6 24.2 55.9

E3,Δ g,D1, . . . , D10,Δ 6.9 3.0 2.9

E3,Γ g,D1, . . . , D10, Γ 9.0 17.7 30.0
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Table 3 Experiment 2: percentage of rejections in the test of the hypothesesHm andHλ on the nominal 5 %
level for selected energy functionals

Thomas Poisson Matérn

Energy functional Hm Hλ Hm Hλ Hm Hλ

E1 g 54.3 25.7 10.3 28.4 40.7 55.6

E1,Δ g,Δ 33.2 6.5 8.3 3.0 79.9 2.6

E2 g,D1 16.6 24.5 6.3 25.7 15.4 65.7

E2,Δ g,D1,Δ 13.3 6.6 5.9 3.1 28.5 2.9

E3 g,D1, . . . , D10 13.3 29.4 5.5 22.4 58.3 58.3

E3,Δ g,D1, . . . , D10,Δ 11.4 6.9 6.7 3.0 73.8 2.9

E5 L 44.1 10.6 9.0 24.5 6.9 57.1

E5,Δ L,Δ 35.3 6.0 7.3 2.8 8.0 3.0

E6 L,D1 12.3 11.6 6.8 27.2 6.5 52.9

E6,Δ L,D1,Δ 13.3 5.8 5.4 3.3 5.9 5.0

E7 L,D1, . . . , D10 10.3 15.2 5.6 24.7 7.2 48.3

E7,Δ L,D1, . . . , D10,Δ 12.4 5.8 7.4 2.8 5.6 5.5

For the hard-core model using the L-function instead of the pair-correlation function g

turns out to be more successful. The reason is that a kernel estimate of g somewhat blurs
the hard-core distance and in the outputs, we can often observe pairs of points too close
together. This does not happen with the L-function.

For the clustered model the outputs are not quite satisfactory, the percentage of rejections
of Hm being at least twice as high as the nominal level of the test. This is related to the
fact that, together with g or L, using only D1 does not bring enough information about
the structure of the individual clusters, the mean number of points in a cluster being 6.
On the other hand, using D1 to D10 means we try to reconstruct not only the geometry of
the clusters but also their mutual positions. This motivated Experiment 4 where some prior
information on the typical cluster size is assumed. Furthermore, using different weights
could also improve the performance of the reconstruction procedure.

Experiment 3

The next experiment is motivated by the difficulties in choosing weights giving relative
importance of the individual terms in the energy functional. Here we abandon g, L and Δ

and focus on energy functionals consisting solely of empirical distribution functions. Hence
the range of values is the same for all individual terms and it is straightforward to choose
the weights, directly specifying the relative importance.

Table 4 summarizes the results of Experiment 3. Clearly, the chosen energy functionals
are not successful in matching the intensity function, i.e. the percentage of rejections in the
test of Hλ is too high for all three models. For the Poisson model, the morphological prop-
erties of the patterns are matched correctly with all three energy functionals. The opposite
holds for the hard-core model. This is caused by the D̂k not carrying any information about
how the interpoint distances are distributed in W , as opposed to g and L which incorporate
the information about the intensity function.
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Table 4 Experiment 3: percentage of rejections in the test of the hypothesesHm andHλ on the nominal 5 %
level for selected energy functionals consisting only of empirical distribution functions

Thomas Poisson Matérn

Energy functional Hm Hλ Hm Hλ Hm Hλ

E8 D1, . . . , D10 13.5 30.9 5.1 22.6 75.8 65.5

E9 D1, . . . , D10, F 7.4 28.9 3.9 21.1 78.5 64.4

E8,Γ D1, . . . , D10, Γ 12.3 8.1 3.2 18.7 95.2 30.7

For the clustered model the functional E8,Γ performs best but is not completely suc-
cessful in matching the morphological properties. This is again linked to the fact that using
empirical distribution functions of distances up to 10th neighbour acknowledges not only
the structure of individual clusters but also their mutual arrangement. This is not desirable
and we elaborate on this issue in the following experiment.

Experiment 4

The last experiment focuses only on the clustered model and assumes that some prior infor-
mation on the typical number of points in a cluster is known. We aim at using energy
functionals with Dk for k close to the mean number of points in a cluster. For the cluster
model considered here, this equals 6 and we use D1 up to D5 in the energy functionals. We
again restrict our attention to empirical distribution functions only to make the choice of
weights simple.

Table 5 shows that it is possible to achieve satisfactory reconstructions using this
approach but a term directly controlling the intensity function needs to be incorporated in
the energy functional (E10,Γ ).

6 Discussion

In the present paper, we have discussed the possibility of using the stochastic reconstruction
algorithm for inhomogeneous point patterns. We have established a general framework for
formally testing the quality of outputs of the algorithm, using two tests based on morpho-
logical characteristics A, L, χ , focusing on the geometric properties of the point patterns,
and on the estimated intensity function. The two tests deal with complementary properties
of the point patterns and we believe that it is beneficial to perform both tests.

Table 5 Experiment 4, clustered model: percentage of rejections in the test of the hypotheses Hm and Hλ

on the nominal 5 % level for selected energy functionals consisting only of empirical distribution functions,
using prior knowledge about the mean number of points in a cluster

Energy functional Hm Hλ

E10 D1, . . . , D5 14.1 50.8

E11 D1, . . . , D5, F 4.0 40.2

E10,Γ D1, . . . , D5, Γ 6.4 7.1
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We have illustrated in simulation experiments, using the test of the hypothesis Hλ pro-
posed here, that the version of the algorithm available in the literature for inhomogeneous
point patterns does not produce acceptable outputs – the non-constant intensity function is
not matched correctly.

We have proposed adding an extra term Δ to the energy functional in order to control
directly the intensity function of the outputs. This remedies the issue with the intensity func-
tion for all of the considered models, clustered, Poisson and regular. For reconstruction of
clustered patterns, it may be appropriate in a given application to use the term Γ in the
energy functional instead, which controls only the values of the estimated intensity func-
tion, not their arrangement in the observation window. In this way, the cluster geometry is
reconstructed but the clusters may appear in different locations in the outputs than in the
input.

We have demonstrated that all the three models considered here can be successfully
reconstructed using a small set of summary characteristics, provided that the intensity func-
tion is controlled directly in the energy functional and that specific features of the input
pattern are taken into account. For the clustered model, prior information on the cluster size
was needed. For the Poisson model, it was enough to control the intensity function and the
way of controlling the interactions was not crucial. For the regular model, it was beneficial
to use the L-function instead of the pair-correlation function to better account for the hard-
core property of the input pattern. All of this considered, our findings support the claim
made in Wiegand et al. (2013) that more than one type of summary characteristic should be
incorporated in the energy functional in order to obtain satisfactory outputs.
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Mrkvička T, Hahn U, Myllymäki M (2018) A one-way ANOVA test for functional data with graphical

interpretation. Available on arXiv:1612.03608 [cited 26. 11. 2018]
Mundo I, Wiegand T, Kanagaraj R, Kitzberger T (2013) Environmental drivers and spatial dependency in

wildfire ignition patterns of northwestern Patagonia. J Environ Manag 123:77–87
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