
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lsaa20

Stochastic Analysis and Applications

ISSN: 0736-2994 (Print) 1532-9356 (Online) Journal homepage: https://www.tandfonline.com/loi/lsaa20

Limiting measure and stationarity of solutions to
stochastic evolution equations with Volterra noise

P. Čoupek

To cite this article: P. Čoupek (2018) Limiting measure and stationarity of solutions to stochastic
evolution equations with Volterra noise, Stochastic Analysis and Applications, 36:3, 393-412, DOI:
10.1080/07362994.2017.1409124

To link to this article:  https://doi.org/10.1080/07362994.2017.1409124

Published online: 16 Jan 2018.

Submit your article to this journal 

Article views: 86

View related articles 

View Crossmark data

Citing articles: 6 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=lsaa20
https://www.tandfonline.com/loi/lsaa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07362994.2017.1409124
https://doi.org/10.1080/07362994.2017.1409124
https://www.tandfonline.com/action/authorSubmission?journalCode=lsaa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lsaa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07362994.2017.1409124
https://www.tandfonline.com/doi/mlt/10.1080/07362994.2017.1409124
http://crossmark.crossref.org/dialog/?doi=10.1080/07362994.2017.1409124&domain=pdf&date_stamp=2018-01-16
http://crossmark.crossref.org/dialog/?doi=10.1080/07362994.2017.1409124&domain=pdf&date_stamp=2018-01-16
https://www.tandfonline.com/doi/citedby/10.1080/07362994.2017.1409124#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/07362994.2017.1409124#tabModule


STOCHASTIC ANALYSIS AND APPLICATIONS
, VOL. , NO. , –
https://doi.org/./..

Limiting measure and stationarity of solutions to stochastic
evolution equations with Volterra noise
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ABSTRACT
Large-time behavior of solutions to stochastic evolution equations
driven by two-sided regular cylindrical Volterra processes is studied.
The solution is understood in the mild sense and takes values in a
separable Hilbert space. Sufficient conditions for the existence of a
limiting measure and strict stationarity of the solution process are
found and an example for which these conditions are also necessary is
provided. The results are further applied to the heat equation perturbed
by the two-sided Rosenblatt process.

1. Introduction

Consider the stochastic evolution equation{
dXt = AXt +Φ dBt , t ≥ 0,
X0 = x,

where A generates a C0-semigroup of bounded linear operators S = (S(t ), t ≥ 0) acting on
a separable Hilbert space and its mild solution which is defined by the variation of constants
formula

Xx
t := S(t )x+

∫ t

0
S(t − r)Φ dBr, t ≥ 0.

The driving process is a two-sided Hilbert space valued α-regular Volterra process B (see
Definition 2.3) and Φ is a bounded linear operator which describes spatial covariance of the
noise term. It is shown (see Proposition 3.4) that if the process B has stationary and reflex-
ive increments (see Definition 2.2) and the equation satisfies certain stability conditions (see
formula (3.5)), there is a limiting measure μ∞ such that the law of X0

t converges to μ∞ as
t →∞. Additionally, if the semigroup is strongly stable, we have (see Proposition 3.5) that
the law of Xx

t tends toμ∞ as t →∞ for each initial condition x ∈ L2(�;V ). Also, it is shown
(see Proposition 3.6) that there exists an initial condition x∞, such that the solution Xx∞ is a
strictly stationary process.

Volterra processes have been considered in the pioneeringwork [1], where the authors con-
sidered Gaussian Volterra processes (see also [2–4]). Regular cylindrical Volterra processes
whichmight not be Gaussian and stochastic evolution equations driven by themwere studied
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in the literature as well. In particular, existence and regularity results were given in [5–8] and
the present paper can be viewed as a continuation of the work. For specific cases of the driving
noise, stationarity and large-time behavior of the solutions have been already treated in the
literature (see e.g. [9–15] and others for equations driven by the fractional Brownian motion
(fBm)).

It is not a priori clear how the two-sided Volterra processes should be defined. We pro-
pose such a definition (Definition 2.1) after analysis of two main examples of two-sided
α-regular Volterra processes – the fBm with Hurst parameter H ∈ (1/2, 1) (see e.g. [16–18]
for its definition and properties) and the Rosenblatt process (see e.g. [19,20] for its definition
and properties).

The paper is organized as follows.
In Section 2, we define two-sided α-regular Volterra processes and give two examples – the

(two-sided) fBm of Hurst parameter H ∈ (1/2, 1) and the (two-sided) Rosenblatt process.
Then we modify the already existing stochastic integral with respect to one-sided α-regular
Volterra processes to the case when the integrator is two-sided and give basic properties of
the integral.

Section 3 contains the main results of the paper. In particular, we find sufficient conditions
for the existence of a limiting measure (Propositions 3.4 and 3.5) and show the existence of
an initial condition x∞ such that the mild solution Xx∞ is a stationary process (Proposition
3.6).

The paper is concludedwith two examples in Section 4. The first is an example of a stochas-
tic evolution equation for which the sufficient condition from Proposition 3.4 is also a nec-
essary one. This example moreover demonstrates that the regular fBm (i.e. H > 1/2) may be
worse than the standard Wiener process in terms of stabilizing equations. The second exam-
ple is the stochastic heat equation driven by two-sided noise which is Rosenblatt in time and
can be white or correlated in space.

2. Preliminaries

2.1. Two-sided Volterra processes

Throughout the paper,A � Bmeans that there is a finite positive constantC such thatA ≤ CB.
The constant C is independent of all the changeable arguments of the expressions A and B,
and it can change from line to line.

Let K : R2→ R be a kernel such that
� K(t, r) = 0 on {t < r} and limt→r+ K(t, r) = 0 for every r ∈ R,
� K(·, r) is continuously differentiable in (r,∞) for every r ∈ R,
� there is an α ∈ (0, 1

2 ) such that ∣∣∣∣∂K∂u (u, r)
∣∣∣∣ � (u− r)α−1 (2.1)

on {r < u}.
Such a function K is called an α-regular Volterra kernel in the sequel (cf. [6, Definition

2.7] and [7, Section 2.1] where a slightly different estimate on the kernel is considered). The
following lemma will be useful in various calculations in the sequel.

Lemma 2.1. Let K be an α-regular Volterra kernel. Set

φ(u, v ) :=
∫ u∧v

−∞

∂K
∂u
(u, r)

∂K
∂v
(v, r) dr. (2.2)

Then for u, v ∈ R, u �= v , it holds that φ(u, v ) � |u− v|2α−1.
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Proof. The claim follows by using the estimate (2.1) and the substitution z = v−r
u−r for u < v .

In particular, we obtain

φ(u, v ) �
∫ u∧v

−∞
(u− r)α−1(v − r)α−1 dr = B(α, 1− 2α)|u− v|2α−1, u �= v,

where B is the Beta function. �

If K is an α-regular Volterra kernel, we can define, for s1, t1, s2, t2 ∈ R,

R(s1, t1, s2, t2) :=
∫
R

(K(t1, r)− K(s1, r)) (K(t2, r)− K(s2, r)) dr. (2.3)

Remark 2.1. Note that it holds for s1 < t1 and s2 < t2 that

R(s1, t1, s2, t2) =
∫ t1

s1

∫ t2

s2
φ(u, v ) du dv, (2.4)

where φ(u, v ) is given by formula (2.2) and thus, Lemma 2.1 ensures that the integral in
formula (2.3) is finite.

Definition 2.1. A stochastic process b = (bt , t ∈ R) is an α-regular Volterra process if it is
centered, b0 = 0 a.s., and such that

E(bt1 − bs1 )(bt2 − bs2 ) = R(s1, t1, s2, t2) (2.5)

for every s1, s2, t2, t2 ∈ R, where R is defined by formula (2.3) with an α-regular Volterra ker-
nel K.

Remark 2.2. Note that condition (2.5) together with formula (2.4) and Lemma 2.1 already
imply that the process b from Definition 2.1 has a version with ε-Hölder continuous sample
paths for every ε ∈ (0, α). Indeed, for t > s, we obtain

E(bt − bs)2 �
∫ t

s

∫ t

s
|u− v|2α−1 du dv = 1

α(1+ 2α)
(t − s)1+2α

and use the Kolmogorov continuity theorem. We always consider this continuous version.
Note also that if b lives in a finiteWiener chaos (which is true for both the fBm and the Rosen-
blatt process), the process bhas a versionwithHölder continuous sample paths up to α + 1/2.
This follows from the fact that all higher moments of elements of finite Wiener chaos can be
controlled by the second moment (see e.g. [21, Corollary 2.8.14]).

Remark 2.3. The condition (2.5) is an analog of the condition

Ebtbs =
∫ s∧t

0
K(t, r)K(s, r) dr, s, t ≥ 0,

for a one-sided Volterra process b = (bt , t ≥ 0). See [6–8] for the precise conditions on K in
the one-sided case.

The existence of limiting measure and stationarity of solutions to stochastic evolution
equations will be proved for equations driven by Volterra processes whose increments are
stationary and reflexive. Let us state precisely what we mean by these two notions in the
finite-dimensional case.
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Definition 2.2. Let d ≥ 1. We say that an R
d-valued stochastic processY = (Yt , t ∈ R) has

� stationary increments if for every n ∈ N and every si, ti ∈ R, si < ti, i = 1, 2, . . . , n, we
have that the following holds for every h ∈ R:

Law(Yt1 −Ys1,Yt2 −Ys2, . . . ,Ytn −Ysn )

= Law(Yt1+h −Ys1+h,Yt2+h −Ys2+h, . . . ,Ytn+h −Ysn+h); (2.6)

� reflexive increments if for every n ∈ N and every si, ti ∈ R, si < ti, i = 1, 2, . . . , n, we
have that the following holds:

Law(Yt1 −Ys1,Yt2 −Ys2, . . . ,Ytn −Ysn )

= Law(Y−s1 −Y−t1,Y−s2 −Y−t2, . . . ,Y−sn −Y−tn ).

Remark 2.4. The above definition of stationary increments is stronger than strict stationar-
ity of the increment process (Yt+h −Yt , t ∈ R) for every h ≥ 0. In fact, in Definition 2.2, we
allow each increment to be of different length hi := ti − si. This stronger concept is needed in
Proposition 2.1 where we cannot assume equidistant partitions while approximating a general
integrand f .

Remark 2.5. Note that the notion of stationary increments fromDefinition 2.2 does not imply
reflexivity of the increments.

We now give two examples of two-sided α-regular Volterra processes with stationary and
reflexive increments, namely, the (two-sided) fBm and the (two-sided) Rosenblatt process.

Example 2.1. Recall the following representation of the two-sided fBm ofH ∈ (0, 1) (see e.g.
[18, Definition 2.1], [19, formula (22)], or [22, formula (1.1)]):

WH
t = CH

∫
R

(
(t − r)H−

1
2+ − (−r)H− 1

2+
)
dWr, t ∈ R, (2.7)

whereW = (Wt , t ∈ R) is the two-sided standard Wiener process and CH is a normalizing
constant such that E(WH

1 )
2 = 1, i.e.

CH :=
√

2H �
( 3
2 −H

)
�
(
H + 1

2

)
� (2− 2H)

with � being the Gamma function. Let us assume that H ∈ (1/2, 1). If we define

KH (t, r) := cH
∫ t

r
(u− r)H−

3
2 du, −∞ < r < t, (2.8)

with cH := CH (H − 1
2 ), then we have

WH
t =

∫
R

(
KH (t, r)− KH (0, r)

)
dWr.

Hence, the increments of the two-sided fBm of H > 1
2 satisfy

WH
t −WH

s =
∫
R

(KH (t, r)− KH (s, r)) dWr, s, t ∈ R .

Two immediate facts follow from this representation. First, we see that the two-sided fBm of
H > 1

2 is in fact a Volterra process as defined in Definition 2.1. Second, for −∞ < s1 < t1
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<∞ and−∞ < s2 < t2 <∞, we have that

E(WH
t1 −WH

s1 )(W
H
t2 −WH

s2 ) = H(2H − 1)
∫ t1

s1

∫ t2

s2
|u− v|2H−2 du dv. (2.9)

The last equality gives

E(WH
t −WH

s )
2 = |t − s|2H, s, t ∈ R,

which allows us to recover the covariance function

EWH
s W

H
t =

1
2
(|s|2H + |t|2H − |t − s|2H) , s, t ∈ R . (2.10)

It follows, moreover, that WH has stationary and reflexive increments. See also [17] for its
further properties.

Remark 2.6. Notice that the formula (2.7) could be written (if the integrals converged) as

WH
t = CH

∫ t

−∞
(t − r)H−

1
2 dWr −CH

∫ 0

−∞
(−r)H− 1

2 dWr.

Thus, as suggested in [23, Remark 3.4], the processWH
t should rather be seen as a convergent

difference of two divergent integrals W̃H
t − W̃H

0 where W̃H
t is given by

W̃H
t := CH

∫ t

−∞
(t − r)H−

1
2 dWr =

∫ t

−∞
KH (t, r) dWr.

Example 2.2. Similarly as in the case of the fBm above, we may also extend the Rosenblatt
process to the whole real line. Recall the definition of the (one-sided) Rosenblatt process (see
e.g. [19, formula (38)] or [24, p. 1490]). Let H ∈ (1/2, 1) and

RH
t := AH

∫ ′
R
2

(∫ t

0
(u− y1)

− 2−H
2+ (u− y2)

− 2−H
2+ du

)
dWy1 dWy2, t ≥ 0, (2.11)

where AH is a normalizing constant such that E(RH
t )

2 = 1, i.e.

AH :=
√

H
2 (2H − 1)

B
(H
2 , 1−H

) =: σ

B
(H
2 , 1−H

)
with B being the Beta function. The double integral is the Wiener–Itô multiple integral of
order 2 with respect to the two-sided standard Wiener processW = (Wt , t ∈ R) where the
prime means that the integration excludes the diagonal y1 = y2 (see [25]). The inner integral
in (2.11) can be written as the difference

AH

∫ t

0
(u− y1)

− 2−H
2+ (u− y2)

− 2−H
2+ du = KH (t, y1, y2)− KH (0, y1, y2),

where

KH (t, y1, y2) := AH

∫ t

y1∨y2
(u− y1)−

2−H
2 (u− y2)−

2−H
2 du.

Hence, in order to extend the definition of the Rosenblatt process also for negative values
of t , we define it via its increments as

RH
t − RH

s :=
∫ ′
R
2

(
K(t, y1, y2)− K(s, y1, y2)

)
dWy1 dWy2, s, t ∈ R,



398 P. ČOUPEK

and, in particular, one obtains RH
t by taking s = 0 in the above definition. Let n ∈ N and ti,

si ∈ R such that si < ti for i = 1, 2, . . . , n. Similarly as in the one-sided case, the distribu-
tion of the vector (RH

t1 − RH
s1,R

H
t2 − RH

s2, . . . ,R
H
tn − RH

sn ) is determined by the distribution of
the random variable

R :=
n∑

i=1
θi(RH

ti − RH
si ) =

∫ ′
R
2

(
n∑

i=1
θi(K(ti, y1, y2)− K(si, y1, y2))

)
dWy1 dWy2 .

Notice that the sum inside the integral is a symmetric function in the variables y1 and y2 and
since this is a second-order multiple integral, its distribution is determined by its cumulants.
In particular, using [19, formula (18)], we have that κ1(R) = 0 and

κk(R) = 2k−1(k− 1)!σ k
∑

r1,...,rk∈{1,...,n}
θr1 . . . θrkS((sr1, tr1 ), . . . , (sr1, tr1 )), k = 2, 3, . . . ,

where

S((sr1, tr1 ), . . . , (sr1, tr1 ))

:=
∫ tr1

sr1

∫ tr2

sr2

· · ·
∫ trk

srk

|x1 − x2|H−1|x2 − x3|H−1 · · · |xk−1 − xk|H−1|xk − x1|H−1 dxk . . . dx1,

(cf. [19, Section 4, formulas (12), (13) and (15)]). The cumulants will not change if we con-
sider ti + h and si + h instead of ti and si, respectively and, therefore, the two-sided Rosen-
blatt process has stationary increments. By the change of variables xi �→ −xi, it follows that
its increments are reflexive as well. Moreover, using [26, property (iii) on p. 9] and per-
forming similar computations as for κk(R) above, we see that for −∞ < s1 < t1 <∞ and
−∞ < s2 < t2 <∞, it holds that

E(RH
t1 − RH

s1 )(R
H
t2 − RH

s2 ) = H(2H − 1)
∫ t1

s1

∫ t2

s2
|u− v|2H−2 du dv,

(cf. [19, p. 40]). Therefore, the increments of the Rosenblatt process are correlated in the same
way as the increments of the fBm (cf. formula (2.9)), and hence,RH is also a two-sidedVolterra
process with the kernelKH given by (2.8). In particular, the covariance ofRH is given by (2.10).

Remark 2.7. As in the case of the fBm, one should in fact think of RH
t as the difference

R̃H
t − R̃H

0 where

R̃H
t := cH

∫ t

−∞

∫ t

−∞

(∫ t

y1∨y2
(u− y1)−

2−H
2 (u− y2)−

2−H
2 du

)
dWy1 dWy2 .

Of course, similarly as in the case of the fBm, this expression does not make sense, since the
integrand is not square integrable.

2.2. Wiener integration

Let (V, 〈·, ·〉V ) be a separable Hilbert space. Let b = (bt , t ∈ R) be a two-sided Volterra
process with a kernel K. Denote by E (R;V ) the set of V -valued step functions on R, i.e.
f ∈ E (R;V ) satisfies

f =
n∑
j=1

f j1[t j−1,t j ),
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where n ∈ N, −∞ < t0 < t1 < · · · < tn <∞ and f j ∈ V for all j = 1, 2, . . . , n. Note that
we identify functions equal almost everywhere. Consider the linear mapping i : E (R;V )→
L2(�;V ) given by

i : f :=
n∑
j=1

fi1[t j−1,t j ) �−→
∑
j

f j(bt j − bt j−1 ) =: i( f )

and define the operator K ∗ : E (R;V )→ L2(R;V ) by

(K ∗ f )(r) :=
∫ ∞
r

f (u)
∂K
∂u
(u, r) du, r ∈ R .

For simplicity, it is assumed here thatK ∗ is injective. If this is not the case, then the quotient
space Ẽ (R;V ) := E (R;V )/ kerK ∗maybe considered after liftingK ∗ to Ẽ (R;V ) (cf. [6]).
Formula (2.5) implies that

‖i( f )‖L2(�;V ) = ‖K ∗ f ‖L2(R;V ) (2.12)

for f ∈ E (R;V ). Now, have E (R;V ) completed under the inner product

〈 f , g〉D := 〈K ∗ f ,K ∗g〉L2(R,V ), (2.13)

denote the completion by D (R;V ) and extend K ∗ to (D (R;V ), 〈·, ·〉D ) which is now a
Hilbert space. This in turn extends i to a linear isometry betweenD (R;V ) and a closed linear
subspace of L2(�;V ). The spaceD (R;V ) is viewed as the space of admissible integrands and,
for f ∈ D (R;V ), the random variable i( f ) is the stochastic integral of f with respect to the
Volterra process b. Whenever necessary we will also use the symbol∫

f db := i( f ).

Remark 2.8. The above construction of the Wiener-type integral is similar to the one given
in [6] and essentially follows the ideas from [1]. We also refer to [20] for the particular case of
Wiener integration against the Rosenblatt process and to [27] for the case when the integrator
is a Hermite processes. See also [28] for a more general context.

The space D (I;R) can be very large and, in fact, its elements might not be functions
(cf. [29, Theorem 3.3]). The following lemma is an analog of [6, Proposition 2.9] and shows
that the Lebesgue–Bochner space L

2
1+2α (R;V ) can be viewed as a subspace of D (R;V ).

Lemma 2.2. We have that the space L
2

1+2α (R;V ) is continuously embedded in D (R;V ).
Proof. The proof is similar to the proof of [30, Proposition 3.2]. Let f ∈ E (R;V ). Then,

‖ f ‖D = ‖K ∗ f ‖L2(R;V ) � ‖Iα−( f )‖L2(R;V ) � ‖ f ‖L 2
1+2α (R;V )

by the Fubini theorem and [31, Theorem 5.3]. Here, Iα− denotes the left-sided fractional inte-
gral on the real axis. The claim follows by standard approximation. �

Remark 2.9. Let−∞ < s < t <∞. Then the definite integral is,t ( f ) for f ∈ L
2

1+2α
loc (R;V ) is

defined as

is,t ( f ) :=
∫ t

s
f db := i(1[s,t ) f ).

The following lemma will become useful in various calculations in the sequel.
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Lemma 2.3. The following claims hold:
(i) Let s1 < t1 and s2 < t2. Let further f ∈ L

2
1+2α (s1, t1;V ), g ∈ L

2
1+2α (s2, t2;V ). Then,

〈is1,t1 ( f ), is2,t2 (g)〉L2(�;V ) =
∫ t2

s2

∫ t1

s1
〈 f (u), g(v )〉Vφ(u, v ) du dv,

where φ(u, v ) is defined by formula (2.2).
(ii) Let−∞ < s < t <∞ and h ∈ V and f ∈ L

2
1+2α (s, t;V ). Then,〈

h,
∫ t

s
f (r) dbr

〉
V
=
∫ t

s
〈h, f (r)〉V dbr.

Proof. Both claims follow by standard approximation arguments. �

Thenext proposition allows toworkwith the integral
∫ t
0 f (r) dbr instead of the convolution

integral
∫ t
0 f (t − r) dbr. Its multidimensional version is used in the proofs of Propositions 3.4

and 3.6.
Proposition 2.1. Assume that b has stationary and reflexive increments. Then for every function

f ∈ L
2

1+2α
loc ([0,∞);V ), we have that∫ t

0
f (t − r) dbr

Law=
∫ t

0
f (r) dbr

Law=
∫ 0

−t
f (−u) dbu

for every t ≥ 0.

Proof. Weshall only prove the first equality. The second follows by similar arguments. Assume
that f is a simple function of the form

f (r) =
m∑
i=1

fi1[ti−1,ti), r ∈ [0, t],

for some n ∈ N, some partition {0 = t0 < · · · < tn = t} and fi ∈ V , i = 1, 2, . . . , n. The
stochastic integrals take the form

�ıt ( f ) :=
∫ t

0
f (r) dbr =

m∑
i=1

fi
(
bti − bti−1

)
,

←
ıt ( f ) :=

∫ t

0
f (t − r) dbr =

m∑
i=1

fi
(
bt−ti−1 − bt−ti

)
.

By stationarity and reflexivity of the increments, we have that

Law(bt−t0 − bt−t1, bt−t1 − bt−t2, . . . , bt−tm−1 − bt−tm )
= Law(b−t0 − b−t1, b−t1 − b−t2, . . . , b−tm−1 − b−tm )
= Law(bt1 − bt0, bt2 − bt1, . . . , btm − btm−1 ).

Therefore, the probability laws of�ıt ( f ) and
←
ıt ( f )must be equal. Now, let f ∈ L

2
1+2α (0, t;V )

and let { f (n)} be a sequence of step functions such that f n→ f as n→∞ in L
2

1+2α (0, t;V ).
Clearly, �ıt ( f n)→ �ıt ( f ) and

←
ıt ( f ) in L2(�;V ). Then we have that μ�it ( f (n) ) = μ←ıt ( f ) for each

n ∈ N and thus,

μ�it ( f ) = w*- lim
n→∞

μ�it ( f n) = w*- lim
n→∞

μ←
ıt ( f n)

= μ←
ıt ( f )

,

where μY denotes the probability law of the random variableY . �
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In order to consider stochastic evolution equations, a Volterra process with values in a
Hilbert space must be introduced.

Definition 2.3. Let U be a real separable Hilbert space. An α-regular U-cylindrical Volterra
process is a collection B = (Bt , t ∈ R) of bounded linear operators Bt : U → L2(�) such that

� for every u ∈ U , B(u) is a centered stochastic process in R with B0(u) = 0 a.s.;
� for every s1, t1, s2, t2 ∈ R and every u1, u2 ∈ U it holds that

E
(
Bt1 (u1)− Bs1 (u2)

) (
Bt2 (u2)− Bs2 (u2)

) = R(s1, t1, s2, t2)〈u1, u2〉V (2.14)

with R given by formula (2.3).

Remark 2.10. If B is an α-regular U -cylindrical Volterra process, then for every complete
orthonormal basis {en} of U , there is a sequence {b(n)} of uncorrelated scalar α-regular
Volterra processes such that for every u ∈ U , we have

Bt (u) =
∑
n

〈u, en〉Ub(n)t . (2.15)

In fact, the sequence {b(n)} is given by b(n) = B(en). By uncorrelated, we mean that

E(b(n)t1 − b(n)s1 )(b
(m)
t2 − b(m)s2 ) = 0, m �= n,

for every t1, s1, t2, s2 ∈ R which clearly holds by equation (2.14). Note that although each b(n)

might be a different process, they have the same kernel (e.g. if U = R
2, then b(1) might be

the fBm of H > 1
2 and b(2) the Rosenblatt process of the same H). On the other hand, given

an orthonormal basis {en} ofU and a sequence of uncorrelated α-regular Volterra processes
{b(n)}, the sum (2.15) defines an α-regularU -cylindrical Volterra process.

Definition 2.4. Let U be a real separable Hilbert space and B be an α-regular U -cylindrical
Volterra process. We say that B has stationary (or reflexive) increments if for every n and every
u1, u2, . . . , un ∈ U , the process b = (B(u1),B(u2), . . . ,B(un)) has stationary (or reflexive)
increments in the sense of 2.2.

An important case ofU -cylindrical Volterra processes are the Gaussian ones.

Definition 2.5. We say that an α-regular U -cylindrical Volterra process B is Gaussian if for
every u1, u2 ∈ U and every s, t ∈ R, the random vector (Bs(u1),Bt (u2)) is jointly Gaussian.

Remark 2.11. Note that if B is an α-regularU -cylindrical Volterra process which is Gaussian,
then for every orthonormal basis {en} ofU , the sequence {b(n)} = {B(en)} consists of mutually
independent processes.

An integral of operator-valued functions with respect to an α-regular U -cylindrical
Volterra process is further defined. The following construction is similar to the one given
in [6, Section 3] in the case of one-sided α-regularU -cylindrical Volterra processes.

Definition 2.6. An operator G : U → D (R;V ) is called elementary if

Gu =
K∑

k=1
gk〈u, ek〉U

holds for every u ∈ U , where K ∈ N, {gk} ⊂ D (R;V ), and {en} is a complete orthonormal
basis ofU .
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LetG ∈ L (U,D (R;V )) be elementary,B anα-regularU -cylindricalVolterra process and
{ek} a complete orthonormal basis ofU . Let I(G) be the (elementary) integral

I(G) :=
K∑

k=1

∫
gk db(k),

where b(k) = B(ek). As usual, we have to extend the operator I to a larger space of operators.
Since b(k) are uncorrelated, we obtain

‖I(G)‖2L2(�;V ) = E

∣∣∣∣∣
K∑

k=1

∫
gk db(k)

∣∣∣∣∣
2

V

=
K∑

k=1
E

∣∣∣∣
∫

gk db(k)
∣∣∣∣
2

V
=

K∑
k=1
‖Gek‖2D(R;V ).

In other words, we have that

‖I(G)‖L2(�;V ) = ‖G‖L2(U,D(R;V )) (2.16)

for elementary operators G. Using formula (2.16), we may extend the operator I to a linear
isometry between the space L2(U,D (R;V )) and a closed linear subspace of L2(�;V ).
Definition 2.7. A bounded linear operator G : U → D (R;V ) is called stochastically inte-
grable with respect to an α-regularU -cylindrical Volterra process B if G ∈ L2(U,D (R;V )).
In this case, I(G) is called a stochastic integral of G with respect to B.

Naturally, an operator G ∈ L2(U,D (R;V )) may be identified with a deterministic
operator-valued map G : R→ L2(U,V ) and we do so in the sequel. The following proposi-
tion will allow us to define the stochastic integral with respect to B.

Proposition 2.2. Let G ∈ L
2

1+2α
loc (R;L2(U,V )) and let −∞ < s < t <∞. Then the function

1[s,t )G is stochastically integrable with respect to an α-regular U-cylindrical Volterra process B.

Proof. Using formula (2.13), (i) of Lemma 2.3, Lemma 2.1, and the Hölder and Hardy–
Littlewood inequalities successively, we obtain

‖1[s,t )G‖2L2(U,D(R;V )) =
∑
n

∥∥K ∗1[s,t )Gen
∥∥2
L2(R;V )

=
∫ t

s

∫ t

s
〈G(u),G(v )〉L2(U,V )φ(u, v ) du dv

�
∫ t

s

∫ t

s
‖G(u)‖L2(U,V )‖G(v )‖L2(U,V )|u− v|2α−1 du dv

�
(∫ t

s
‖G(u)‖

2
1+2α
L2(U,V )

du
)1+2α

<∞.
�

It follows from Proposition 2.2 that for G ∈ L
2

1+2α
loc (R;L2(U,V )), we may set

Is,t (G) :=
∫ t

s
G(r) dBr := I(1[s,t )G)

and call it the (definite) stochastic integral of G with respect to B on [s, t ). In this case, it holds
that

‖Is,t (G)‖2L2(�;V ) =
∫ t

s

∫ t

s
〈G(u),G(v )〉L2(U,V )φ(u, v ) du dv. (2.17)
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Moreover, linearity of I and the identity 1[s,t ) = 1[s,r) + 1[r,t ) ensure that Is,t (G) = Is,r(G)+
Ir,t (G) for every s < r < t .

3. Limitingmeasure and stationary solutions

LetU,V be two real separable Hilbert spaces and consider the stochastic evolution equation{
dXt = AXt +Φ dBt , t ≥ 0,
X0 = x, (3.1)

where A is an infinitesimal generator of a strongly continuous semigroup (S(t ), t ≥ 0) of
bounded linear operators acting onV and x ∈ L2(�;V ). We assume thatΦ ∈ L (U,V ) and
B = (Bt , t ∈ R) is an α-regularU -cylindrical Volterra process. The solution to equation (3.1)
is given in the mild form by the variation of constants formula

Xx
t := S(t )x+ Zt := S(t )x+

∫ t

0
S(t − r)Φ dBr t ≥ 0. (3.2)

Consider the following:

(H) Let S(r)Φ ∈ L2(U,V ) for all r > 0. Let there further exist T0 > 0 such that∫ T0

0
‖S(r)Φ‖

2
1+2α
L2(U,V )

dr <∞. (3.3)

Proposition 3.1. If (H) holds, then then the mild solution Xx = (Xx
t , t ≥ 0) given by formula

(3.2) is a well-definedV-valued process which is mean-square right continuous and, in particu-
lar, it has a version with measurable sample paths.

Proof. The proof essentially follows the lines of the proof of Proposition 4.2 in [6] for the
assumption (A3) where f ≡ 0. Lemma 2.1 and (i) of Lemma 2.3 are the two properties
needed. In particular, first it is shown that the assumption (3.3) combined with the fact that
S(u) = S(u− T0)S(T0) for u > T0 imply that∫ t

0
‖S(r)Φ‖

2
1+2α
L2(U,V )

dr <∞

for every t > 0 which assures that Zt is a well-defined V -valued random variable for every
t > 0 by Proposition 2.2. For 0 < s < t , using additivity of the definite stochastic integral, we
can write

E |Zt − Zs|2V � E

∣∣∣∣
∫ t

s
S(t − r)Φ dBr

∣∣∣∣
2

V
+ E

∣∣∣∣
∫ s

0
[S(t − s)− I]S(s− r)Φ dBr

∣∣∣∣
2

V

and the assumption (3.3) together with the strong continuity of the semigroup (S(t ), t ≥ 0)
imply that both terms above tend to zero as t ↘ s. �

The following twopropositionswill be useful for Example 4.1. In particular, Proposition 3.2
gives an explicit form of the covariance operator qt of the random variable Zt , and Proposition
3.3 gives a necessary condition for the existence of a limitingmeasure in terms of qt in the case
when the driving process B is Gaussian.

Proposition 3.2. Assume that (H) holds and let T > 0. Then, Z = (Zt , t ∈ [0,T]) is
an L2(0,T;V )-valued random variable whose covariance operator QT : L2(0,T;V )→
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L2(0,T;V ) takes the form

(QTϕ) (r) =
∫ T

0
g(r, s)ϕ(s) ds,

with

g(r, s) :=
∫ s

0

∫ r

0
S(r − u)ΦΦ∗S∗(s− v )φ(u, v ) du dv

where φ(u, v ) is defined by formula (2.2).

Proof. Note first that Z is an L2(0,T;V )-valued random variable since by the proof of
Proposition 2.2, we have that

sup
t∈[0,T ]

‖Zt‖L2(�;V ) � sup
t∈[0,T ]

(∫ t

0
‖S(r)Φ‖

2
1+2α
L2(U,V )

dr
)α+ 1

2

which is finite by the assumption (3.3) similarly as in the proof of Proposition 3.1. Let ϕ,ψ ∈
L2(0,T;V ). Then,

〈QTϕ,ψ〉L2(0,T;V ) = E

∫ T

0
〈ϕ(s),Zs〉V ds

∫ T

0
〈ψ(r),Zr〉V dr

=
∫ T

0

∫ T

0
E〈ϕ(s),Zs〉V 〈ψ(r),Zr〉V dr ds.

Now, using the fact that b(k) and b(l) are uncorrelated and (ii) of Lemma 2.3, we obtain

E〈ϕ(s),Zs〉V 〈ψ(r),Zr〉V =
=
∑
n,m

E

〈
ϕ(s),

∫ s

0
S(s− v )Φen db(n)v

〉
V

〈
ψ(r),

∫ r

0
S(r − u)Φem db(m)u

〉
V

=
∑
n

E

∫ s

0
〈ϕ(s), S(s− v )Φen〉V db(n)v ·

∫ r

0
〈ψ(r), S(r − u)Φen〉V db(n)u .

Using (i) of Lemma 2.3, we obtain

E〈ϕ(s),Zs〉V 〈ψ(r),Zr〉V =
=
∑
n

∫ s

0

∫ r

0
〈ϕ(s), S(s− v )Φen〉V 〈ψ(r), S(r − u)Φen〉Vφ(u, v ) du dv

=
∑
n

∫ s

0

∫ r

0
〈Φ∗S∗(s− v )ϕ(s), en〉U 〈Φ∗S∗(r − u)ψ(r), en〉Uφ(u, v ) du dv

=
∫ s

0

∫ r

0
〈Φ∗S∗(s− v )ϕ(s),Φ∗S∗(r − u)ψ(r)〉Uφ(u, v ) du dv

=
∫ s

0

∫ r

0
〈S(r − u)ΦΦ∗S∗(s− v )ϕ(s), ψ(r)〉Vφ(u, v ) du dv.

The interchange of the sum and integrals is possible due to the assumption (3.3). Hence,

〈QTϕ,ψ〉L2(0,T;V ) =

=
∫ T

0

〈∫ T

0

(∫ s

0

∫ r

0
S(r − u)ΦΦ∗S∗(s− v )φ(u, v ) du dv

)
ϕ(s) ds, ψ(r)

〉
V
dr.

�
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We denote by μx
t the probability law Xx

t in the rest of the paper. Clearly, the V -valued
random variable Zt has the covariance operator

qt :=
∫ t

0

∫ t

0
S(t − u)ΦΦ∗S∗(t − v )φ(u, v ) du dv, (3.4)

and by (H), we have that Tr qt <∞.

Proposition 3.3. Assume that (H) holds and assume that B is Gaussian. If there is a measure
μ∞ such that w*- lim t→∞ μ0

t = μ∞, then
sup
t≥0

Tr qt <∞

where qt is given by formula (3.4).

Proof. The proof is similar to the proof of [32, Theorem 6.2.1, (i)⇒ (ii)]. IfB is Gaussian, then
μ0

t = Law(Zt ) = N(0, qt ). Assume that there is a measure μ∞ such that w*- lim t→∞ μ0
t =

μ∞. Since the characteristic functional of μ0
t , ϕμ0t , is given by

ϕμ0t
(h) = exp(−1/2〈qth, h〉V ),

we see that the characteristic functional ofμ∞, ϕμ∞ , must be real-valued because we have that
ϕμ0t

(h)→ ϕμ∞ (h) as t →∞ for all h ∈ V . According to Bochner–Minlos–Sazonov theorem
(see e.g. [33, Theorem 2.13] or [34, Theorem 1.1.5]), there exists a positive symmetric trace-
class operator O1/2 : V → V such that for every h ∈ V for which 〈O1/2h, h〉V < 1, we have
that ϕμ∞ satisfies ϕμ∞ (h) > 1/2. It follows from the convergence of ϕμ0t (h) to ϕμ∞ (h) that for
h ∈ V such that 〈O1/2h, h〉V < 1 we have that ϕμ0t (h) > 1/2 for sufficiently large t . Since we
have that 〈qth, h〉V = 2 log 1

ϕ
μ0t
(h) , we obtain the implication

h ∈ V : 〈O1/2h, h〉V < 1 ⇒ 〈qth, h〉V < 2 log 2

for sufficiently large t . It follows that 0 ≤ qt < 2 log 2O1/2 and 0 ≤ Tr qt ≤ 2 log 2 TrO1/2 for
sufficiently large t which yields the claim. �

Wenowdiscuss the existence of a limitingmeasure of the processZ.We obtain an analog of
[9, Proposition 3.4]. Note however, that exponential stability of the semigroup is not assumed
here.
Proposition 3.4. Assume that B has stationary and reflexive increments. Assume further that
S(u)Φ ∈ L2(U,V ) for every u > 0 and that∫ ∞

0
‖S(r)Φ‖

2
1+2α
L2(U,V )

dr <∞ (3.5)

holds. Then there is a measure μ∞ such that

w*- lim
t→∞

μ0
t = μ∞.

Proof. Define

Z′t :=
∫ t

0
S(r)Φ dBr, t ≥ 0.

A similar approximation procedure as in the proof of Proposition 2.1 applies and hence, we
have

Law(Z′t ) = Law(Zt ) = μ0
t , t ≥ 0.
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We claim that there is Z′∞ ∈ L2(�;V ) such that Z′t → Z′∞ in L2(�;V ) as t →∞. Indeed,
let {kn} ⊂ [0,∞) such that kn→∞ as n→∞. We will show that {Z′kn}n∈N is Cauchy in
L2(�;V ). Let n,m ∈ N, n > m. Using equation (2.17), we have that

E |Z′kn − Z′km |2V = E

∣∣∣∣
∫ kn

km
S(r)Φ dBr

∣∣∣∣
2

V

=
∫ kn

km

∫ kn

km
〈S(u)Φ, S(v )Φ〉L2(U,V )φ(u, v ) du dv

�
(∫ kn

km
‖S(u)Φ‖

2
1+2α
L2(U,V )

dr
)1+2α

≤
(∫ ∞

km
‖S(r)Φ‖

2
1+2α
L2(U,V )

dr
)1+2α

.

Now, if we letm→∞, the last integral tends to zero by the assumption (3.5). Hence, {Z′kn}n∈N
is Cauchy inL2(�;V ) and theremust be a limitZk

∞. Let {ln}n∈N ⊂ [0,∞) be another sequence
such that ln→∞ as n→∞ and let Zl

∞ be the corresponding limit constructed as above.We
then have

‖Zk
∞ − Zl

∞‖L2(�;V ) ≤ ‖Zk
∞ − Z′kn‖L2(�;V ) + ‖Z′kn − Z′ln‖L2(�;V ) + ‖Z′ln − Zl

∞‖L2(�;V )
and similarly as before, it can be shown that the middle term tends to zero as n→∞ and
hence, Zk

∞ = Zl
∞ =: Z′∞. �

If the semigroup (S(t ), t ≥ 0) is strongly stable, then μ∞ is a limiting measure for the
solution Xx for every initial condition x ∈ L2(�;V ).
Proposition 3.5. Let the assumptions of Proposition 3.4 hold. Let x ∈ L2(�;V ) be such that

lim
t→∞
|S(t )x|V = 0 (3.6)

holds almost surely. Then,

w*- lim
t→∞

μx
t = μ∞. (3.7)

In particular, if the semigroup (S(t ), t ≥ 0) is strongly stable (i.e. S(t )→ 0 as t →∞ in the
strong operator topology), then equation (3.7) holds for every x ∈ L2(�;V ).
Proof. Let μ∞ be the law of Z′∞ from the proof of Proposition 3.4 and let g : V → R be a
bounded Lipschitz continuous functional. Consider∣∣∣∣

∫
V
g dμx

t −
∫
V
g dμ∞

∣∣∣∣ = ∣∣E g
(
S(t )x+ Z′t

)− E g
(
Z′∞
)∣∣

≤ E
∣∣g (S(t )x+ Z′t

)− g
(
Z′t
)∣∣+ E |g(Z′t )− g

(
Z′∞
) |. (3.8)

Using the Lipschitz property of g, we obtain

|g(S(t )x+ Z′t )− g(Z′t )| � |S(t )x|V
which tends to zero as t →∞ almost surely by the assumption (3.6). Moreover, it holds that

|g(S(t )x+ Z′t )− g(Z′t )| ≤ 2 sup g,

where the supremum is finite since g is bounded. Hence, the first term on the right-hand side
of the inequality (3.8) converges to zero as t →∞ by the Lebesgue Dominated Convergence
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Theorem. The second term on the right-hand side of the inequality (3.8) converges to zero as
t →∞ by the proof of Proposition 3.4 since we have that

E |g(Z′t )− g(Z′∞)| � E |Z′t − Z′∞|V
holds by the Lipschitz property of g again. �

It is well known that if the Equation (3.1) is driven by the cylindrical Wiener process, the
measure μ∞ is invariant. As noted in [9, p. 237], this fails to be true when the driving process
is the cylindrical fBm.More precisely, if it holds in this case that Law(x) = μ∞, thenμx

t might
not remain constant. However, as the next proposition suggests, this may be achieved for one
particular initial condition. The proposition is an analog of [13, Theorem 3.1].

Proposition 3.6. Let the assumptions of Proposition 3.4 hold. Then there is aV-valued random
variable x∞ such that (Xx∞

t , t ≥ 0) is a strictly stationary process with Law(Xx∞
t ) = μ∞ for all

t ≥ 0.

Proof. Denote

Z′′t :=
∫ 0

−t
S(−u)Φ dBu.

In a similar manner as in Proposition 2.1, it can be inferred that

Law(Z′′t ) = Law(Zt ) = μ0
t , t ≥ 0,

and following the lines of the proof of Proposition 3.4, we can show that there is V -valued
random variable x∞ such that Z′′t → x∞ in L2(�;V ) as t →∞. Clearly, the probability law
of x∞ is μ∞. Now, let t, h ≥ 0. Then we have that

Xx∞
t+h = S(t + h)x∞ + Zt+h

= lim
n→∞

(∫ 0

−n
S(t + h− u)Φ dBu +

∫ t+h

0
S(t + h− u)Φ dBu

)

= lim
n→∞

∫ t+h

−n
S(t + h− u)Φ dBu.

Notice that

Xx∞
t+h = lim

n→∞

∫ t

−n−h
S(t − v )Φ dBv+h = lim

n→∞

∫ t

−n
S(t − v )Φ dBv+h,

since if n→∞, then h+ n→∞ for all h ≥ 0. Let k ∈ N and t1, . . . , tk ≥ 0 be arbitrary
times. Next, we show that

Law
(
Xx∞
t1 , . . . ,X

x∞
tk

)
= Law

(
Xx∞
t1+h, . . . ,X

x∞
tk+h

)
for all h ≥ 0. Consider

Law
(
Xx∞
t1+h, . . . ,X

x∞
tk+h

)
= w*- lim

n→∞
Law

(∫ t1+h

−n
S(t1 + h− u)Φ dBu, . . . ,

∫ tk+h

−n
S(tk + h− u)Φ dBu

)

= w*- lim
n→∞

Law
(∫ t1

−n−h
S(t1 − v )Φ dBv+h, . . . ,

∫ tk

−n−h
S(tk − v )Φ dBv+h

)
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= w*- lim
n→∞

Law
(∫ t1

−n
S(t1 − v )Φ dBv+h, . . . ,

∫ tk

−n
S(tk − v )Φ dBv+h

)

= w*- lim
n→∞

Law
(∫ t1

−n
S(t1 − v )Φ dBv , . . . ,

∫ tk

−n
S(tk − v )Φ dBv

)

= Law
(
Xx∞
t1 , . . . ,X

x∞
tk

)
.

The fourth equality follows from the fact that B has stationary increments. �

4. Examples

Example 4.1. LetU = R,V = L2(0,∞) and A be the infinitesimal generator of the left-shift
semigroup (S(t ), t ≥ 0), i.e. A : Dom(A) :=W 1,2(0,∞)→ L2(0,∞) is given by A f := f ′

and generates theC0-semigroup (S(t ), t ≥ 0) on L2(0,∞) given by

S(t )g(ξ ) = g(t + ξ )
for g ∈ L2(0,∞), t ≥ 0 and ξ ∈ [0,∞). LetWH = (WH

t , t ∈ R) be a scalar fBm with a fixed
H > 1/2 and let ϕ : [0,∞)→ R be given by ϕ(ξ ) := (ξ + 1)−β with some β > 1/2. Let
Φϕ ∈ L (R, L2(0,∞)) be given by Φϕ(c)(ξ ) := cϕ(ξ ) for c ∈ R. Consider the following
equation:

dXt = AXt dt +Φϕ dWH
t , t ≥ 0. (4.1)

Denote the solution to equation (4.1) with X0 = x ∈ L2(�; L2(0,∞)) by Xx
ϕ .

If β > H + 1/2, we have that∫ ∞
0

(∫ ∞
0
(ξ + r + 1)−2β dξ

) 1
2H

dr <∞.

Hence, by Proposition 3.4, that there is a limiting measure μ∞ for X0
ϕ . Furthermore, by

Proposition 3.6, there is a x∞ ∈ L2(�; L2(0,∞)) such that the solution Xx∞
ϕ is strictly sta-

tionary. Notice that for every z ∈ L2(0,∞) the function ζz : [0,∞)→ [0,∞) defined by

ζz(t ) :=
(∫ ∞

0
|z(t + ξ )|2 dξ

) 1
2

is non-increasing (since the integrand is non-negative) and it holds that limt→∞ ζz(t ) = 0
(i.e. the semigroup (S(t ), t ≥ 0) is strongly stable). Hence, by Proposition 3.5, we have that
for every initial condition x ∈ L2(�; L2(0,∞)), the limitingmeasure forXx

ϕ exists and equals
μ∞. Moreover, we have

sup
t≥0

Tr qt = H(2H − 1)
∫ ∞
0

∫ ∞
0

×
(∫ ∞

0
(u+ ξ + 1)−β (v + ξ + 1)−β dξ

)
|u− v|2H−2 du dv <∞.

Let us look closer at the integral J(β,H):

J(β,H) :=
∫ ∞
0

∫ ∞
0

(∫ ∞
0
(u+ ξ + 1)−β (v + ξ + 1)−β dξ

)
|u− v|2H−2 du dv

= 2
∫ ∞
0

∫ ∞
1
(u+ ξ )−β

(∫ u

0
(v + ξ )−β (u− v )2H−2 dv

)
dξ du



STOCHASTIC ANALYSIS AND APPLICATIONS 409

using the Tonelli theorem. Since∫ u

0
(v + ξ )−β (u− v )2H−2 dv = ξ−βu2H−1

∫ 1

0

(
1+ z

u
ξ

)−β
(1− z)2H−2 dz,

we have

J(β,H) =

= 2
∫ ∞
1
ξ 2H−2β−1

(∫ ∞
0

(
1+ u

ξ

)−β (u
ξ

)2H−1

×
(∫ 1

0

(
1+ z

u
ξ

)−β
(1− z)2H−2 dz

)
du

)
dξ

= 2
[∫ ∞

1
ξ 2H−2β dξ

] [∫ 1

0
(1− z)2H−2

(∫ ∞
0
(1+ y)−βy2H−1(1+ zy)−β dy

)
dz
]
.

(4.2)

Clearly, J(β,H) = ∞ if β ≤ H + 1/2. If β > H + 1/2, the first integral is finite and we
can continue the chain (4.2) as

= 2�(2H)�(2β − 2H)
�(2β)

(∫ ∞
1
ξ 2H−2β dξ

)(∫ 1

0
(1− z)2H−22F1(β, 2H, 2β, 1− z) dz

)
,

where� is the Gamma function and 2F1 is the Gauss hypergeometric function. The last equal-
ity follows by [35, formula (1.6.7) on p. 20] which can be used if β > H . The second integral
can be written as ∫ 1

0
z2H−22F1(β, 2H, 2β, z) dz.

If β > 2H , 2F1(β, 2H, 2β, z) is finite at z = 1 (see [36, formula (15.4.20) on p. 387]).
If β = 2H , it holds that

lim
z→1−

2F1(β, 2H, 2β, z)
− log(1− z)

= �(2H + β)
�(2H)�(β)

(see [36, formula (15.4.21) on p. 387]) and if β < 2H , it holds that

lim
z→1−

2F1(β, 2H, 2β, z)
(1− z)β−2H

= �(2β)�(2H − β)
�(β)�(2H)

(see [36, formula (15.4.23) on p. 387]). Therefore, if β > H , the integral converges. Hence, we
have that J(β,H) <∞ if and only if β > H + 1/2 and it follows that

J(β,H) <∞ if and only if
∫ ∞
0

(∫ ∞
0
|ϕ(ξ + r)|2 dξ

) 1
2H

dr <∞.

Hence, if β ≤ H + 1/2, we have that J(β,H) = ∞ and consequently, supt≥0 Tr qt = ∞. By
Proposition 3.3, there cannot be a limiting measure for the solution X0

ϕ . Altogether, the solu-
tion to equation (4.1) admits a limiting measure if and only if β > 1/2+H .

Consider now the case when equation (4.1) is driven by the Wiener process instead of the
fBm. That is, consider the equation

dXt = AXt dt +Φϕ dWt , t ≥ 0, (4.3)
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where W = (Wt , t ∈ R) is the scalar Wiener process and all other symbols have the same
meaning as above. Recall that the necessary and sufficient condition for the existence of a
limiting measure for equation (4.3) is∫ ∞

0

∫ ∞
0
|ϕ(ξ + r)|2 dξ dr <∞

(see e.g. [33, Example 11.9]) and therefore, the solution to equation (4.3) has a limiting mea-
sure if and only if β > 1.

If we compare the two scenarios, we obtain that if β ∈ (1,H + 1/2], the solution to
equation (4.3) does admit a limiting measure, whereas the solution to equation (4.1) does
not. This shows that the fBm of H > 1/2 is worse in terms of stabilizing this equation than
the Wiener process. In fact, the more regular the fBm is (i.e. the greater the parameter H),
the worse are its stabilizing effects.

Example 4.2. Consider the stochastic heat equation on an openbounded domain O ⊂ R
d

with C 1 boundary perturbed by an additive space-time noise η which is Rosenblatt (with a
given parameter H ∈ (1/2, 1)) in time and white or correlated in space, i.e.

∂tu = �u+ η
on R+ ×O with the Dirichlet boundary condition u = 0 on R+ × ∂O . This problem can be
formulated in terms of the stochastic evolution equation (3.1). Define

Dom(A) :=W 2,2(O ) ∩W 1,2
0 (O )

and takeA := �|Dom(A),V := L2(O ). Let {en} be a complete orthonormal basis ofU := L2(O )
and let {R(n)} be a sequence of independent copies of the two-sidedRosenblatt processRH with
a fixed H ∈ (1/2, 1). Define

Bt (g) :=
∞∑
n=1
〈g, en〉L2(O)R(n)t

for g ∈ L2(O ) and t ∈ R. Then, B = (Bt , t ∈ R) is an α-regular L2(O )-cylindrical Volterra
process (α = H − 1/2). Assume thatΦ ∈ L (L2(O )). Formally, we can write that

η(t, ξ ) = [ΦḂt](ξ )

for (t, ξ ) ∈ R+ ×O . The operatorA generates a strongly continuous semigroup (S(t ), t ≥ 0)
on the space L2(O ) and standard estimates on its Green kernel yield

‖S(r)Φ‖L2(L2(O)) � r−
d
4

for r > 0 (see [37, Section 3, Theorem 2]). Hence, if d < 4H , the convolution integral

Zt =
∫ t

0
S(t − r)Φ dBr, t ≥ 0,

is well-defined and has values in L2(O ) since in this case, (H) holds. In particular, for d = 1, 2,
there is no additional restriction on H ∈ (1/2, 1) and if d = 3, the parameter H has to be
greater than 3/4.

Since the Rosenblatt process has stationary and reflexive increments and since we assume
that {R(n)} are independent, the process B has stationary and reflexive increments. Moreover,
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we can write∫ ∞
0
‖S(u)Φ‖

2
1+2α
L2(L2(O))

dr =
∫ T0

0
‖S(u)Φ‖

2
1+2α
L2(L2(O))

dr +

+
∫ ∞
T0
‖S(u− T0)‖

2
1+2α
L (L2(O))‖S(T0)Φ‖

2
1+2α
L2(L2(O))

dr.

The first integral in the above expression is finite by (H). The second integral is finite as well
since the semigroup (S(t ), t ≥ 0) is exponentially stable, i.e. it holds that ‖S(t )‖L (V ) � e−ωt

for all t ≥ 0 and some ω > 0 (see [33, Remark A.27]). Exponential stability of the semigroup
(S(t ), t ≥ 0) implies its strong stability and hence, wemay appeal to Proposition 3.5 and infer
that for each x ∈ L2(�; L2(O )), the solution

Xx
t = S(t )x+ Zt , t ≥ 0,

admits a limiting measure μ∞. Moreover, there is a random variable x∞ (whose distribution
is μ∞) such that the solution Xx∞ is a strictly stationary process by Proposition 3.6.
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