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We consider linear regression models where both input data (the observations of indepen-
dent variables) and output data (the observations of the dependent variable) are affected
by loss of information caused by uncertainty, indeterminacy, rounding or censoring.
Instead of real-valued (crisp) data, only intervals are available. We study a possibilistic gen-
eralization of the least squares estimator, so called OLS-set for the interval model. Investi-
gation of the OLS-set allows us to quantify whether the replacement of real-valued (crisp)
data by interval values can have a significant impact on our knowledge of the value of the
OLS estimator. We show that in the general case, very elementary questions about proper-
ties of the OLS-set are computationally intractable (assuming P – NP). We also focus on
restricted versions of the general interval linear regression model to the crisp input case.
Taking the advantage of the fact that in the crisp input – interval output model the OLS-
set is a zonotope, we design both exact and approximate methods for its description. We
also discuss special cases of the regression model, e.g. a model with repeated observations.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Consider the linear regression model
y ¼ Xbþ e; ð1Þ
where y denotes the vector of observations of the dependent variable, X denotes the design matrix of the regression model, b
denotes the vector of unknown regression parameters and e is the vector of disturbances. For the purposes of this paper, we
do not need to make any special assumptions on probabilistic properties of e. We just assume that for estimation of b a linear
estimator can be used, i.e. an estimator of the form
b̂ ¼ Qy; ð2Þ
where Q is a matrix. In particular we shall concentrate on the Ordinary Least Squares (OLS) estimator, which corresponds to the
choice Q = (XTX)�1XT in (2). (As it is well-known, this estimator is a ‘‘good’’ estimator e.g. when the disturbances are indepen-
dent, identically distributed, with zero mean and finite variance.) Nevertheless, the theory is also applicable for other linear
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estimators, such as the Generalized Least Squares (GLS) estimator, which corresponds to the choice Q = (XTX�1 X)�1X�1XT in
(2), where X is either known or estimated covariance matrix of e. Other examples include estimation methods which, at the
beginning, exclude outliers and then apply OLS or GLS. These estimators are often used in analysis of contaminated data.

Throughout the paper, the symbol n stands for the number of observations and the symbol p stands for the number of
regression parameters, as it is usual in statistics.

We shall treat X and y as constants representing observed values of the independent variables and the dependent vari-
able, respectively. Then the tuple (X,y) is called data for the regression model (1).
1.1. Interval data in the linear regression model

We shall study the situation when the data (X,y) cannot be observed directly. Instead of yi and Xij, only intervals of the
form ½yi; �yi� and ½Xij;Xij� are available, where it is guaranteed that for all i 2 {1, . . . , n} and j 2 {1, . . . , p},
yi 2 ½yi; �yi� and Xij 2 ½Xij;Xij�;
where yi denotes the ith element of y and Xij denotes the (i, j)th element of X.
The replacement of real-valued (crisp) data by intervals is henceforth referred to as ‘‘censoring’’. In some literature, this

process is also called ‘‘trimming’’, ‘‘uncertaintification’’ or ‘‘intervalization’’.
1.2. Motivation

Inclusion of interval data in linear regression models is suitable for modeling variety of real-world problems. For
example:

� The data (X,y) have been interval-censored. This is often the case of medical, epidemiologic or demographic data—
only interval-censored data are published while the exact individual values are kept secret.

� Data are rounded. If we store data using data types of restricted precision, then instead of exact values we are only
guaranteed that the true value is in an interval of width 2�d where d is the number of bits of the data type for rep-
resentation of the non-integer part. For example, if we store data as integers (i.e., d = 0), then we know only the inter-
val ½~y� 0:5; ~yþ 0:5� instead of the exact value y, where ~y is y rounded to the nearest integer. This application is
important in the theory of reliable computing.

� The data are uncertain or unstable. For that reason it might be inappropriate to describe them in terms of fixed values
(X,y) only.

� Categorical data may be sometimes interpreted as interval data; for example, credit rating grades can be understood
as intervals of credit spreads over the risk-free yield curve.

� In econometric regression models, it is often the case that varying quantities are represented by their average or med-
ian values. For example, if the exchange rate for a period of 1 year should be included in the regression model, usually
the average rate of that year is taken. However, it might be more appropriate to regard the exchange rate as an inter-
val inside which the variable changes.

� Sometimes we use interval predictions as data in regression models. For example, consider a predictor of future infla-
tion (an econometric model or a panel of experts, say), which is assumed to form inflation expectations. The predic-
tions are interval. Then, another model—such as consumption model or capital expenditure model—uses the
predicted inflation expectations as a regressor. Thus, the model has to be able to work with an interval regressor.

More applications of interval data in econometrics are found in [7]. Applications in information sciences can be found in
[11]; see also applications in ergonomics [10], optimization and operational research [15,37,42,71], speech learning [45] and
in pattern recognition [39,43].

A variety of methods for estimation of regression parameters in a regression with interval data has been developed; they
are studied in statistics [8,22,36,41,44,49,55,76], where also robust regression methods have been proposed [32,50], in fuzzy
theory [24,29,30,72–74] as well as in computer science [12,31,34]. An algebraic treatment of least squares methods for inter-
val data has been considered in [5,18].
1.3. Crisp and interval numbers, vectors and matrices

We need to distinguish between real-valued data and interval data. In the context of this distinction, real-valued (or: nu-
meric) data are called crisp data. Then, a crisp number is just a real number. Similarly, we say that a matrix/vector is crisp
when we want to emphasize that all elements of the matrix/vector are real numbers (and not intervals). In general, the term
‘‘crisp’’ can be also understood as ‘‘non-interval’’.

If two real matrices X1, X2 are of the same dimension, the relation X1 6 X2 is understood componentwise.



28 M. Černý et al. / Information Sciences 244 (2013) 26–47
Definition 1.

(a) Let a and a be scalars such that �1 < a 6 a <1. The interval number a is the closed interval ½a; a�.
(b) Let X 6 X be two M � N real matrices. The interval matrix X ¼ ½X;X� is the set
1 Tho
instabili
fX 2 M�N : X 6 X 6 Xg:
The interval vector y ¼ ½y; �y� is a special case of the interval matrix with one column.

Interval numbers, vectors and matrices are typeset in boldface.
Arithmetic operations + and � with interval numbers a ¼ ½a; �a� and b ¼ ½b; �b� are defined in a natural way (see [1]):
aþ b ¼ ½aþ b; �aþ �b�;
a � b ¼ ½minfab; a�b; �ab; �a�bg;maxfab; a�b; �ab; �a�bg�:

ð3Þ
From the definition, the following lemma is obvious:

Lemma 2. A finite sequence of sums and products of interval numbers is a bounded set.
1.4. The possibilistic approach to linear regression models with interval data

To recall: we are in the situation that only intervals (X,y) are available instead of the exact values (X,y) and we know that
X 2 X and y 2 y. The replacement of real-valued data (X,y) by interval values (X,y) causes some loss of information. The main
aim of this text is to quantify how the loss of information caused by replacement of (X,y) by ðX;yÞ (henceforth referred to as ‘‘cen-
soring’’)1 influences our knowledge of the value of the OLS estimator b̂. In particular, our aim is to study tools which can help the
analyst of data ðX;yÞ to understand whether censoring of data can cause a ‘‘serious’’ uncertainty about b̂.

The next definition generalizes of the notion of the estimator b̂ for the case when the real-valued data (X,y) are replaced
by intervals ðX;yÞ in (1). The definition generalizes the notion of the OLS-set studied in [9].

Definition 3.

(a) A tuple ðX;yÞ, where X is an n � p interval matrix and y is an n � 1 interval vector, is called data of an interval regression
model, or just interval model for short.

(b) The OLS-set of the interval model ðX; yÞ is defined as
OLSðX; yÞ ¼ fb 2 Rp : ð9X 2 XÞð9y 2 yÞ XTXb ¼ XTyg:
The motivation for the definition is straightforward. Our aim is to use OLS to obtain an estimate of the unknown vector of
regression parameters b in the model (1). However, observations are censored, i.e., we only know intervals X and y that are
guaranteed to contain the directly unobservable data (X,y). Then, the set OLSðX;yÞ contains all possible values of OLS-esti-
mates of b as X and y range over X and y, respectively. We say that OLSðX;yÞ is a possibilistic version of the notion of the
OLS estimator.

The set OLSðX;yÞ captures the loss of information caused by censoring of the data included in the regression model. For a
user of such a regression model, it is essential to understand whether the set OLSðX;yÞ is, in some sense, ‘‘large’’ or ‘‘small’’;
that is, whether the impact of the loss of information on our knowledge of the value of the OLS estimator may be considered
to be serious or not. More generally, the user of ðX;yÞ needs a suitable description of the set OLS(X,y). When p = 2 or p = 3,
then the set can be visualized in the parameter space. However, in higher dimensions visualization is quite complicated.
Hence we need methods for a suitable description of the set OLSðX;yÞ; in particular, we would like to design computationally
feasible methods. In Section 2 we shall show that this task is very hard from the computational point of view.

1.5. Two interpretations of the possibilistic approach

Possibilistic interpretation. If we do not assume any distribution on X or y, then the set OLSðX;yÞ contains all possible values
of b̂ ¼ ðXTXÞ�1XTy as X ranges over X and y ranges over y. We also say that OLSðX;yÞ is a covering of b̂.

The boundary of the set OLSðX;yÞ can be understood as the worst-case impact of interval censoring on our knowledge of
the value of the estimator. The possibilistic approach then can be characterized as a tool for analysis of the worst case.

Probabilistic interpretation. If X and y are random variables such that the supports of the distributions of X and y are X and
y, respectively, then b̂ ¼ ðXTXÞ�1XTy is a random variable satisfying Pr½b̂ 2 OLSðX; yÞ� ¼ 1. Then the covering OLS(X,y) can be
regarded as a ‘‘region of 100% certainty about b̂’’.
ugh, for simplicity of presentation, we speak about ‘‘censoring’’, it should be kept in mind that not only censoring, but also rounding, uncertainty, indeterminacy,
ty or interval nature of data can be the reason for inclusion of intervals in the model.
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In the theory of Sections 2–6, we do not treat (X,y) as random variables over (X,y) (though it is one of possible interpre-
tations); hence we need no assumptions about their distribution. (The case when (X,y) are considered as random variables is
studied in literature, see e.g. [68].)

1.6. Special cases of the interval regression model

An interval regression model ðX ¼ ½X;X�; y ¼ ½y; �y�Þ is also called a general model or interval input – interval output model.
Interesting special cases are (see [29,33]):

(i) crisp input – interval output model is a model with X ¼ X;
(ii) interval input – crisp output model is a model with y ¼ �y;

(iii) crisp input – crisp output model is a model with X ¼ X and y ¼ �y.

‘‘Crisp input – crisp output’’ is just another name for the traditional model (1).
If X is real-valued (crisp), i.e. if X ¼ X ¼: X, then instead of OLSðX;yÞ we write OLS(X,y). (And similarly in the case of y

crisp.)

1.7. The structure and contribution of the paper

Sections 2 and 6 are devoted to the OLS-set of the general model, its computational properties and approximation meth-
ods. In particular, we prove that very basic questions about the OLS set are computationally hard. In Section 3 we deal with a
geometric characterization of the OLS-set of the crisp input – interval output model and prove several computational results.
We also investigate special cases, such as models with repeated observations, where we can improve some results. In Sec-
tion 4 we design and discuss methods for approximation of the OLS-set of the crisp input – interval output mode and in Sec-
tion 5 we propose a general meta-algorithm for construction of exact descriptions of the OLS-set of the crisp input – interval
output model. Finally, in Section 6 we discuss several methods for computation of approximations (enclosures) of the OLS-
set for the general interval input – interval output model.

2. The general model

Our aim is to find a description of the set OLS(X,y) given X ¼ ½X;X� and y ¼ ½y; �y�. Such a description may take a variety of
forms—for example, we might try to find the smallest enclosing ellipse, to find the small enclosing box (i.e. interval vector) or
to determine other characteristics of the set such as volume or diameter.

Theorem 4, which is the main result of this Section, shows that in general we cannot expect to be successful in a com-
putationally feasible way. The point is that any reasonable description of OLS(X,y) must allow the user to decide whether
the set is bounded or not. Theorem 4 says that there is no polynomial-time method for this question (assuming P – NP).

Some complexity-theoretic notions. Before we state and prove Theorem 4, we briefly sketch some notions from complexity
theory, which will be used throughout the paper. Details can be found e.g. in [3,56]. We assume that the following notions
are well-known: P, NP, co-NP, ]P, polynomial-time many-one reducibility, hardness and completeness for the classes NP,
co-NP, ]P. (Recall that ]P can be seen as a problem of computing the number of satisfying assignments of a given boolean
formula.)

The symbol PF stands for the class of total functions computable in Turing deterministic polynomial time.

2.1. The main result of Section 2

Theorem 4. Let X;X; y; �y be rational and denote X ¼ ½X;X� and y ¼ ½y; �y�. Deciding whether the set OLS(X,y) is bounded is a co-NP-
hard problem.
Proof. Let X be an n � p interval matrix. If there is X 2 X with column rank < p, then for any y the set
fb : XTXb ¼ XTyg
is an affine space of dimension at least one, and hence is unbounded.
Assume that for every X 2 X, the column rank of X is p. Then (XTX)�1 exists for each X 2 X. By Cramer’s Rule, we can write
ððXTXÞ�1Þij ¼ �
detðXTXÞ½i;j�

detðXTXÞ
where A[i, j] results from A by deleting the jth row and the ith column. By continuity of det(�) on the compact set X, the set
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fdetðXTXÞ : X 2 Xg
is a closed interval which, by assumption, does not contain zero. It follows that the set
1
detðXTXÞ

: X 2 X

( )
is a closed interval. Let us denote the interval ½d; d�. Also the set
fdetðXTXÞ½i;j� : X 2 Xg
is an interval of the form ½dij; �dij�. Hence we can write
b̂i ¼ fððXTXÞ�1XTyÞi : X 2 X; y 2 yg

¼
Xp

j¼1

ððXTXÞ�1Þij �
Xn

k¼1

Xkj � yk

" #
: X 2 X; y 2 y

( )

#
Xp

j¼1

�½d; �d� � ½dij; �dij� �
Xn

k¼1

½Xkj;Xkj� � ½yk; �yk�
" #
and the last expression is a finite sequence of sums and products of intervals. By Lemma 2 it follows that it is a bounded set.
We have shown that the set OLS(X,y) is unbounded if and only if there is an X 2 X such that the column rank of X is <p. In

Section 3.19 of [63] it is shown that the latter problem is NP-hard. We have constructed a reduction from an NP-hard
problem to the problem C:¼‘‘is OLS(X,y) unbounded?’’. It follows that the problem co-C = ‘‘is OLS(X,y) bounded?’’ is co-NP-
hard. h

It follows that if we want to find a computationally feasible description of OLS(X,y) we must reformulate the problem. We
can follow (at least) two ways:

(a) either to search for descriptions and/or approximations of OLS(X,y) which are guaranteed to be correct only under
additional assumptions, or

(b) to consider special cases of the general model.

There is a variety of approaches to (a), see [1,25,27,28,35,52,63] and a comparison study [53]. Some of them will be dis-
cussed in Section 6.

In the next section we follow the way (b) and study the restriction to the crisp input – interval output model. Observe that
this restriction is the only restriction among (i–iii) worth of further investigation. (Recall that the restrictions (i–iii) were de-
fined in Section 1.6.) In the crisp input – crisp output model, the set OLS(X,y) is trivial—it is either a single point or an affine space
in the parameter space. And the restriction to the interval input – crisp output model is ruled out by the following observation.

Corollary 5 (to the proof of Theorem 4). Let X;X and y be rational and denote X ¼ ½X;X�. Deciding whether the set OLS(X, y) is
bounded is a co-NP-hard problem.
Proof. The reduction constructed in the proof of Theorem 4 remains valid also if y is crisp. h

Remark to Theorem 4. The hardness result of Theorem 4 does not guarantee decidability of the problem whether the set
OLS(X,y) is unbounded. Let us show that the problem is decidable. (This fact is not obvious at the first sight.) We have seen
that the set OLS(X,y) is unbounded iff there is a matrix X 2 X ¼ ½X;X� which does not have full column rank. Assume that X
and X are rational; then it is easy to see that if there is a matrix X 2 X which does not have full column rank, then there is a
rational matrix X0 2 X which does not have full column rank. This observation proves that the problem is recursively enumer-
able—it suffices to enumerate all rational matrices X 2 X, using the fact that the set of all rational matrices X 2 X is countable.
(Notions of Recursion Theory can be found in [54].)

The assumption that X and X are rational implies that all entries of X and X can be multiplied by the common denominator
of fractions occurring in X and X. It means that we can assume that X and X are integer matrices. The following holds: there is
X 2 X which does not have full column rank if and only if
ð9XÞ½X 6 X 6 X& det XTX ¼ 0�; ð4Þ
where X ranges over n�p. By the assumption of integrality of X and X, the expression (4) is a sentence in the language of
arithmetic (see [23]) — indeed, detXTX is a polynomial in X11, . . . , Xnp and thus can be expressed only with addition and
multiplication.

Recall that the theory of Real Closed Fields (RCF) is a theory with arithmetical language which proves:

� basic properties of the theory of fields (in particular, closure under additive inversion and closure under multiplicative
inversion for all nonzero elements);
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� Bolzano’s Intermediate Value Theorem for all polynomials of one variable (with integer coefficients).

By Tarski’s Theorem [75], the theory RCF is complete. And is a model of RCF. It follows that there is an algorithmic pro-
cedure which decides whether the sentence (4) is true (in )—it suffices to enumerate all proofs of RCF (using the fact that
RCF is recursively axiomatizable) and wait until a proof of (4) or its negation appears. This proves decidability.

More can be found in [60–62,64].

3. Characterization of the set OLS(X,y) in the crisp input – interval output model

In this section we assume that X is a crisp matrix with full column rank.
The aim of this section is twofold:

� we shall show a geometric characterization of the set OLS(X,y);
� we shall show that though there are natural descriptions of the set OLS(X,y), in general they cannot be computed in poly-

nomial time.

Hence, from the computational point of view, the situation is (in some sense) as disappointing as in the general case.
However, the reason is quite different, as we shall see in Theorem 10.

The negative complexity result gives a good motivation for finding approximations and for inspection of special cases. We
will

� show interval and ellipsoidal approximations of the set OLS(X,y);
� show that natural descriptions of the set OLS(X,y) are polynomial-time constructible if we restrict ourselves to a fixed p

(i.e., to a class of regression models with a fixed number of parameters).

3.1. Geometric characterization of the set OLS(X,y)

First we need to review some notions from geometry of convex polyhedra; for further reading see [77]. The next defini-
tion formalizes the Minkowski sum. In geometry literature the sum is usually defined more generally. The following simpler
definition is sufficient for our purposes.

Definition 6. The Minkowski sum of a set A # k and a vector g 2 k is the set
A _þg ¼ faþ kg : a 2 A; k 2 ½0;1�g:

It is easily seen that for a convex set A, it holds
A _þg ¼ convðA [ faþ g : a 2 AgÞ;
where conv denotes the convex hull.

Definition 7.
(a) The zonotope generated by g1, . . . ,gN 2 k with shift s 2 k is the set
Zðs; g1; . . . ; gNÞ ¼ ð� � � ððfsg _þg1Þ _þg2Þ _þ � � � _þgNÞ:
The vectors g1, . . . ,gN are called generators.
(b) The dimension of the zonotope Z ¼ Zðs; g1; . . . ; gNÞ, denoted dimðZÞ, is the dimension of the linear space generated by

g1, . . . , gN.

Instead of ð� � � ððfsg _þg1Þ _þg2Þ _þ � � � _þgNÞ we shall write fsg _þg1 _þg2 _þ � � � _þgN only.
It is easily seen that a zonotope is a convex polyhedron; see Fig. 1.
The following geometric characterization of the set OLS(X,y) was derived in [9]; see also [21,69].

Theorem 8. Let X 2 n�p be a matrix of full column rank and y ¼ ½y; �y� an n � 1 interval vector. Then
OLSðX; yÞ ¼ ZðQy; Q 1ð�y1 � y1Þ; . . . ;Q nð�yn � ynÞÞ;
where Q = (XTX)�1XT and Qi is the ith column of Q. h

There is an interesting geometric characterization of zonotopes. Namely, a set Z# Rk is a zonotope if and only if there
exists a number m, a matrix Q 2 k�m and an interval m-dimensional vector y (called m-dimensional cube) such that
Z ¼ fQy : y 2 yg. The interesting case is m > k. In that case we can say that zonotopes are images of ‘‘high-dimensional’’ cubes



(A)

(B)

Fig. 1. A sequence of zonotopes Z1 ¼ Zðs; g1Þ, Z2 ¼ Zðs; g1; g2Þ, . . ., Z5 ¼ Zðs; g1; g2; g3; g4; g5Þ, called evolution of the zonotope Zðs; g1; g2; g3; g4; g5Þ. (A) with
generators Depicted and (B) the same zonotopes plotted simply as polytopes (without generators depicted).
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in ‘‘low-dimensional’’ spaces under linear mappings, see Fig. 2. In our setting, the set OLS(X,y) is an image of the cube y under
the mapping determined by the matrix Q = (XTX)�1XT. (Recall that in standard crisp input – crisp output regression, this cor-
responds to the fact that the OLS-estimator b̂ is the image of the output vector y under the same mapping.)

In the next lemma we summarize basic symmetry properties of the zonotope OLS(X,y). In fact, the symmetry properties
hold for any zonotope.

Lemma 9.

(a) The set OLS(X,y) is centrally symmetric.
(b) The center of OLS(X,y) is c :¼ Qyþ 1

2

Pn
i¼1Q ið�yi � yiÞ.

(c) Every face of the zonotope OLS(X,y) is a zonotope; in particular, every face is centrally symmetric.
(d) The point v is a vertex of OLS(X,y) if and only if c � 2v is a vertex.
Proof. The symmetry properties follow from the observation that Minkowski sum preserves central symmetry (i.e. if A is
centrally symmetric, then A _þg is centrally symmetric). h

3.2. Descriptions of the set OLS(X,y)

In order the user can understand what the set OLS(X,y) looks like, she/he can use any standard description applicable for
convex polyhedra. In particular, three descriptions come to mind:

(a) description of the zonotope OLS(X,y) by the shift vector and the set of generators;
(b) description of the zonotope OLS(X,y) by the enumeration of vertices;
Fig. 2. A zonotope as an image of a higher-dimensional cube [9].
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(c) description of the zonotope OLS(X,y) by the enumeration of facets. Each facet of a polyhedron can be identified with a
supporting halfspace (or hyperplane), i.e. with an inequality of the form aTx 6 c. Hence, construction of a facet descrip-
tion amounts to constructing a matrix A and a vector c such that OLS(X,y) = {x 2 p: Ax 6 c}.

The description (a) has been given by the Theorem 8: we have
s ¼ Qy; gi ¼ Q ið�yi � yiÞ for i ¼ 1; . . . ; n: ð5Þ
The descriptions (b and c) will be investigated in Sections 3.3, 3.4 and 3.5. Algorithms for their construction will be studied in
Section 5.

3.3. A negative complexity result

It is an interesting question whether there are efficient algorithms which can construct the enumerations (b and c) given
X, y and �y. We give an argument that the answer is negative. The answer follows from the simple fact that zonotopes can
have too many vertices and facets. Let VðZÞ and FðZÞ denote the number of vertices and facets of a zonotope Z, respectively.

Theorem 10. [77] For a zonotope Z# Rp with n generators it holds
VðZÞ 6 2
Xp�1

k¼0

n� 1
k

� �
and FðZÞ 6 2

n

p� 1

� �
:

Moreover, the bounds cannot be improved: for each n and p there are p-dimensional zonotopes ZV and ZF with n generators such
that VðZV Þ and FðZFÞ attain the bounds. h

The numbers VðZÞ and FðZÞ cannot be bounded by a polynomial in n and p; hence, the functions enumerating vertices
and facets are not in PF for the simple reason that their output cannot be bounded by a polynomial in the size of the input.
By the next lemma we know that this negative result also holds for zonotopes which are OLS-sets of crisp input – interval
output regression models.

Lemma 11. For every p-dimensional zonotope Z with n generators, there exists a regression model (X,y) with p regression
parameters and n observations such that VðOLSðX; yÞÞ ¼ VðZÞ and FðOLSðX; yÞÞ ¼ FðZÞ.
Proof. Let g1, . . . , gn be the generators of Z. Consider the matrix G 2 p�n with columns g1, . . . , gn and the n-dimensional vec-
tor z with zi :¼[0, 1] for i = 1, . . . , n.

First we observe that the zonotope
Z0 :¼ fGz : z 2 zg
is, up to a shift, the same zonotope as Z ¼ Zðs; g1; . . . ; gnÞ:
fGz : z 2 zg ¼ fg1z1 þ g2z2 þ � � � þ gnzn :

z1 2 ½0;1�; z2 2 ½0;1�; . . . ; zn 2 ½0;1�g
¼ f0g _þg1 _þg2 _þ � � � _þgn

¼ Zð0; g1; . . . ; gnÞ:
By the assumption that Z has dimension p, we know that G has full row rank, and hence GGT is regular.
Consider the model (X,y) with X :¼ GT and y :¼ z. Then
OLSðX; yÞ ¼ fðXTXÞ�1XTy : y 2 yg ¼ fðGGTÞ�1Gz : z 2 zg:
The last expression shows that the zonotope OLS(X,y) is an image of the zonotope Z0 under the regular linear mapping
n ´ (GGT)�1n. Regular linear mappings preserve the number of facets and vertices of polyhedra; hence VðOLSðX; yÞÞ ¼
VðZÞ and FðOLSðX; yÞÞ ¼ FðZÞ. h
3.4. A positive complexity result

Theorem 10 has an interesting corollary if we treat the number p as a fixed constant (i.e. if we restrict ourselves to a class
of regression models with a fixed number of regression parameters).

Corollary 12 9. If p is fixed then
VðOLSðX; yÞÞ 6 Oðnp�1Þ and FðOLSðX; yÞÞ 6 Oðnp�1Þ: �
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Corollary 12 implies that the number of vertices and the number of facets is polynomial in n (provided that p is fixed). In
Section 5 we show a general method for enumeration of vertices and facets. The assumption that p is fixed implies that the
method of Section 5 runs in polynomial time under that assumption.
3.5. Regression models with repeated observations

Let p be fixed. The statement of Corollary 12 can be easily strengthened to the form
VðOLSðX; yÞÞ 6 OðndimðOLSðX;yÞÞ�1Þ;
FðOLSðX; yÞÞ 6 OðndimðOLSðX;yÞÞ�1Þ;
where dim refers to Definition 7b. In statistical applications, this reduction usually does not help since we have dim
(OLS(X,y)) < p only rarely. This could happen, for example, if a great majority of observations are crisp, i.e. if the cardinality
of fi 2 f1; . . . ;ng : yi < �yig is smaller than p.

However, there are important special cases where another significant reduction can be reached. The reduction is based on
the following lemma, the proof of which is straightforward.

Lemma 13 (reduction lemma). Let Z :¼ Zðs; g1; g2; . . . ; gnÞ and for some i and j, i < j it holds gj = agi, where a 2 . Then
Z ¼
Zðs; g1; . . . ; gi�1; gi þ gj; giþ1; . . . ; gj�1; gjþ1; . . . ; gnÞ if a P 0;
Zðsþ gj; g1; . . . ; gi�1; gi � gj; giþ1; . . . ; gj�1; gjþ1; . . . ; gnÞ if a < 0:

(
�

The generator gj is called redundant. The process of removal of redundant generators may be iterated until all are re-
moved; then we obtain a certain shift s0 and a reduced set of generators g01; . . . ; g0n0 with n0 6 n defining the same zonotope.
Later, the following notation will be useful:
redðs; g1; . . . ; gnÞ :¼ s0; g01; . . . ; g0n0
� �

: ð6Þ
We can reformulate Theorem 10 and Corollary 12 in the following way.

Corollary 14. Let � be an equivalence on rows of X: Xi � Xj iff Xi is a multiple of Xj. Let m be the number of equivalence classes of �.
Then,
VðOLSðX; yÞÞ 6 2
Xp�1

k¼0

m� 1
k

� �
and FðOLSðX; yÞÞ 6 2

m
p� 1

� �
:

In particular, if p is fixed, then V(OLS(X,y)) 6 O(mp�1) and F(OLS(X,y)) 6 O(mp�1).
Proof. If Xi is a multiple of Xj, then Q ið�yi � yiÞ is a multiple of Q jð�yj � yjÞ and we may apply Lemma 13. h

If the absolute term is involved in the regression model (i.e., X contains all-one column), then Xi � Xj iff Xi = Xj. So, rather
that saying that the combinatorial complexity of the zonotope OLS(X,y) depends on the number of observations, it is more
appropriate to say that the complexity depends on the number of distinct design points (i.e. distinct rows of X). Regression mod-
els with m	 n, called models with repeated observations, are very important in practice.

3.6. Algorithmic properties of OLS(X,y)

The following theorem summarizes some complexity-theoretic facts about the set OLS(X,y), which will be useful in the
next sections. In the proof we use the well-known fact that linear programming is a polynomial-time solvable problem,
see [70].

Definition and Theorem 15. Whenever we write X; y; �y and b, we assume that they are rational.

(a) We say that b is admissible for (X,y) if b 2 OLS(X,y). The question ‘‘is b admissible?’’ is in P.
(b) We say that b is extremal for (X,y) if b is on the boundary of OLS(X,y). The question ‘‘is b extremal?’’ is in P.
(c) The question ‘‘is b a vertex of OLS(X,y)?’’ is in P.
Proof. As observed in [9], admissibility is decidable via the linear program
max 0Ty : b ¼ Qy; y 6 y 6 �y: ð7Þ
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To prove (b) assume that the center of OLS(X,y) is 0 (by Lemma 9b, the zonotope OLS(X,y) can be shifted). Then b is extremal
iff the optimal value of the linear program
max w : wb ¼ Qy; y 6 y 6 �y
is w = 1.
In the proof of (c) we may assume that all generators gi :¼ Qið�yi � yiÞ are nonzero. Observe that b is not a vertex iff there

exists a generator gi such that b can be shifted both in the direction gi and in the direction � gi. So, b is a vertex iff for each
i = 1, . . . , n it holds that the linear program
max w : bþwgi ¼ Qy; b�wgi ¼ Qz; y 6 y 6 �y; y 6 z 6 �y
has the optimal value w = 0. h
3.7. A linear combination of regression parameters

Assume that a nonzero vector c of parameters is given. Sometimes we need to estimate the linear combination cTb of
regression parameters.

An example of the choice of c is cT = (1,0, . . . , 0). In this case we want to estimate the first regression parameter. This
choice is interesting, for example, in the model y = b1x2 + b2 x + b3 + e; if we can estimate b1 with high precision, then we
can (reliably) decide whether it is zero or not. In other words, we can test whether the model is linear in x or not.

This is just a short motivation, why the linear combination cTb̂ is important in classical statistics. Here we address the
question how our knowledge of the value cTb̂ can be affected by censoring.

By Lemma 9(b) we can assume that the center of OLS(X,y) is 0. Then we can solve the linear program
max w : wc ¼ Qy; y 6 y 6 �y:
If w⁄ is the optimal value, then vc:¼w⁄k ck, where k � k is the L2-norm, is the radius of OLS(X, y) in the direction c. Then vc

measures how censoring can affect our knowledge of the value cTb̂ in the worst case. If the value vc is small, then we can
say that the loss of information caused by censoring effect is negligible. (Often it is the case that for some choices of c the value
vc is small while for other choices of c the value vc is large.) The interval [�vc,vc] can be called as covering of cTb̂ or ‘‘region of
100% certainty’’ about the value cTb̂.

4. Approximations of the set OLS(X,y) in the crisp input – interval output model

A complete vertex description and a complete facet description of the zonotope OLS(X,y) is available using the methods
described in Section 5. In many cases this description is not friendly for a user—for example, in a model with p = 4 regression
parameters and n = 100 observations, the enumeration of vertices or facets can fill up a thick book. This is just one reason
justifying that it is suitable to consider some user-friendly approximations of the set OLS(X,y). Another reason is that the
methods of Section 5 do not run in polynomial time.

Let Q denote the matrix (XTX)�1XT.

4.1. Interval approximation

As observed in [9], by (3) we obtain that for any b 2 OLS(X,y) and any i = 1, . . . ,p,
Xn

j¼1

minfQ ijyj;Q ij�yjg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:bi

6 bi 6
Xn

j¼1

maxfQ ijyj;Q ij�yjg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:�bi

: ð8Þ
Moreover, the cube ½b; �b� is the smallest cube containing OLS(X,y). This bound is easily computable.

4.2. Ellipsoidal approximations

Combinatorially complex polyhedra are often approximated with ellipses: an ellipse is a convex set which is quite flexible
to approximate the shape of the polyhedron and it is sufficiently simple to be described.

An ellipse E is described by a center point s and a positive definite matrix E such that
E ¼ fx 2 Rp : ðx� sÞTE�1ðx� sÞ 6 1g:
We do not know a polynomial-time algorithm for construction of the best (i.e., the smallest with respect to volume) circum-
scribing ellipse for the set OLS(X,y). It is an intriguing research problem; however, we expect a hardness result on this com-
putational problem rather than a polynomial-time algorithm.

The following ellipse E ¼ ðE; sÞ, studied in [9], can be seen as a weaker form:
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s ¼ 1
2

Qð�yþ yÞ;

E ¼ Q � diag
n
4
ð�y1 � y1Þ2; . . . ;

n
4
ð�yn � ynÞ2

� �
� QT;

ð9Þ
where diag(n1, . . . , nn) denotes the diagonal matrix with diagonal entries n1, . . . , nn. This is the ellipse which is the image of
the smallest ellipse circumscribing y in n under the mapping n ´ Qn. This proves OLSðX; yÞ# E.

However, the ellipse (9) is highly redundant if p	 n. Thus, in high dimensions (i.e., with n large), other methods for ellip-
soidal approximation are more suitable. They will be investigated in the next section.

The paper [9] also contains an example on the tightness of approximations (8) and (9).
A comment on the relation between interval and ellipsoidal approximations. In general, ellipsoidal approximations give

slightly different information than the interval approximation given by (8). The interval ½bi;
�bi� given by (8) provides a tight

bound for the value b̂i individually. Notwithstanding, the box b ¼ ½b1;
�b1� � � � � � ½bp;

�bp� may overestimate the zonotope
OLS(X,y) significantly. Such a situation is depicted in Fig. 3. We can see that ½b1;

�b1� is the tightest interval covering b̂1.
And, independently, we can see that ½b2;

�b2� is the tightest interval covering b̂2. The ellipsoidal approximation gives additional
information: it shows us, for example, that it cannot happen that b̂1 ¼ b1 and b̂2 ¼ �b2 simultaneously.

In some sense, the situation is similar to the construction of confidence regions in classical (probabilistic) linear regres-
sion: either we can construct the confidence interval for each individual regression parameter separately, or we can con-
struct the confidence ellipsoid for all regression parameters simultaneously.

4.3. Approximation of OLS(X,y) by (a form of) the Löwner–John ellipse

If E is an ellipse (E,s), then a � E is the ellipse (a2E,s), i.e. an ellipse blown-up by a factor a.

Definition 16. Let P # p and e > 0.
(a) Any ellipse E satisfying 1
p � E# P # E is called Löwner–John ellipse for P. Any ellipse E satisfying 1

p � E# P # ð1þ eÞ � E is
called e-approximate Löwner–John ellipse for P.

(b) Any ellipse E satisfying 1ffiffi
p
p � E# P # E is called Jordan ellipse for P. Any ellipse E satisfying 1ffiffi

p
p � E# P # ð1þ eÞ � E is called

e-approximate Jordan ellipse for P.

The following theorems, known as Löwner–John Theorem and Jordan Theorem, respectively, are basic results in polyhe-
dral geometry (see [20,70]):

(i) any full-dimensional bounded convex set P # p has a Löwner–John ellipse;
(ii) any full-dimensional bounded centrally symmetric convex set P # p has a Jordan ellipse.

Moreover, the factors 1
p and 1ffiffi

p
p in Definition 16 cannot be improved in general unless the statements (i and ii) are violated.

The Löwner–John and Jordan ellipses have the advantage that they provide us with both a lower and an upper bound on the
boundary of P. When P = OLS(X,y), we get an interesting approximation of OLS(X,y).

If the set OLS(X,y) is full-dimensional, it has a Jordan ellipse—we know that zonotopes are centrally symmetric. Of course,
we would like to describe an algorithmic method for finding the ellipse. Unfortunately, proofs of both theorems (i and ii) are
nonconstructive.

Algorithms for construction of Löwner–John ellipses and Jordan ellipses are studied in computational geometry. In par-
ticular, the following theorem was proved by Goffin [19]; see also [6,20,70]. It is known as a constructive form of the Löw-
ner–John Theorem for polyhedra.
Fig. 3. Interval and ellipsoidal approximations of OLS(X,y).
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(i) Let e > 0 be fixed. Given rational A and b such that the polyhedron P:¼{x 2 p: Ax 6 b} is full-dimensional and bounded, its
e-approximate Löwner–John ellipse can be found in polynomial time.

The method is known as Goffin’s Algorithm and it is based on Khachiyan’s Ellipsoid Method. The method can be adapted
for central-symmetric polyhedra (see [6,20]). Then, Goffin’s Theorem can be stated in the following way. It is known as a
constructive form of the Jordan Theorem for polyhedra.

(ii) Let e > 0 be fixed. Given rational A and b such that the polyhedron P :¼ {x 2 p: Ax 6 b} is full-dimensional, bounded and
centrally symmetric, its e-approximate Jordan ellipse can be found in polynomial time.

At the first sight it seems that the form (ii) of Goffin’s Theorem could be used for a polynomial-time construction of the
Jordan ellipse for OLS(X,y). But there is a serious obstacle: the algorithm requires the facet description Ax 6 b of the set
OLS(X,y). From Section 3.3 we know that in general, computation of A and b, when generators g1, . . . , gn are given, is not
a polynomial-time procedure.

From Section 3.4 we know that it is a polynomial time procedure under the assumption that the dimension p is fixed.
Indeed, the facet description can be found using the methods of Section 5. This observation together with Goffin’s Theo-
rem (ii) imply the following interesting statement:

Corollary 17. Let e > 0. Let the dimension p be fixed. There is a polynomial-time algorithm which computes the e-approximate
Jordan ellipse for OLS(X,y).

If the dimension is not fixed, we can prove only a weaker result [6].

Theorem 18 6. Let e > 0 be fixed. There is a polynomial-time algorithm which computes the e-approximate Löwner–John ellipse
for OLS(X,y).
Problem. It is an intriguing research problem whether Theorem 18 can be reformulated with the Jordan ellipse instead of
the Löwner–John ellipse. (Or at least with an ellipse E satisfying p�c � E# OLSðX; yÞ# ð1þ eÞ � E with some c 2 1

2 ;1
� �

.)
By [6], the problem is tightly interconnected with the following question. Assume that OLS(X,y) is centered at zero (by

Lemma 9(b), this assumption is without loss of generality). Let Kc :¼ {x:kxk 6 c} be a ball with radius c. Let T be the problem
‘‘given rational X; y; �y and c > 0, decide whether Kc # OLS(X,y)’’. The following holds: if T 2 P, in Theorem 18 the Löwner–John
ellipse can be replaced by the Jordan ellipse. On the other hand, if T R P, this fact seems to be a serious obstacle for the Goffin’s
method which probably rules out the method from the attempts to improve Theorem 18.

At the moment we cannot prove T 2 P. We conjecture that the problem T is co-NP-complete.

4.4. Approximation of volume of OLS(X,y)

Volume of OLS(X,y) is a natural measure of its size, i.e. a natural measure of ‘‘uncertainty’’ about the value of the OLS-
estimator. In Section 5 we shall present an algorithm for exact computation of volume of OLS(X,y). However, that algorithms
requires (in general) high computation resources: no polynomial-time algorithm (polynomial in n and p) is known, and
probably none exists, since the problem is known to be ]P-complete [14].

Theorem 15a combined with (8) suggests a simple procedure for Monte-Carlo approximation of volume:

1. using (8), generate a random point b 2 ½b; �b�;
2. using Theorem 15a, test whether it is admissible.

The ratio of the admissible points to the total number of repetitions of 1. �2. converges to the ratio of the volume of
OLS(X,y) to the volume of the box ½b; �b�. This procedure is interesting in particular in high dimensions. However, more
interesting algorithms for the problem are known; in particular, see the randomized algorithm in [13].

5. The Reduction-and-Reconstruction-Recursion (‘‘RRR’’) Algorithm

In this section we are still dealing with the crisp input – interval output model, i.e. X ¼ X ¼: X. From the previous sections
we know that in this case, the set OLS(X,y) is a zonotope. Here we introduce a meta-algorithm that can be used for answering
several questions about OLS(X,y). In particular, we get an algorithm for

(a) enumeration of vertices of OLS(X,y),
(b) enumeration of facets of OLS(X,y) (i.e. finding a description of OLS(X,y) in terms of linear inequalities in p),
(c) computation of volume of OLS(X,y).

Recall that an approximate algorithm for estimation of volume has been presented in Section 4.4.
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Algorithms for zonotopes are discussed in [4,16].
Given a family a1, . . . , ak of vectors, Lða1; . . . ; akÞ denotes the linear space spanned by a1, . . . , ak.

Remark 1. Given a sequence of generators g1, . . . , gn of a zonotope Z# Rp, we can easily determine D :¼ dimðZÞ by
evaluation of the dimension of Lðg1; . . . ; gnÞ. Volume is understood as volume in the D-dimensional space Lðg1; . . . ; gnÞ, since
Z is full-dimensional in that space (while it is of zero volume in p if D < p).

The Reduction-and-Reconstruction-Recursion (RRR) Algorithm is a meta-algorithm which uses routines BasicCase and
Combine. Particular choices of these routines will be specified later.

Observe that for any permutation p of {1, . . . , n}, Zðs; g1; . . . ; gnÞ ¼ Zðs; gpð1Þ; . . . ; gpðnÞÞ. We may assume that whenever we
work with a sequence g1, . . . , gn of generators of a zonotope Z, the vectors g1; . . . ; gdimðZÞ are linearly independent. Say that
the output of the procedure red defined by (6) meets this requirement. Let Pv ðuÞ denote the orthogonal projection of the
vector u into the space {n:vTn = 0}.

{1} function RRRð~s; ~g1; . . . ; ~g~nÞ
{2} ðs; g1; . . . ; gnÞ :¼ redð~s; ~g1; . . . ; ~g~nÞ
{3} if g1, . . . , gn are linearly independent then
{4} OUTPUT:¼BasicCase(s;g1, . . . ,gn)
{5} else
{6} DATA1 :¼ RRR(s;g1,g2, . . . , gn�1)
{7} DATA2 :¼ RRRðPgn

ðsÞ;Pgn
ðg1Þ;Pgn

ðg2Þ; . . . ;Pgn
ðgn�1ÞÞ

{8} OUTPUT:¼Combine(s;g1, . . . , gn;DATA1, DATA2)
{9} end.

The steps {6} and {7} are computed recursively.
Observe that by {2} it holds that in the collection g1, . . . , gn there is no pair of parallel generators. This observation is

important for the correctness of Application 2.

5.1. Application 1—volume computation

Let us define
Combineðs; g1; . . . ; gn;a1;a2Þ ¼ a1 þ a2kgnk;
where k � k denotes the L2-norm, and

function BasicCase(s;g1, . . . , gn 2 k)
let H be the matrix with columns g1, . . . , gn

OUTPUT :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det HTH

p
end.

In the basic case, by the instruction {3} of RRR we know that the generators g1, . . . , gn are linearly independent. Hence, the

zonotope is an n-dimensional parallelogram in k (it may be k > n) and its volume is thus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det HTH

p
.

By symmetry of zonotopes, adding a new generator gn to the zonotope Zðs; g1; . . . ; gn�1Þ increases its volume a1 by the
volume of the prism with base ZðPgn

ðsÞ;Pgn
ðg1Þ; . . . ;Pgn

ðgn�1ÞÞ and height kgnk. (See also the evolution process of Fig. 1.)
From the recursion, a2 is the area of the base.

5.2. Application 2—enumeration of vertices

In the Basic Case, the zonotope is a parallelogram:
BasicCaseðs; g1; . . . ; gnÞ :¼ sþ
Xn

i¼1

cigi : c 2 f0;1gn

( )
:

We shall describe the function Combine(s; g1, . . . , gn; VertexSet1,VertexSet2) with reference to Fig. 4. From the recursion, Ver-
textSet1 is the set of vertices of the zonotope Z1 :¼ Zðs; g1; . . . ; gn�1Þ and VertextSet2 the set of vertices of a zonotope Z2, which
is the projection of Z1 on the hyperplane fn : gT

nn ¼ 0g.
We say that a vertex v 2 VertexSet1 is utmost if Pgn

ðvÞ 2 VertexSet2. Otherwise it is inner. Consider the decomposition Ver-
texSet1 = U [ I, where U are utmost vertices and I are inner vertices.

Now we process the utmost vertices: we set OUTPUT1:¼{u, u + gn:u 2 U}.



Fig. 4. Enumeration of vertices. The zonotope Z :¼ Zðs; g1; . . . ; gnÞ is shaded. From the recursion, the vertex description U [ I of Z1 is available, where
U = {u1,u2} and I = {(v1,w1), (v2,w2)}. The center of Z1 is denoted c. The vertices u1, u2 are utmost; they can be detected with the knowledge of the vertex
description of Z2 which is also available from recursion. The vertex description of Z is u1;u1 þ gn;u2;u2 þ gn; v
1;w
1; v
2;w
2.
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By central symmetry of the zonotope Z1, the set I of inner vertices can be seen as a set of centrally symmetric pairs (v1,
w1), . . . (v‘, w‘). For each pair (vi, wi), we get the transformed pair v
i ;w
i

� �
in the way that one of the vertices is preserved and

the other is shifted by the generator gn; in Fig. 4 we have, for example, v
i ¼ v i and w
i ¼ wi þ gn for i = 1,2. Then we set
OUTPUT2 :¼ v
i ;w
i : i ¼ 1; . . . ; ‘


 �
. The final output of the procedure Combine is OUTPUT1 [ OUTPUT2.

5.3. Application 3—enumeration of facets

The procedure BasicCase(s; g1,. . ., gn 2 k) finds the facet description of the parallelogram generated by g1, . . . , gn. Let
gn+1, . . . , gk be any basis of Lðg1; . . . ; gnÞ

? and let G be the matrix with columns g1, . . . , gk. Then, the facet description is
Fig. 5.
the face
x :
�eT

i G�1ðx� sÞ 6 0; eT
i G�1ðx� sÞ 6 1; i ¼ 1; . . . ;n;

�eT
i G�1ðx� sÞ 6 0; eT

i G�1ðx� sÞ 6 0; i ¼ nþ 1; . . . ; k

( )
;

where ei is the ith column of the unit matrix.
We shall describe the function Combine(s; g1, . . . , gn 2 k; Facets1, Facets2) with reference to Fig. 5. From the recursion,

Facets1 is the set of facets of the zonotope Z1 :¼ Zðs; g1; . . . ; gn�1Þ and Facets2 is the set of facets of the zonotope Z2, which
is the projection of Z1 on the hyperplane fn : gT

nn ¼ 0g. For simplicity say that gn is parallel with ek (which can be achieved
by rotation). Then, the set Facets2 contains inequalities xk 6 0 and xk P 0. These inequalities are disregarded; the remaining
ones are copied to OUTPUT1.

By symmetry of Z1, the inequalities in Facets1 can be seen as pairs ðJi;KiÞ :¼ aT
i x P bi; aix 6 b0i

� �
; i ¼ 1; . . . ; ‘. Each pair (Ji,

Ki) is transformed to a pair J
i ;K


i

� �
in the way that one inequality is preserved and the other is shifted by the generator gn. In

Fig. 5, we have J
i ¼ Ji and K
i ¼ aT
i ðx� gnÞ 6 b0i

� 
for i = 1, 2, 3. We set OUTPUT2 ¼ J
i ;K



i : i ¼ 1; . . . ; ‘


 �
. The final output of the

procedure Combine is OUTPUT1 [ OUTPUT2.
Enumeration of facets. The zonotope Z :¼ Zðs; g1; . . . ; gnÞ is shaded. From the recursion, the facet description x1 P b1, x1 6 b01, x2 P 0, x2 6 0 of Z2 and
t description (J1,K1), (J2,K2), (J3,K3) of Z1 is available. The facet description of Z is x1 P b1, x1 6 b01, ðJ
1;K



1Þ; ðJ



2;K



2Þ; ðJ



3;K



3Þ.
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6. Approximations of OLSðX; yÞ in the general case

As we know from Theorem 4, in the general case ðX; yÞ the situation is much more difficult than in the crisp input case.
Therefore we cannot expect general results. However, the co-NP-hardness result does not rule out that good approxima-
tions of OLSðX; yÞ could be found in particular cases. As the general case is very important in practice, in this section we
review applicable methods for interval approximation of OLSðX;yÞ. Those methods, which—to our knowledge—provide
the tightest approximations, are illustrated by three examples. The examples should provide a basic insight showing what
results could be expected. However, the main message of the examples is that—even in very simple cases—the known
methods for the general case can hardly be considered as satisfactory. The examples could also serve as an impulse for
further research.

To our knowledge, known methods for the general case ðX;yÞ are based on finding enclosures for general systems of linear
equations with interval coefficients of the form Ax = c, taking no advantage of the fact that here we solving the particular
system
XTXb ¼ XTy; X 2 X; y 2 y: ð10Þ
Though there exist experimental studies, showing practical performance of various methods, we are not aware of a study
focused on their behavior when processing the special system (10). Moreover, at the moment we do not know how to utilize
the specific dependency problem, described in Section 6.1, in a better way than by relaxation or using general purpose meth-
ods. This is an interesting problem for further research which undoubtedly deserves attention.

For the sake of completeness, we also give a short overview of available software.
This Section might serve for practical purposes as a guidance for selection of a particular method and software. However,

it is also interesting from a theoretical point of view: it shows the main drawbacks and bottlenecks of currently available
methods and thus can be understood as a motivation for research in the field.

Given an interval matrix Z ¼ ½Z; Z�, the matrix
Zc ¼ 1
2
ðZ þ ZÞ
is called center matrix and the matrix
ZD ¼ 1
2
ðZ � ZÞ
is called radius matrix.
Recall also that interval addition and multiplication has been defined by (3). We shall also need the division of interval

numbers a ¼ ½a; �a� and b ¼ ½b; �b�, which is defined as
a
b
¼ minfa� b; a� �b; �a� b; �a� �bg;maxfa� b; a� �b; �a� b; �a� �bg

� 
if 0 R b;

undefined otherwise;

(

where the relation � stands for the traditional crisp division.
A lot of effort has been devoted to finding tight interval enclosures of solution sets of interval equations. Given an interval

matrix A and an interval vector c, the enclosure of the solution set is a box b ¼ ½b; b�, which is as small as possible, satisfying
b � {n: An = c, A 2 A, c 2 c}.

6.1. Relaxation

The basic approach to find an interval enclosure is by relaxation. Consider an interval system of equations
Zb ¼ z; ð11Þ
where the results of products Z :¼ XTX and z :¼ XTy are calculated using interval arithmetic. The interval system (11) covers
all equation systems from (10) and typically some more. This redundancy, which is called overestimation in interval algebra,
is caused by the so called dependency problem, which occurs when an interval quantity appears several times in the descrip-
tion of the interval system (in our case it is X). Dependencies are hard to deal with, and often they are relaxed. Any enclosure
of the solution set of (11) serves as an enclosure of OLS(X,y), too.

It is known that determining the interval hull (i.e., the optimal enclosure, or, exact bounds of the solution set) is an NP-
hard problem. However, there are many methods for calculating quite sharp bounds in short time [52,63,65]. Some of them
employ the basic form (11), however, often a preconditioning is used to improve the performance. Preconditioning means
premultiplication of the system (11) by a crisp matrix; usually an inverse of Zc (or its numerically computed approximation)
is used, where Zc is the center matrix of Z. Even though it leads to further overestimation of the solution set, surprisingly the
resulting enclosures are usually tighter.

First we mention three direct methods and then two iterative ones. Further, more general methods capable of dealing
with dependencies are introduced, and finally other possible approaches are commented.
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6.2. Interval Gaussian elimination

Implementing Gaussian elimination with interval arithmetic leads to the Interval Gaussian elimination. It works well in
special cases (e.g. when the interval matrix is diagonally dominant or M-matrix), but it almost always causes high
overestimation.

6.3. Hansen–Bliek–Rohn’s bounds

One of the best direct methods is the Hansen–Bliek–Rohn’s formula [53,63] which works as follows. Precondition the
system (11) by the inverse of Zc and denote the resulting interval system by Ab = r. Suppose that A�1 P 0 and denote
b⁄:¼ A�1(jrcj + rD). Then the enclosing box b ¼ ½b; b� is of the form
bi :¼max b
i þ ðA�1Þiiðrc � jrcjÞi;
1

2ðA�1Þii � 1
b
i þ ðA�1Þiiðrc � jrcjÞi
� �� �

;

bi :¼min �b
i þ ðA�1Þiiðrc þ jrcjÞi;

 1

2ðA�1Þii � 1
�b
i þ ðA�1Þiiðrc þ jrcjÞi
� ��

:

Notice that the assumption A�1 P 0 is not very restrictive. Indeed, it is frequently used as a sufficient condition for regularity
of interval matrices (or its equivalent form q(AD) < 1, where q(�) stands for the spectral radius). It was proved that the Han-
sen–Bliek–Rohn method calculates exact bounds for the solution set of the preconditioned system Ab = r, and so it gives a
very tight enclosure to (11).

6.4. Jansson’s algorithm

There is an algorithm that computes the optimal bounds. The solution set of (11) represents a finite union of convex
polyhedra. When restricting on any orthant, it becomes a convex polyhedron the bounds of which can be exactly deter-
mined by solving 2p linear programs. Thus, the interval hull is computable by inspecting all of the 2p orthants. This tre-
mendous number can be reduced by the method of Jansson [35]. The method is based on the observation that the
solution set is compact and connected provided Z is regular, and it is unbounded (moreover, each topologically connected
component is unbounded) in case Z is not regular. Thus, the Jansson’s algorithm concentrates on just one connected com-
ponent and goes through all orthants it intersects. Even though it may be exponential in the worst case, it often inspects
only a fraction of all orthants.

6.5. Krawczyk’s method

A popular and efficient Krawczyk’s method [48,52] is an iterative method based on the preconditioning of (11) by a point
matrix Y, usually Y  (Zc)�1. Let an initial enclosure b0 be given. Then we iteratively calculate a nested sequence of enclosures
bk, k = 0, 1, . . . , where the iteration step is
{1} b0:¼Yz + (I � YZ)bk

{2} bk+1 :¼ b0 \ bk.
Convergence and the approximation order is discussed deeply in [52].

6.6. Interval Gauss–Seidel’s iteration

It is a straightforward extension of the Gauss–Seidel’s iteration method for intervals [48,52]. Once an initial enclosure b0

to the solution set is known, a nested sequence of enclosures bk, k = 0, 1, . . . is calculated. One iteration is
{1} for i = 1, . . . ,p do
{2} b0i :¼ zi �

P
j<iZijb

kþ1
j �

P
j>iZijb

k
j

� �
=Zii

{3} bkþ1
i :¼ b0i \ bk

i

{4} end do.
For special matrices (e.g. M-matrices), convergence to the interval hull is guaranteed. Applied to a preconditioned system,
Gauss–Seidel’s iteration yields tighter intervals than Krawczyk’s method.
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6.7. Parametric approach

Due to the relaxation of (10) and (11), the resulting enclosure b is overestimated. To reduce the overestimation, we can
consider (10) to be a nonlinear parametric interval system of equations. That is, each matrix and right-hand side entry is
considered as a nonlinear function of interval parameters. Several methods for such systems are available [59,40], however,
their usage for high-dimensional problems (with respect to n and/or p) is questionable.

Since the constraint matrix in (10) is symmetric positive definite, we can consider a partial relaxation, too. That is, we
relax the correlations between the interval parameters and keep only the symmetry and positive definiteness. For such inter-
val systems, various approaches are known. The interval Cholesky’s method [2] naturally extends Cholesky’s method for
interval data. Unfortunately, its efficiency is quite low, despite some pivot tightening improvements [17]. Since the symme-
try condition is linear, we can utilize any solver for (more general) linear parametric interval systems. As numerical results in
[26] indicate, this approach leads to quite tight bounds.

6.8. Software

Interval arithmetic is implemented in many programming languages. INTLAB [67] is a powerful MATLAB toolbox com-
prising not only the basic interval arithmetic, but also some useful interval functions. For instance, verifylss is a Krawczyk
iteration-based function for interval linear systems of equations. VERSOFT [66] is a collection of verification and interval
software written in INTLAB/ MATLAB. For interval linear systems, it contains e.g. verenclinthull, a function for comput-
ing the Hansen–Bliek–Rohn’s bounds, and verintervalhull for calculating the interval hull. The parametric solver by Pop-
ova [57] can handle interval systems with dependencies; the readers can experiment using the free webComputing service
[58].

6.9. Other approaches

Another way to solve the problem is to rewrite it in the form
0p XT

X In

 !
b

c

� �
¼

0
y

� �
: ð12Þ
Again, a relaxation leads to an ordinary interval linear system of equations, and we can employ the above mentioned solvers.
Because the dependence structure in (12) is simpler than in (11) (it is just a condition on symmetry), it is easily shown that
the resulting interval box b will be tighter.

Proposition 19. The solution set of (12) is contained it the solution set of (11).
Proof. Let us consider any instance of the system (12)
0p XT

X0 In

 !
b

c

� �
¼

0
y

� �
;

where X,X0 2 X and y 2 y. Then c = y � X0b, and by substituting XT(y � X0b) = 0. Hence XTX0b = XTy. Since XTX0 2 XTX = Z and
XTy 2 XTy = z, we have an instance of the system (11). h

More details can be found in [51,38, pp. 109–120].
The drawback of this approach is that the system may be very large provided the number of observations is large. So it

may be time-consuming to calculate sharp enough enclosures.
The constraint matrix in (12) is symmetric, so we can again utilize any method for symmetric interval systems to obtain

more accurate enclosures.
An alternative approach to solve the problem is based on the adaptation of the QR factorization for interval data [18], e.g.

using interval Householder’s method [5,46]. Another method is described in [47].

6.10. Examples

Example 20. Let
X ¼
1 1 1 1 1

½0;2� 2 3 4 5

 !T

;

y ¼ 1 1 1 1 1ð ÞT:



Table 1
Different enclosures in Example 20.

Via system (11) Via system (12)

verifylss ([�1.2858, 3.2858], [�0.7143, 0.7143]) (1, 0)
verenclinthull ([0.3043, 3.2858], [�0.7143, 0.7143]) (1, 0)
Parametric method [26] ([0.3043, 3.2858], [�0.7143, 0.7143]) (1, 0)
verintervalhull ([0.3043, 3.2858], [�0.7143, 0.2174]) (1, 0)
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Fig. 6. Example 20 (Table 1). The dashed rectangles correspond to (11), computed by verifylss, verenclinthull and verintervalhull. By (12), we
get the true point (1,0).
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Fig. 7. Example 20, the modified case (Table 2). The dashed rectangles correspond to (11), computed by verifylss, verenclinthull and
verintervalhull. The solid rectangles correspond to (12), computed by verifylss (the same as verenclinthull) and verintervalhull.
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Obviously, the solution set consists of one point (1,0). The results of different approaches are displayed in Table 1 and
illustrated in Fig. 6.

In Figs. 6–8, the dashed rectangles correspond to the enclosures resulting from the system (11), whereas the solid rect-
angles correspond to (12). Inside the rectangles, the true solution set (computed numerically) is plotted.

Example 20—a modified case. Now let us change the vector y to
y0 ¼ 2 3 4 5 6ð ÞT:
The results are displayed in Table 2 and in Fig. 7.



Table 2
Different enclosures in Example 20, the modified case.

Via system (11)
verifylss ([�8.0520, 10.5975], [�1.9481, 3.7663])
verenclinthull ([�5.1429, 10.5975], [0.3030, 3.7663])
Parametric method [26] ([�5.1429, 7.6884], [0.3030, 2.8572])
verintervalhull ([�5.1429, 3.1516], [0.3030, 2.8572])

Via system (12)
verifylss ([�0.2667, 2.2667], [0.6666, 1.3334])
verenclinthull ([�0.2667, 2.2667], [0.6666, 1.3334])
Parametric method [26] ([�0.2667, 2.2667], [0.7999, 1.3334])
verintervalhull ([�0.1740, 1.7298], [0.8108, 1.3044])
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Example 21. Let X,y be given with
Fig. 8.
corresp
X ¼
1 1 1 1 1 1 1 1 1 1 1
�2:5 �1:5 �0:5 0:5 1:5 2:5 3:5 4:5 5:5 6:5 7:5

� �T

;

X ¼
1 1 1 1 1 1 1 1 1 1 1
�1:5 �0:5 0:5 1:5 2:5 3:5 4:5 5:5 6:5 7:5 8:5

� �T

;

y ¼ 1:5 2:5 3:5 4:5 5:5 6:5 7:5 8:5 9:5 10:5 11:5ð ÞT;
y ¼ 2:5 3:5 4:5 5:5 6:5 7:5 8:5 9:5 10:5 11:5 12:5ð ÞT:
The calculated enclosures are shown in Table 3 and illustrated in Fig. 8.
Example 22. Consider an example from [5]:
X ¼
½0:1;0:3� ½0:9;1:1�
½8:9;9:1� ½0:4;0:6�
½0:9;1:1� ½6:9;7:1�

0
B@

1
CA; y ¼

½0:8;1:2�
½�0:2; 0:2�
½1:8;2:2�

0
B@

1
CA:
Table 4 displays enclosures calculated by various methods; in the last line, there is the enclosure from [5] computed by
the interval Householder’s method.
6.11. Summary

We reviewed diverse methods for computation of interval enclosures of OLS(X,y) in the general case. More numerical
experiments would be needed to decide about efficiency of the presented methods, but some observations can be done now.

The system (12) yields provably tighter enclosures than (11), so provided the number of observations is mild, then it is a
suitable method.
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Example 21. The dashed rectangles correspond to (11), computed by verifylss, verenclinthull and verintervalhull. The solid rectangles
ond to (12), computed by verifylss and the parametric method [26].



Table 3
Different enclosures in Example 21.

Via system (11)
verifylss ([�11.9723, 20.0256], [�3.2903, 5.2725])
verenclinthull ([�7.5467, 19.7341], [�0.1201, 5.1945])
Parametric method [26] ([�7.5467, 16.2139], [�0.1201, 4.2770])
verintervalhull ([�7.5467, 7.9201], [�0.1201, 4.0134])

Via system (12)
verifylss ([2.1858, 5.8142], [0.5234, 1.4766])
verenclinthull ([2.1858, 5.8142], [0.5234, 1.4766])
Parametric method [26] ([2.2206, 5.7794], [0.6820, 1.4661])
verintervalhull ([�1, 1], [�1, 1])

Table 4
Different enclosures in Example 22.

via system (11)
verifylss ([�0.0644, 0.0324], [0.2364, 0.3693])
verenclinthull ([�0.0643, 0.0312], [0.2418, 0.3692])
Parametric method [26] ([�0.0643, 0.0312], [0.2418, 0.3692])
verintervalhull ([�0.0643, 0.0276], [0.2432, 0.3692])

Via system (12)
verifylss ([�0.0471, 0.0145], [0.2569, 0.3477])
verenclinthull ([�0.0470, 0.0139], [0.2587, 0.3475])
Parametric method [26] ([�0.0469, 0.0139], [0.2587, 0.3462])
verintervalhull ([�0.0468, 0.0127], [0.2606, 0.3473])
Interval householder method [5] ([�0.0558, 0.0232], [0.2579, 0.3485])
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In general, methods for solving symmetric interval linear systems can be sorted as follows:

� verifylss,
� verenclinthull,
� parametric method [26],
� verintervalhull.

The list is sorted form the computationally cheapest to the most expensive, but the same order is for the sorting from the
least tight to the most tight resulting enclosures. Thus, it is the question for the decision maker to choose between the run-
ning time and tightness.
7. Conclusion

We have studied several properties of the set OLS(X,y) in the interval input – interval output model. It turned out that
even very elementary questions about the set OLS(X,y) are computationally intractable. This negative result motivates a
study on special cases, where we can hope that the situation is better.

We devoted our effort to the practically important case, when the input data X are crisp. Then, the set OLS(X,y) has better
geometric and algorithmic properties. In particular, various descriptions of the set OLS(X,y) can be constructed efficiently,
provided the number of regression parameters is low compared to the number of observations (which is a typical case in
data analysis). Formally, we stated the results in the form that if the number of regression parameters is fixed, then many
tasks can be solved in polynomial time. We also dealt with some special regression models, such as models with repeated
observations, where we can achieve further speedup.

Finally we turned our attention back to the general case of interval input – interval output models from a practical point
of view. For practical purposes, a variety of methods for finding interval enclosures for the set OLS(X,y) are available. Nev-
ertheless, we have constructed some elementary examples showing that the methods can provide highly redundant (and
hence practically useless) results. The main drawback is that the methods lean on relaxation as described in Section 6.1.
We expect that the special form of dependence, either in the system (11) or in the system (12), could be further analyzed
and utilized for improvement of the known enclosure methods. Moreover, not only interval enclosures, but also other types
of enclosures (such as ellipsoidal enclosures) could be successful.

We also expect that ongoing research will bring further improvements. It might be possible to improve Theorem 18 as
discussed in Section 4.3. We also expect that further applications of the RRR metaalgorithm of Section 5 could be found,
in particular in polyhedral geometry.

We also think that methods of Sections 4 and 5 are suitable for implementation in software for analysis of interval data.
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