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We deal with data envelopment analysis models with diversification which can identify investment op- 

portunities efficient with respect to several inputs and outputs represented by risk and return measures. 

Moreover, they enable to project the inefficient investment opportunity to the efficient frontier and sug- 

gest how to revise its structure. However, the current DEA models does not take into account the individ- 

ual risk aversion of a particular investor. We will introduce several approaches based on the spectral risk 

measures which deal with this drawback. These approaches are then compared in the empirical study. 

Note that all considered models as well as risk aversion are consistent with the second order stochastic 

dominance. 
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. Introduction 

This paper is focused on DEA models suitable for accessing ef-

ciency of investment opportunities available on financial markets.

raditional DEA models were applied in finance by papers [1–4] .

owever, these models ignored the diversification between consid-

red investment opportunities which appears when risk measures

re considered as the inputs. Therefore diversification-consistent

EA (DC-DEA) models were introduced and investigated, cf [5–7] .

e postpone basic overview of the main contributions to this class

f DEA models to Section 1.1 . 

In this paper, our primary interest is the link between DC-DEA

odels and risk aversion. Risk aversion refers to a person’s behav-

or with respect to random payouts, where a risk averse investor

eeks to reduce the degree of uncertainty. Pratt [8] and Arrow

9] provided the basis for the assessment of risk aversion within

he theory of utility functions, see also [10] for generalizations.

ulga [11] proposed a new risk measure called Expected Shortfall
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ith Loss Aversion (ESLA) which is calculated with the downside

art of the portfolio return distribution and captures the investors

references in the mean-risk models. We turn our attention to so

alled spectral risk measures, cf [12] . These risk measure use a risk

pectrum to weights the quantiles of the random returns, thus they

nable to take into account risk aversion of an investor. Papers [13–

7] investigated deeply the relations with the utility theory and

isk aversion, see Section 1.1 for deeper review. 

To our best knowledge, research on the risk aversion within the

EA literature is limited to a few articles which deal with the mo-

ent criteria, i.e. expected value, variance, and skewness of the

andom returns. Briec et al. [18] realized that duality offers in-

ormation about the investors risk aversion via the shadow prices

ssociated with their mean-variance efficiency measure. Their ap-

roach enabled to estimate the weights of the mean and vari-

nce criteria such that the particular efficient portfolio is ren-

ered as optimal for the investor. Therefore, the weighted criteria

ere labeled as a shadow (indirect) mean-variance utility function.

he procedure for identifying the utility function of the investor

as been generalized by Briec et al. [19] for the mean-variance-

kewness criteria and by Briec and Kerstens [20] for the multi-

eriod mean-variance efficiency measure. We will propose a sim-

lar approach to identify the shadow risk spectrum leading to a

https://doi.org/10.1016/j.omega.2020.102338
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shadow spectral risk measure which renders the DC-DEA efficient

portfolio as optimal which is according to our best knowledge

a new result. Moreover, we will show that our approach is fully

consistent with the second order stochastic dominance (SSD) ef-

ficiency which is well established tool in finance, cf [21–23] . Ev-

ery rational risk-averse investor should invest into a SSD efficient

investment opportunity and avoid to the inefficient ones. The DC-

DEA models with particular inputs (CVaRs) and output (expecta-

tion) have been shown to be equivalent with the SSD efficiency

tests by Branda and Kopa [7,24] . However, the SSD efficient frontier

contains infinitely many portfolios. Under mild conditions, by min-

imizing a spectral risk measure with investor’s risk spectrum, we

can obtain an ideal investment opportunity which is SSD efficient.

However, such ideal opportunity need not to be directly available

on the market or its construction can be too expensive, e.g., be-

cause of transaction costs. Therefore, we suggest four ways how to

measure distance between the ideal choice and the available in-

vestment opportunities. First comparison is based on the portfolio

weights which corresponds to a possible revision by selling/buying

necessary assets. The second approach is based on the mean–risk

characterization for each opportunity, i.e. the distance compares

the values of these measures for two portfolios. The third one –

called inverse – uses a reconstruction of the investor’s (shadow)

risk spectrum which is possible for any efficient investment oppor-

tunity as we will show later in this paper. Then, the reconstructed

risk spectrum is compared with the investor’s one. Finally, we ex-

tend the DC-DEA score to measure the relative improvement of in-

puts and outputs which is necessary to reach the ideal investment

opportunity (instead of nearest one). Note that all these distances

can be also used as measures of super-efficiency for efficient in-

vestment opportunities, because they provide alternative measures

for ranking of the efficient ones with respect to the preferences of

an investor. 

In the numerical study, we apply our approaches to industry

representative portfolios from the US market which are listed in

the Kenneth French library. First, we derive their rankings with re-

spect the DC-DEA scores which are consistent with the SSD effi-

ciency. Then, we select two basic parametric spectra and compute

the ideal portfolios for several choices of the parameters which

correspond to various risk aversions. These portfolios are then

compared with the initial representative portfolios and their DC-

DEA projections to the efficient frontier. Finally, we will investigate

robustness and stability of the proposed measures using two ex-

treme scenarios. 

The paper is organized as follows. Section 2 reviews the DEA

models with diversification based on directional distance measure

and their relation to SSD efficiency. Moreover, it introduces the

spectral risk measures and risk spectra. In Section 3 , we introduce

the reconstruction of the shadow risk spectrum and propose sev-

eral ways how to measure the distance to an ideal investment op-

portunity. Section 4 contains a numerical study where the intro-

duced approaches are applied to representative portfolios from the

US market. The formal and axiomatic definitions are postponed to

the Appendix A , technical proofs to the Appendix B . 

1.1. Literature review 

This part provides an overview of the contributions to the

diversification-consistent DEA models and spectral risk measures.

We believe that readers familiar with these topics can skip this

short subsection. 

First two moments of the random returns were considered as

the input and output by Briec et al. [18] , and the third moment

(skewness) was added by papers [19,25] and further elaborated by

Kerstens et al. [26] . Briec and Kerstens [20] extended the mean-

variance models to dynamic settings. The first backtesting anal-

i  
sis was proposed by Brandouy et al. [27] . A general class of

iversification-consistent models was proposed by Lamb and Tee

5] who considered several risk and return measures as the in-

uts and outputs. Branda [6] used general deviation measures as

he inputs of the models with diversification and investigated the

trength of the models. In paper [24] , DEA models equivalent to

he second order stochastic dominance tests were provided. DEA

odels based on a directional distance measure were proposed by

randa [7] who considered coherent risk measures as the inputs

nd return measures as the outputs. It was even shown, that under

articular choice of the inputs and outputs, the obtained models

re equivalent to the stochastic dominance efficiency tests. More-

ver, their project inefficient investment opportunities to the effi-

ient frontier, when the projection can serve as a suggestion for in-

estors how to revise their (inefficient) portfolios. Traditional DEA

odels were used to approximate the efficient frontier and to as-

ess performance of portfolios by Liu et al. [28] . The author of

29] discussed models with Value at Risk inputs which does not

elong to any above mentioned classes but still is a popular risk

easure. Recently, Branda and Kopa [30] proposed the DEA models

hich are consistent with the higher order stochastic dominance

ests. Tarnaud and Leleu [31] revised the set of axioms which de-

ne the financial technology set to allow the generalization to a

ulti-moment framework. Moreover, they investigated the influ-

nce on the measures of technical efficiency on a sample set of

S stocks. Choi and Min [32] designed new performance mea-

ure based on diversification-consistent DEA models and confirmed

mpirical efficiency of well-diversified portfolios. The DEA models

ith diversification were extended to dynamic (multiperiod) set-

ings by Lin et al. [33] . Their approach decomposes the overall ef-

ciency of mutual funds in the whole investment period into ef-

ciencies at individual intervals taking into account dynamic de-

endence among the investment periods. Zhou et al. [34] proposed

 DEA frontier improvement approach under the mean-variance

ramework which provides investor with a rebalancing strategy as

ell as an improved DEA frontier which approximates the port-

olio efficient frontier better than the traditional DEA model does.

hey applied their approach to evaluate mutual fund performance.

ssid et al. [35] combined the DEA game cross-efficiency approach

nd the maverick index to introduce a tool for portfolio selection

nd verified that the resulting portfolios are well-diversified using

ssets listed in Paris Stock Exchange. Recently, Lin and Li [36] pro-

osed two super-efficiency DEA models with diversification for dis-

riminating the performance of efficient mutual funds and applied

he models to evaluate the performance of mutual funds in the

merican market. 

The spectral risk measures were proposed by Accerbi [12] as a

pecial class of coherent risk measures. Since then, these measures

ere studied deeply by many papers. Relations of these measures

ith respect to the Ross and Arrow-Pratt-risk aversion were in-

estigated by Brandtner and Kürsten [13] . Wächter and Mazzoni

16] clarified the relation between decisions of a risk-averse deci-

ion makers, based on expected utility theory on the one hand,

nd spectral risk measures on the other. Brandtner and Kürsten

14] revisit this procedure with respect to the axiomatic founda-

ion of the underlying decision rules. Brandtner [15] fixed some

ssues which were opened by paper [17] with respect to the expo-

ential and power spectral risk measures and how they reflect the

isk-aversion of an investor. 

. Diversification consistent DEA models 

The main goal of portfolio optimization methods is to design a

ortfolio with high return and low risk. We assume that the pos-

ible portfolio consists of n assets; each represented by its random

eturn R 1 , . . . , R n with known distribution. If the whole budget is

nvested into the risky assets and the short sales are not allowed,
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ll possible returns can be represented by 

 = 

{ 

n ∑ 

i =1 

x i R i : 

n ∑ 

i =1 

x i = 1 , x i ≥ 0 

} 

, (1) 

ote that other choices of the set are also possible, see, e.g., [6] .

e assume that all portfolio random returns contained in the set

f investment opportunities X have finite expected value which is

ufficient for the use of the CVaR risk measures later. We review

everal DEA models with diversification in which we take into ac-

ount risk aversion later. 

.1. Diversification-consistent DEA model based on directional 

istance measure 

The diversification-consistent DEA models are based on a set of

nputs and outputs. In [7] , the models where coherent risk mea-

ures are used as the inputs were proposed. Coherent risk mea-

ures introduced by Artzner et al. [37] are functionals denoted by

 that satisfy translation equivariance (if a risky position is in-

reased by a constant, then its risk decreases by the same con-

tant); positive homogenity (risk of a position multiplied by a pos-

tive constant is increased proportionally); subadditivity (risk of

 sum of two risky positions is lower or equal than the sum of

isk of individual positions); and finally monotonicity (if one risky

osition has almost surely higher random return than another,

han its risk is lower or equal). Formal definition can be found in

ppendix A, Definition A.1 . Coherent risk measures are always con-

ex which is important to reach globally optimal solutions. 

The return functionals are used as the outputs to quantify the

eturn (right) tail of the distribution. Any functional E is called

 return measure if there exists a coherent risk measure R such

hat 

(X ) = −R (X ) . 

For the diversification-consistent DEA we consider J return mea-

ures E j as the outputs and K coherent risk measures R k as the

nputs. This corresponds to risk-shaping which enables to bet-

er compare the distribution of various investment opportunities.

ince both coherent risk and return measures can take positive

s well as negative values, the DEA models proposed by paper

7] were based on the directional distance measures. For a bench- 

ark portfolio X 0 ∈ X , we define the directions as 

 j (X 0 ) = max 
X∈X 

E j (X ) − E j (X 0 ) , (2) 

 k (X 0 ) = R k (X 0 ) − min 

X∈X 
R k (X ) . (3) 

hese directions denote the maximal possible improvements over

he return and risk measures over the benchmark portfolio X 0 . 

Although Branda [7] proposed several DEA models with differ-

nt properties and relations to Pareto–Koopmans efficiency, we will

ocus on the strongest one which is related to the stochastic dom-

nance efficiency test. This relation will later enable us to consider

he risk aversion of a particular investor. This DEA model mea-

ures necessary relative improvements to reach the efficient fron-

ier with respect to each input and output separately: 

minimize θk ,ϕ j ,x i 

1 − 1 
K 

∑ K 
k =1 θk 

1 + 

1 
J 

∑ J 
j=1 

ϕ j 

s . t . E j 

( 

n ∑ 

i =1 

R i x i 

) 

≥ E j (X 0 ) + ϕ j · e j (X 0 ) , j = 1 , . . . , J, (4) 

R k 

( 

n ∑ 

i =1 

R i x i 

) 

≤ R k (X 0 ) − θk · d k (X 0 ) , k = 1 , . . . , K, 
n ∑ 

i =1 

x i = 1 , x i ≥ 0 , ϕ j ≥ 0 , θk ≥ 0 . 

ue to (3) , ϕj denotes the fraction of the improvement of the opti-

al portfolio 
∑ j 

i =1 
R i x i over the maximal possible improvement in

eturn E j . Similarly, θ k denotes the fraction of the improvement of

he optimal portfolio 
∑ j 

i =1 
R i x i over the maximal possible improve-

ent in risk R j . The objective function then balances the mean

mprovement in risks in the numerator and the mean improve-

ents in returns in the denominator. A formal explanation can be

ound in Appendix A, Remark A.1 . 

We say that X 0 is efficient if the optimal value of (4) equals

ne, otherwise it is inefficient. The former means ϕ j = θk = 0 and

o improvement over the benchmark portfolio X 0 in all measures

s possible. Even though (4) is a non-convex problem, it admits a

onvex reformulation as shown in [7] . Because the optimal solution

f (4) is always efficient, see [7] , the investors, who identify their

enchmark portfolios as inefficient, can use the optimal solution to

evise their benchmarks. 

.2. CVaR and second order stochastic dominance efficiency 

The most popular coherent risk measure is the Conditional

alue at Risk (CVaR). For a confidence level α ∈ (0, 1), it is roughly

efined as the “expected value of (1 − α) ∗100% worst losses”. It

akes the tail of the return distribution into account. If the distribu-

ion of X is continuous, CVaR can be expressed as the conditional

ean of losses over the value at risk (quantile) 

VaR α(X ) = E [ −X | −X ≥ VaR α(X )] . 

ote that we need to use −X to switch from returns to losses and

hat the value of risk is already computed from losses. A formal

efinition was proposed by Rockafellar and Uryasev [38] , see also

efinition A.2 in the Appendix A . 

As shown by Branda [7] , it is reasonable to choose in (4) CVaRs

t different levels as risk measures and expected return as the sin-

le return measure. We propose the following problem which is a

pecial case of (4) : 

minimize θk ,ϕ,x i 

1 − 1 
S−1 

∑ S−1 
k =1 θk 

1 + ϕ 

E 

( 

n ∑ 

i =1 

R i x i 

) 

≥ E (X 0 ) + ϕ · e (X 0 ) , (5) 

CVaR k/S 

( 

n ∑ 

i =1 

R i x i 

) 

≤ CVaR k/S (X 0 ) − θk · d k (X 0 ) , k = 1 , . . . , S − 1 , 

n ∑ 

i =1 

x i = 1 , x i ≥ 0 , ϕ ≥ 0 , θk ≥ 0 . 

ith the directions 

e (X 0 ) = max 
X∈X 

E [ X ] − E [ X 0 ] , 

 k (X 0 ) = CVaR k/S (X 0 ) − min 

X∈X 
CVaR k/S (X ) , k = 1 , . . . , S − 1 . (6) 

As we will see soon, a portfolio is DC-DEA efficient with re-

pect to model (5) if and only if it is non-dominated with respect

o the second-order stochastic dominance (SSD). SSD efficiency is

elated to the utility theory, see, e.g. Lévy [23] . We say that the

nvestment opportunity dominates another opportunity with re-

pect to the second-order stochastic dominance (SSD) if and only if

ts expected utility is higher or equal for all (nondecreasing) con-

ave utility functions with strict inequality for at least one utility

unction. Then an investment opportunity is SSD efficient if there

s no other investment opportunity which dominates it. All ratio-

al risk-averse investor should prefer SSD efficient opportunities.
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SSD efficient. 
Formal definition can be found in Definition Appendix A.3 in the

Appendix A . 

DEA models related to SSD were proposed also by Kuosmanen

[39] , Lozano and Gutiérrez [40] . We repeat the important theorem

derived in paper [7] which proposed the equivalence between the

DC-DEA efficiency and the SSD efficiency. 

Theorem 2.1. An investment opportunity X 0 ∈ X is DEA efficient ac-

cording to model (5) (its optimal value equals to one) if and only if it

is SSD efficient. 

Using the ideas of Branda [7] , we can show that (5) is equiva-

lent to the following reformulation 

minimize ˜ θk , ̃ ϕ ,t, ̃ x i ,ξk ,u sk 
t − 1 

S − 1 

S−1 ∑ 

k =1 

˜ θk 

t + ˜ ϕ = 1 , (7)

1 

S 

S ∑ 

s =1 

n ∑ 

i =1 

˜ x i r is ≥ t · E [ X 0 ] + ˜ ϕ · e (X 0 ) , 

ξk + 

1 

S − k 

S ∑ 

s =1 

u sk ≤ t · CVaR k/S (X 0 ) − ˜ θk · d k (X 0 ) , k = 1 , . . . , S − 1 , 

u sk ≥ −
n ∑ 

i =1 

˜ x i r is − ξk , s = 1 , . . . , S, k = 1 , . . . , S − 1 , 

n ∑ 

i =1 

˜ x i = t, ˜ x i ≥ 0 , ˜ ϕ ≥ 0 , ˜ θk ≥ 0 , t ≥ 0 , u sk ≥ 0 . 

Since CVaR can be rewritten via linear constraints, problem (7) can

be understood as a linear program, i.e. large instances with many

assets (large n ) and many scenarios (large S ) can be solved to op-

timality. 

2.3. Spectral risk measures and risk aversion 

The spectral risk measures (SRM) were proposed by Accerbi

[12] as a special class of coherent risk measures. They are defined

as the weighted quantiles of the random returns. Even though they

are usually considered for a continuous distribution, we restrict the

discussion to our case of discrete distribution. For a general formu-

lation, see Definition A.4 in the Appendix A . So called risk spectra

serve as the weights. We say that a sequence { φs } S s =1 
is an admis-

sible empirical risk spectrum if it is: 

1. positive: φs ≥ 0, 

2. non-increasing: φs ≥ φs ′ if s < s ′ , 
3. normalized: 

∑ S 
s =1 φs = 1 . 

Investors can identify their risk aversion by choosing a risk

spectrum φ and then obtain the admissible empirical risk spec-

trum by setting 

φs = 

φ(s/S) ∑ S 
s =1 φ(s/S) 

. (8)

Let X [1] ≤ X [2] ≤ · · · ≤ X [ S] be the sorted equiprobable realizations of

X . Then the empirical spectral risk measure is defined as 

M 

S 
φ(X ) = −

S ∑ 

s =1 

φs X [ s ] . (9)

Since X [1] is the smallest return (-largest loss) and since φs is non-

increasing, minimizing the empirical risk measure assigns largest

weights to worst scenarios. Moreover, CVaR is a special case of the

empirical spectral risk measure, see formula (A.2) in Appendix A . 

As we discussed above, any rational investor wants to minimize

the empirical spectral risk measure M 

S 
φ

. Since expression (9) re-

quires to sort the scenarios, it is not useful for optimization prob-
em. Therefore, we derive its alternative expression using CVaRs in

he next lemma. Its proof is presented in Appendix B . 

emma 2.1. Let the distribution of X be finite discrete with equiprob-

ble realizations. Consider an admissible empirical risk spectrum

 φs } S s =1 
. Then the spectral risk measure (9) can be expressed as 

 

S 
φ(X ) = 

S ∑ 

s =1 

μs CVaR 

S 
1 −s/S (X ) = μS E (−X ) + 

S−1 ∑ 

s =1 

μs CVaR 

S 
1 −s/S (X ) , (10)

here the weights can be obtained from the empirical risk spectrum

s 

s = s (φs − φs +1 ) , s = 1 , . . . , S, (11)

etting φS+1 ≡ 0 . 

. DEA With diversification and risk aversion 

In this section, we will focus on the ideal investor investment

pportunities and their distances to other opportunities which in-

lude the initial ones as well as those obtained as optimal solu-

ions of the DC-DEA models, i.e. projections to the efficient frontier.

e will also propose an inverse approach which leads to a shadow

isk spectrum and shadow SRM. 

The previous section summarized two ways of obtaining an

fficient portfolio. The DC-DEA approach considers a benchmark

ortfolio X 0 and solves the DC-DEA problem (5) to obtain an ef-

cient portfolio. This may be understood as projecting (improving)

he benchmark portfolio on the efficient frontier. This portfolio is

SD efficient due to Lemma 2.1 . In the empirical spectrum risk ap-

roach, the investors identify their risk spectrum φ corresponding

o their risk aversion and they find their ideal investment oppor-

unity by minimizing the spectral risk measure 

inimize X∈X M 

S 
φ(X ) . (12)

hey can also derive the weights μ1 , . . . , μS and solve the prob-

em 

inimize X∈X μS E (−X ) + 

S−1 ∑ 

s =1 

μs CVaR 

S 
1 −s/S (X ) . (13)

roblems (12) and (13) are equivalent due to Lemma 2.1 . More-

ver, the empirical risk spectrum φ and the auxiliary variables are

elated by 

s = s (φs − φs +1 ) , s = 1 , . . . , S, 

φs = 

S ∑ 

t= s 

μt 

t 
, s = 1 , . . . , S. (14)

e summarize these relations in Fig. 1 . The left two blocks corre-

pond to the DC-DEA approach while the right four blocks to the

mpirical spectral risk measure approach. So far, we did not show

ny connection between these two approaches. We will provide

t later in Theorem 3.2 which states that every DC-DEA efficient

ortfolio corresponds to some empirical risk spectrum called the

hadow risk spectrum. 

We know that problems (12) and (13) are equivalent. The latter

s preferred because it posses a linear programming reformulation,

.e. it can be solved for large number of assets and scenarios. An

mportant property of the optimal solution of (12) or (13) is the

SD efficiency, i.e. the optimal portfolio can be a reasonable choice

or a risk-averse investor. 

emma 3.1. If the empirical risk spectrum { φs } S s =1 
is decreasing, then

he optimal portfolio obtained by solving (12) is SSD efficient. If is

erely non-decreasing and if the solution of (12) is unique, then it is
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Fig. 1. Relation of the various concepts from the manuscript. 
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.1. Inverse approach and shadow risk spectrum 

In this part, we will propose an inverse approach which enables

s to derive the shadow risk spectrum from the DC-DEA model (5) .

his risk spectrum can be then compared with the individual spec-

rum of a particular investor. We start with the following theorem

hich is related to the general DC-DEA model (4) , i.e. it is appli-

able even if we move outside of the SSD efficiency which we are

ainly interested in. Its proof can be found in the Appendix B . 

heorem 3.1. Let all directions (3) be positive. Let x̄ be the opti-

al weights of (4) for the benchmark portfolio X 0 and denote X̄ =
 n 
i =1 R i ̄x i the corresponding random return of the optimal (efficient)

ortfolio. Defining weights 

λ j = 

1 

e j (X 0 ) 

K ∑ 

k =1 

R k ( ̄X ) − R k (X 0 ) + d k (X 0 ) 

d k (X 0 ) 
, 

k = 

1 

d k (X 0 ) 

J ∑ 

j=1 

E j ( ̄X ) − E j (X 0 ) + e j (X 0 ) 

e j (X 0 ) 
, (15) 

hen x̄ is an optimal solution to the following convex problem 

minimize −
J ∑ 

j=1 

λ j E j 

( 

n ∑ 

i =1 

R i x i 

) 

+ 

K ∑ 

k =1 

μk R k 

( 

n ∑ 

i =1 

R i x i 

) 

, 

s.t. 

n ∑ 

i =1 

x i = 1 , x i ≥ 0 . (16) 

The assumption on that all directions (3) are positive is reason-

ble. In the opposite case, X 0 is already an efficient portfolio. 

Now we are ready to formulate the result which shows how

o reconstruct the shadow risk spectrum in the DC-DEA model

5) which is consistent with the second-order stochastic domi-

ance efficiency. The proof is postponed again to the Appendix B . 

heorem 3.2. Let all directions (6) be positive. Let x̄ be the opti-

al weigths of (5) for the benchmark portfolio X 0 and denote X̄ =
 n 
i =1 R i ̄x i the corresponding random return of the optimal (efficient)

ortfolio. Defining weights 

μS = 

1 

e (X 0 ) 

S−1 ∑ 

s =1 

CVaR 

S 
s/S ( ̄X ) − CVaR 

S 
s/S (X 0 ) + d s (X 0 ) 

d s (X 0 ) 
, 

μs = 

1 

d S−s (X 0 ) 

E ( ̄X ) − E (X 0 ) + e (X 0 ) 

e (X 0 ) 
, s = 1 , . . . , S − 1 , (17) 

hen x̄ is an optimal solution to the following convex problem 

minimize μS E 

( 

−
n ∑ 

i =1 

R i x i 

) 

+ 

S−1 ∑ 

s =1 

μs CVaR 

S 
1 −s/S 

( 

n ∑ 

i =1 

R i x i 

) 

, 

s.t. 

n ∑ 

i =1 

x i = 1 , x i ≥ 0 . (18) 
We realize now that problem (18) is a special case of (13) .

herefore, it corresponds to minimization of some shadow spec-

ral risk measure for which the efficient portfolio is rendered as

ptimal. The shadow risk spectrum can be computed in a sim-

le way: for μ1 . . . , μS from (17) compute the shadow risk spec-

rum φ1 , . . . , φS via (14) . Remind that the term shadow is inspired

y Briec et al. [18] who applied similar approach to their mean-

ariance DEA model and obtained weights leading to a shadow

ean-variance utility. 

.2. Distances to the ideal investment opportunity 

To summarize, any investor with risk spectrum φ should use

he empirical spectral risk measure to get his/her ideal portfolio: 

 φ(X ) = −
S ∑ 

s =1 

φs X [ s ] = 

S ∑ 

s =1 

μs CVaR 1 −s/S (X ) 

nder the choice of the weights (11) . However, such portfolio does

ot need to be available to the investor for several reasons. It may

e too diversified, i.e. composed from too many original assets, or

he investor is limited to one fund only. Therefore we will intro-

uce several distances to help investors choose the most suitable

nvestment opportunity. 

First, we define the distance in the portfolio weights space. De-

ote by ˆ X the ideal investment opportunity and by ˆ x i the corre-

ponding portfolio weights. Then the l 1 -distance between X and 

ˆ X 

an be defined as 

ist 
x 
(X, ˆ X ) = 

n ∑ 

i =1 

| x i − ˆ x i | . 

ts interpretation is simple. It measures the necessary revision of

ssets, i.e. if x i − ˆ x i is negative, asset i must be bought, in oppo-

ite case it must be sold. If transaction costs are associated with

 change in the portfolio structure, this distance will help the in-

estor to estimate their amount. 

We can also measure the distance in the input-output space

epresented by risk R k and return E j measures by 

ist 
E, R 

(X, ˆ X ) = 

J ∑ 

j=1 

|E j (X ) − E j ( ̂  X ) | + 

K ∑ 

k =1 

|R k (X ) − R k ( ̂  X ) | , 

sing the axiom of translation equivariance (R1), this distance can

e interpreted as a sum of differences in the deterministic (con-

tant) positions between X and 

ˆ X . At the same time, the investor

an assess the difference in the risk–return profile between X and
ˆ 
 . 

The next distance is measured in the risk spectrum space φ. As

e have shown in Section 3.1 , we can apply the inverse approach

o get the risk spectrum to each projection of the inefficient in-

estment opportunity. Then, the l -distance which compares the
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Table 1 

Distances between DC-DEA optimal and ideal portfolios in weight x dimension. 

Exponential spectrum Power spectrum 

DEA k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

Rnk Score Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist 

Agric 43 0.04 34 2.00 33 0.41 7 0.76 4 0.72 18 0.68 29 2.00 

Food 18 0.13 34 2.00 40 0.59 2 0.72 11 0.75 40 0.81 29 2.00 

Soda 13 0.19 34 2.00 2 0.22 11 0.78 22 0.78 2 0.59 29 2.00 

Beer 12 0.19 34 2.00 36 0.53 1 0.70 2 0.70 37 0.75 29 2.00 

Smoke 32 0.08 34 2.00 20 0.35 25 0.84 24 0.78 24 0.69 29 2.00 

Toys 41 0.05 34 2.00 21 0.36 17 0.80 15 0.76 22 0.69 29 2.00 

Fun 1 1.00 2 0.69 48 2.00 48 2.00 48 2.00 48 2.00 1 0.00 

Books 37 0.06 34 2.00 18 0.35 9 0.78 12 0.75 9 0.66 29 2.00 

Hshld 28 0.10 34 2.00 39 0.56 3 0.72 5 0.73 39 0.79 29 2.00 

Clths 6 0.36 5 1.74 44 1.09 43 1.17 44 1.08 44 1.09 4 1.74 

Hlth 29 0.10 34 2.00 10 0.30 32 0.87 34 0.82 15 0.68 29 2.00 

MedEq 7 0.28 14 2.00 37 0.53 41 1.08 42 0.89 42 0.85 29 2.00 

Drugs 16 0.15 34 2.00 22 0.36 28 0.84 24 0.78 29 0.70 29 2.00 

Chems 20 0.13 14 2.00 3 0.23 15 0.79 25 0.79 3 0.61 29 2.00 

Rubbr 15 0.15 14 2.00 30 0.39 38 0.96 21 0.77 11 0.66 29 2.00 

Txtls 11 0.20 3 1.54 45 1.46 45 1.48 45 1.45 45 1.46 3 1.57 

BldMt 33 0.08 34 2.00 9 0.29 30 0.86 35 0.82 14 0.67 29 2.00 

Cnstr 40 0.05 34 2.00 13 0.33 19 0.81 19 0.77 13 0.66 29 2.00 

Steel 46 0.03 34 2.00 29 0.38 11 0.78 8 0.74 19 0.68 29 2.00 

FabPr 38 0.06 14 2.00 7 0.28 29 0.84 33 0.81 8 0.65 29 2.00 

Mach 27 0.10 14 2.00 6 0.27 28 0.84 31 0.81 7 0.65 29 2.00 

ElcEq 39 0.06 34 2.00 17 0.35 20 0.81 17 0.77 17 0.68 29 2.00 

Autos 30 0.10 14 2.00 1 0.19 5 0.74 6 0.73 1 0.50 29 2.00 

Aero 8 0.28 7 1.92 42 0.65 42 1.13 39 0.85 41 0.82 7 1.92 

Ships 3 0.53 1 0.53 48 2.00 48 2.00 48 2.00 48 2.00 2 1.22 

Guns 24 0.11 34 2.00 16 0.35 35 0.91 38 0.85 34 0.72 29 2.00 

Gold 47 0.02 34 2.00 27 0.37 8 0.77 7 0.74 12 0.66 29 2.00 

Mines 45 0.03 34 2.00 24 0.36 12 0.78 14 0.75 11 0.66 29 2.00 

Coal 48 0.02 34 2.00 31 0.40 13 0.79 10 0.74 28 0.70 29 2.00 

Oil 44 0.04 34 2.00 34 0.43 4 0.74 1 0.69 17 0.68 29 2.00 

Util 26 0.11 34 2.00 38 0.55 6 0.74 3 0.71 38 0.78 29 2.00 

Telcm 22 0.12 34 2.00 25 0.36 16 0.80 13 0.75 20 0.68 29 2.00 

PerSv 42 0.04 34 2.00 32 0.41 15 0.79 9 0.74 32 0.71 29 2.00 

BusSv 4 0.50 8 1.96 43 0.74 44 1.24 43 0.96 43 0.93 8 1.96 

Comps 18 0.13 34 2.00 4 0.24 18 0.80 27 0.79 4 0.61 29 2.00 

Chips 10 0.23 9 1.98 35 0.49 40 1.00 30 0.81 27 0.70 9 1.98 

LabEq 2 0.79 4 1.64 46 1.47 46 1.51 46 1.47 46 1.47 5 1.75 

Paper 25 0.11 34 2.00 12 0.33 31 0.86 32 0.81 26 0.70 29 2.00 

Boxes 31 0.09 34 2.00 15 0.34 25 0.84 26 0.79 21 0.68 29 2.00 

Trans 24 0.11 34 2.00 11 0.32 33 0.88 36 0.83 25 0.69 29 2.00 

Whlsl 19 0.13 34 2.00 20 0.35 21 0.82 21 0.77 23 0.69 29 2.00 

Rtail 9 0.26 14 2.00 5 0.27 25 0.83 29 0.81 6 0.65 29 2.00 

Meals 5 0.41 14 2.00 24 0.36 36 0.92 41 0.87 35 0.73 29 2.00 

Banks 36 0.07 34 2.00 14 0.34 34 0.90 37 0.84 33 0.71 29 2.00 

Insur 14 0.16 14 2.00 26 0.37 37 0.93 40 0.85 36 0.74 29 2.00 

RlEst 22 0.12 6 1.91 41 0.63 39 0.98 16 0.77 32 0.71 6 1.91 

Fin 34 0.08 34 2.00 8 0.29 23 0.83 28 0.80 5 0.65 29 2.00 

Other 35 0.07 34 2.00 28 0.37 22 0.82 18 0.77 30 0.71 29 2.00 
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obtained risk spectrum 

ˆ φ and the investor’s one φ is 

dist 
φ
(X, ˆ X ) = 

S ∑ 

s =1 

| φs − ˆ φs | . 

This distance can help capture the possible difference in the risk

aversion expressed by the risk spectra. 

We can consider the ideal investment opportunity ˆ X as the pro-

jection in general DC-DEA model (4) , i.e. we can fix the weights

x to the optimal weights ˆ x from the spectral risk measure mini-

mization problem (12) . If all directions e j , d k are positive, then we

obtain 

E j ( ̂  X ) − E j (X 0 ) 

e j (X 0 ) 
= ˆ ϕ j , j = 1 , . . . , J, 

R k (X 0 ) − R k ( ̂  X ) 

d (X ) 
= 

ˆ θk , k = 1 , . . . , K, (19)

k 0 
hese values can be inserted into the fractional objective function

f DC-DEA model (4) leading to the directional distance measure 

ist 
dd 

(X, ˆ X ) = 

1 − 1 
K 

∑ K 
k =1 

ˆ θk 

1 + 

1 
J 

∑ J 
j=1 

ˆ ϕ j 

(20)

t quantifies the ratio of relative necessary improvement needed to

each the efficient ideal portfolio in the input and output space,

hus it is fully comparable with the optimal value of the DC-DEA

odel. However, some of the values of ˆ ϕ j , 
ˆ θk can be also negative.

his appears when the risk of the ideal investment opportunity is

ower than the risk of benchmark or the return is higher, which

s both forbidden by the original DC-DEA model (4) . We can avoid

he negative values by setting 

max {E j ( ̂  X ) − E j (X 0 ) , 0 } 
e j (X 0 ) 

= ˆ ϕ j , j = 1 , . . . , J, (21)
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Table 2 

Distances between DC-DEA optimal and ideal portfolios in input-output dimension. 

Exponential spectrum Power spectrum 

DEA k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

Rnk Score Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist 

Agric 43 0.04 43 3.04 32 0.09 6 0.16 23 0.36 24 0.12 43 3.41 

Food 18 0.13 48 3.06 37 0.12 5 0.16 37 0.37 34 0.14 48 3.43 

Soda 13 0.19 25 2.99 3 0.04 23 0.19 2 0.35 1 0.10 25 3.36 

Beer 12 0.19 47 3.06 34 0.11 1 0.15 30 0.36 30 0.13 48 3.43 

Smoke 32 0.08 29 3.01 15 0.06 20 0.18 23 0.36 9 0.11 29 3.38 

Toys 41 0.05 35 3.02 22 0.07 14 0.17 23 0.36 16 0.11 35 3.40 

Fun 1 1.00 2 0.40 48 3.34 48 3.42 48 3.27 48 3.37 1 0.00 

Books 37 0.06 37 3.02 22 0.07 12 0.17 12 0.36 9 0.11 37 3.40 

Hshld 28 0.10 47 3.06 36 0.11 3 0.16 35 0.37 32 0.13 46 3.43 

Clths 6 0.36 5 2.38 44 0.60 44 0.72 44 0.68 44 0.63 5 2.75 

Hlth 29 0.10 23 2.99 8 0.04 26 0.20 10 0.36 9 0.11 23 3.36 

MedEq 7 0.28 10 2.78 39 0.22 39 0.38 39 0.43 39 0.28 10 3.16 

Drugs 16 0.15 30 3.01 18 0.06 20 0.18 30 0.36 16 0.11 30 3.39 

Chems 20 0.13 13 2.91 27 0.07 36 0.25 6 0.36 36 0.15 13 3.29 

Rubbr 15 0.15 11 2.80 38 0.19 38 0.35 38 0.40 38 0.25 11 3.18 

Txtls 11 0.20 4 2.05 45 0.92 45 1.02 45 0.94 45 0.95 4 2.43 

BldMt 33 0.08 19 2.98 5 0.04 29 0.20 9 0.36 16 0.11 19 3.35 

Cnstr 40 0.05 32 3.01 16 0.06 16 0.17 14 0.36 4 0.11 33 3.39 

Steel 46 0.03 39 3.03 29 0.08 9 0.17 23 0.36 21 0.12 39 3.40 

FabPr 38 0.06 18 2.97 2 0.04 31 0.21 6 0.35 19 0.11 18 3.35 

Mach 27 0.10 16 2.95 5 0.04 33 0.22 6 0.35 28 0.12 16 3.32 

ElcEq 39 0.06 33 3.01 19 0.07 17 0.18 17 0.36 9 0.11 33 3.39 

Autos 30 0.10 12 2.90 27 0.08 35 0.25 1 0.34 35 0.14 12 3.28 

Aero 8 0.28 7 2.62 42 0.36 42 0.51 42 0.52 42 0.42 7 3.00 

Ships 3 0.53 1 0.13 47 3.09 47 3.16 47 3.01 47 3.11 2 0.36 

Guns 24 0.11 21 2.98 9 0.05 30 0.20 23 0.36 24 0.12 21 3.35 

Gold 47 0.02 41 3.03 28 0.08 7 0.16 14 0.36 13 0.11 41 3.40 

Mines 45 0.03 38 3.03 24 0.07 9 0.17 14 0.36 9 0.11 38 3.40 

Coal 48 0.02 41 3.03 30 0.08 9 0.17 32 0.36 24 0.12 41 3.40 

Oil 44 0.04 44 3.04 33 0.09 2 0.16 23 0.36 27 0.12 44 3.42 

Util 26 0.11 45 3.05 35 0.11 4 0.16 35 0.37 31 0.13 45 3.43 

Telcm 22 0.12 36 3.02 24 0.07 13 0.17 23 0.36 16 0.11 36 3.40 

PerSv 42 0.04 41 3.03 31 0.08 12 0.17 33 0.37 27 0.12 41 3.41 

BusSv 4 0.50 6 2.57 43 0.42 43 0.56 43 0.56 43 0.47 6 2.95 

Comps 18 0.13 22 2.98 1 0.04 27 0.20 3 0.35 3 0.11 22 3.36 

Chips 10 0.23 9 2.71 40 0.27 40 0.42 40 0.45 40 0.33 9 3.09 

LabEq 2 0.79 3 1.85 46 1.13 46 1.24 46 1.14 46 1.16 3 2.23 

Paper 25 0.11 27 3.00 12 0.05 24 0.19 17 0.36 9 0.11 27 3.37 

Boxes 31 0.09 28 3.01 14 0.06 21 0.18 17 0.36 5 0.11 28 3.38 

Trans 24 0.11 20 2.98 7 0.04 29 0.20 12 0.36 21 0.12 20 3.35 

Whlsl 19 0.13 31 3.01 18 0.06 18 0.18 28 0.36 13 0.11 31 3.39 

Rtail 9 0.26 15 2.93 13 0.06 34 0.24 9 0.36 33 0.14 15 3.30 

Meals 5 0.41 14 2.92 20 0.07 37 0.25 35 0.37 37 0.15 14 3.30 

Banks 36 0.07 25 2.99 11 0.05 26 0.20 23 0.36 19 0.11 25 3.36 

Insur 14 0.16 17 2.96 7 0.04 32 0.22 28 0.36 29 0.13 17 3.34 

RlEst 22 0.12 8 2.66 41 0.32 41 0.46 41 0.47 41 0.37 8 3.03 

Fin 34 0.08 26 3.00 10 0.05 22 0.19 6 0.36 2 0.11 26 3.37 

Other 35 0.07 34 3.02 24 0.07 15 0.17 32 0.37 22 0.12 34 3.39 

w  

i  

b  

d  

t
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d  

t  

t  

F  
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o

 

 

 

 

 

 

k 
max {R k (X 0 ) − R k ( ̂  X ) , 0 } 
d k (X 0 ) 

= 

ˆ θk , k = 1 , . . . , K, (22) 

hich are nonzero if there is a possible improvement, i.e. the ideal

nvestment opportunity has lower risk or higher return. This can

e interpreted as the investor “pays” for increasing the return and

ecreasing the risk, whereas decreasing the return and increasing

he risk does not cost anything. 

. Numerical study 

In this section, we apply and compare all approaches intro-

uced above and discuss recommendations for investors on how

o take risk aversion into account. We use the industry representa-

ive portfolios of US stock market which are listed in the Kenneth

rench online library. Each portfolio represents a branch of the in-

ustry, so alone it is not well diversified as was confirmed by paper

7] . We employed Matlab 2019a to perform the computations. 
To make the explanation clearer, we summarize the terminol-

gy used below: 

• Representative portfolio – original portfolio consisting of only

one US industry branch. 
• DC-DEA optimal portfolio – optimal solution of the DC-DEA

model (5) , resp. (7) composed from several representative port-

folios and, at the same time, the projection of one representa-

tive portfolio to the DC-DEA ( = SSD) efficient frontier. 
• Ideal portfolio – optimal solution of the spectral risk measure

minimization problem (12) , resp. (13) for a particular risk spec-

trum. It also lies on the SSD efficient frontier. 

We use the following parametric risk spectra: 

1. Exponential risk spectrum: 

φ (p) = 

k · e −k ·p 
, k > 0 , (23) 
1 − e −k 
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Table 3 

Distances between DC-DEA optimal and ideal portfolios in risk-spectrum φ dimension. 

Exponential spectrum Power spectrum 

DEA k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

Rnk Score Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist 

Agric 43 0.04 43 0.38 39 0.14 6 0.98 3 0.62 38 0.27 43 0.48 

Food 18 0.13 48 0.49 45 0.25 1 0.90 6 0.62 46 0.36 48 0.58 

Soda 13 0.19 26 0.32 14 0.08 21 1.04 15 0.64 17 0.24 26 0.42 

Beer 12 0.19 45 0.45 42 0.21 2 0.91 1 0.61 43 0.32 45 0.55 

Smoke 32 0.08 29 0.32 21 0.10 19 1.03 21 0.65 26 0.26 29 0.42 

Toys 41 0.05 35 0.35 27 0.12 14 1.01 13 0.63 31 0.26 35 0.45 

Fun 1 1.00 2 0.10 46 0.34 48 1.34 46 0.84 42 0.31 1 0.00 

Books 37 0.06 36 0.35 25 0.11 12 1.00 7 0.62 24 0.25 36 0.45 

Hshld 28 0.10 47 0.46 44 0.22 3 0.92 8 0.62 44 0.34 47 0.56 

Clths 6 0.36 1 0.08 41 0.21 45 1.18 45 0.73 10 0.21 4 0.22 

Hlth 29 0.10 22 0.29 9 0.07 26 1.06 26 0.65 15 0.24 22 0.39 

MedEq 7 0.28 8 0.19 37 0.13 43 1.16 42 0.71 15 0.24 8 0.29 

Drugs 16 0.15 32 0.34 25 0.11 22 1.04 27 0.65 39 0.27 32 0.44 

Chems 20 0.13 14 0.25 2 0.05 35 1.08 29 0.66 9 0.21 14 0.36 

Rubbr 15 0.15 10 0.22 15 0.08 38 1.12 39 0.68 11 0.21 10 0.33 

Txtls 11 0.20 7 0.16 48 0.63 46 1.28 48 0.88 48 0.58 3 0.09 

BldMt 33 0.08 17 0.26 5 0.06 33 1.08 33 0.66 12 0.23 17 0.37 

Cnstr 40 0.05 30 0.33 20 0.10 16 1.02 12 0.63 20 0.24 30 0.43 

Steel 46 0.03 40 0.36 33 0.12 10 1.00 9 0.63 32 0.26 40 0.46 

FabPr 38 0.06 12 0.24 5 0.06 34 1.08 29 0.66 8 0.21 12 0.35 

Mach 27 0.10 11 0.24 5 0.06 37 1.09 31 0.66 7 0.21 11 0.35 

ElcEq 39 0.06 32 0.34 23 0.11 17 1.02 16 0.64 29 0.26 32 0.44 

Autos 30 0.10 13 0.25 1 0.05 31 1.08 22 0.65 3 0.19 13 0.36 

Aero 8 0.28 3 0.15 37 0.13 44 1.16 43 0.71 6 0.21 5 0.27 

Ships 3 0.53 16 0.26 28 0.12 40 1.13 44 0.73 34 0.27 16 0.37 

Guns 24 0.11 23 0.29 12 0.08 29 1.07 36 0.67 29 0.26 23 0.40 

Gold 47 0.02 39 0.36 30 0.12 7 0.99 4 0.62 25 0.25 39 0.46 

Mines 45 0.03 34 0.35 22 0.11 8 1.00 6 0.62 21 0.24 34 0.45 

Coal 48 0.02 41 0.36 35 0.13 10 1.00 11 0.63 33 0.27 41 0.46 

Oil 44 0.04 44 0.40 40 0.16 5 0.96 2 0.62 41 0.28 44 0.50 

Util 26 0.11 46 0.46 43 0.22 4 0.93 10 0.63 45 0.34 46 0.55 

Telcm 22 0.12 39 0.36 33 0.12 13 1.01 14 0.64 35 0.27 39 0.46 

PerSv 42 0.04 42 0.37 38 0.14 11 1.00 17 0.64 40 0.28 42 0.47 

BusSv 4 0.50 6 0.16 35 0.13 42 1.15 41 0.70 4 0.20 7 0.28 

Comps 18 0.13 15 0.26 3 0.06 29 1.07 24 0.65 6 0.20 15 0.36 

Chips 10 0.23 4 0.15 31 0.12 41 1.15 40 0.70 2 0.19 6 0.27 

LabEq 2 0.79 6 0.16 47 0.50 47 1.32 47 0.87 47 0.45 2 0.03 

Paper 25 0.11 27 0.32 19 0.10 24 1.05 25 0.65 30 0.26 28 0.42 

Boxes 31 0.09 28 0.32 18 0.09 21 1.04 20 0.65 23 0.25 28 0.42 

Trans 24 0.11 19 0.28 8 0.07 31 1.08 34 0.66 16 0.24 19 0.38 

Whlsl 19 0.13 32 0.34 26 0.11 19 1.03 24 0.65 36 0.27 32 0.44 

Rtail 9 0.26 21 0.29 7 0.07 27 1.07 31 0.66 18 0.24 22 0.39 

Meals 5 0.41 20 0.28 14 0.08 32 1.08 35 0.67 22 0.25 20 0.39 

Banks 36 0.07 25 0.31 17 0.09 25 1.06 31 0.66 27 0.26 25 0.41 

Insur 14 0.16 18 0.27 11 0.08 37 1.09 37 0.68 20 0.24 18 0.37 

RlEst 22 0.12 9 0.19 17 0.09 39 1.12 38 0.68 1 0.18 9 0.30 

Fin 34 0.08 24 0.30 11 0.08 23 1.04 19 0.64 13 0.23 24 0.41 

Other 35 0.07 37 0.35 30 0.12 15 1.01 19 0.64 38 0.27 37 0.45 
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2. Power risk spectrum: 

φγ (p) = γ · p γ −1 , γ ∈ (0 , 1] . (24)

We consider several choices of the parameters for the exponen-

tial spectrum, k ∈ {0.4, 1.4, 10} and the power spectrum, γ ∈ {0.3,

0.65, 1.0} which reflect different risk aversions of investors. For the

exponential spectrum, the higher values of parameters are related

to higher aversion to risk, whereas for the power spectrum the op-

posite is true. Below we will simplify the notion and identify the

risk spectrum by its parameter, for example k = 1 . 4 means expo-

nential spectrum with this parameter value. We believe that this

cannot cause any misunderstanding. 

For reader’s convenience we summarize the steps: 

1. For all representative portfolios: 

1.1. Apply the DC-DEA model consistent with SSD (5) and ob-

tain the DC-DEA optimal portfolio. 

1.2. Reconstruct the shadow risk spectrum using (17) . 
a  
2. For the risk spectra (23), (24) and their parameters k ∈ {0.4,

1.4, 10}, γ ∈ {0.3, 0.65, 1.0}: 

2.1. Derive the empirical risk spectrum and compute aux-

iliary weights using (11) . 

2.2. Find the ideal investment opportunity by solving

problem (12) , resp. (13) . 

3. Measure the distances between the ideal investment oppor-

tunities and the investigated ones. 

4. Rank the available investment opportunities according to the

distances. 

ables 1 –10 present the numerical results. Since our main goal is

he comparison with the DC-DEA, the first columns always contain

he DEA scores and its ranking. First, we compare the ideal portfo-

ios for several choices of risk spectra and the optimal portfolios of

C-DEA model which corresponds to projecting the representative

ortfolios onto the efficient frontier, cf. Tables 1–3 . Then, we inves-

igate the rankings based on the distances between representative

nd ideal portfolios, cf. Tables 5–7 . Tables 4 , 8 provide correlations
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Table 4 

Rank correlations between DC-DEA optimal and ideal portfolios. 

Exponential spectrum Power spectrum 

k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

x 0.692 −0 . 350 −0 . 621 −0 . 648 −0 . 507 0.597 

input-output 0.696 −0 . 354 −0 . 710 −0 . 508 −0 . 621 0.695 

φ 0.630 −0 . 136 −0 . 678 −0 . 721 0.108 0.629 

Table 5 

Distances between representative and ideal portfolios in weight x dimension. 

Exponential spectrum Power spectrum 

DEA k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

Rnk Score Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist 

Agric 43 0.04 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Food 18 0.13 26 2.00 28 2.00 6 1.89 29 2.00 28 2.00 25 2.00 

Soda 13 0.19 26 2.00 3 1.59 2 1.55 1 1.50 2 1.45 25 2.00 

Beer 12 0.19 26 2.00 5 1.89 7 1.90 29 2.00 28 2.00 25 2.00 

Smoke 32 0.08 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Toys 41 0.05 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Fun 1 1.00 1 0.69 28 2.00 29 2.00 29 2.00 28 2.00 1 0.00 

Books 37 0.06 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Hshld 28 0.10 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Clths 6 0.36 26 2.00 7 1.98 9 2.00 8 1.97 6 1.98 25 2.00 

Hlth 29 0.10 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

MedEq 7 0.28 26 2.00 4 1.83 29 2.00 6 1.89 5 1.88 25 2.00 

Drugs 16 0.15 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Chems 20 0.13 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Rubbr 15 0.15 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Txtls 11 0.20 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

BldMt 33 0.08 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Cnstr 40 0.05 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Steel 46 0.03 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

FabPr 38 0.06 26 2.00 28 2.00 29 2.00 9 1.99 28 2.00 25 2.00 

Mach 27 0.10 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

ElcEq 39 0.06 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Autos 30 0.10 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Aero 8 0.28 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Ships 3 0.53 2 1.31 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Guns 24 0.11 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Gold 47 0.02 26 2.00 6 1.96 5 1.80 3 1.66 4 1.88 25 2.00 

Mines 45 0.03 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Coal 48 0.02 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Oil 44 0.04 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Util 26 0.11 26 2.00 28 2.00 4 1.75 5 1.84 28 2.00 25 2.00 

Telcm 22 0.12 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

PerSv 42 0.04 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

BusSv 4 0.50 26 2.00 2 1.44 1 1.44 4 1.68 1 1.28 25 2.00 

Comps 18 0.13 26 2.00 28 2.00 29 2.00 7 1.91 28 2.00 25 2.00 

Chips 10 0.23 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

LabEq 2 0.79 3 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Paper 25 0.11 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Boxes 31 0.09 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Trans 24 0.11 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Whlsl 19 0.13 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Rtail 9 0.26 26 2.00 28 2.00 8 1.97 29 2.00 28 2.00 25 2.00 

Meals 5 0.41 26 2.00 1 1.32 3 1.70 2 1.56 3 1.53 25 2.00 

Banks 36 0.07 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Insur 14 0.16 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

RlEst 22 0.12 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Fin 34 0.08 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

Other 35 0.07 26 2.00 28 2.00 29 2.00 29 2.00 28 2.00 25 2.00 

b  
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etween rankings bases on DC-DEA and various distances. Finally,

he robustness of the criteria with respect to two extreme scenar-

os is evaluated in Tables 9 , 10 . 

Concerning the results of the DC-DEA model, see Table 1 , only

ne representative portfolio (Fun) was identified as efficient, be-

ause it has the highest mean return. This is consistent with our

revious findings, because the representative portfolios alone are

ot well diversified. Therefore, interdisciplinary portfolios com-
w  
osed from several representative portfolios are necessary to reach

he DC-DEA as well as SSD efficient frontiers. 

In principle, the distance in the portfolio weight space prefers

hose interdisciplinary portfolios which are similar to the struc-

ure of the ideal portfolios, see Table 1 . Therefore, the ranking can

e very different as the structure of the ideal portfolios changes.

n particular, the DC-DEA efficient representative portfolio Fun is

anked as second for the parameter value k = 0 . 4 and it is the

orse for the remaining parameter values for the exponential
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Table 6 

Distances between representative and ideal portfolios in input-output dimension. 

Exponential spectrum Power spectrum 

DEA k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

Rnk Score Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist 

Agric 43 0.04 22 1.08 40 3.37 39 3.42 39 3.26 40 3.39 12 0.90 

Food 18 0.13 44 2.35 3 0.73 3 0.78 3 0.62 3 0.75 44 2.71 

Soda 13 0.19 37 2.03 7 0.99 7 1.04 7 0.89 7 1.01 39 2.40 

Beer 12 0.19 45 2.52 2 0.51 2 0.56 1 0.40 2 0.53 45 2.89 

Smoke 32 0.08 17 0.97 23 2.14 23 2.19 23 2.04 23 2.16 21 1.31 

Toys 41 0.05 9 0.84 33 3.17 33 3.22 33 3.07 33 3.19 9 0.73 

Fun 1 1.00 2 0.40 38 3.34 40 3.42 40 3.27 38 3.37 1 0.00 

Books 37 0.06 19 0.98 29 2.74 29 2.79 29 2.63 29 2.76 16 1.05 

Hshld 28 0.10 39 2.09 8 1.04 8 1.09 8 0.93 8 1.06 40 2.45 

Clths 6 0.36 27 1.30 15 1.70 15 1.77 15 1.61 15 1.72 29 1.66 

Hlth 29 0.10 14 0.94 24 2.15 24 2.20 24 2.04 24 2.17 20 1.28 

MedEq 7 0.28 33 1.77 10 1.20 12 1.29 12 1.18 11 1.23 35 2.14 

Drugs 16 0.15 36 1.92 9 1.10 9 1.15 9 0.99 9 1.12 38 2.28 

Chems 20 0.13 12 0.87 25 2.25 25 2.31 25 2.15 25 2.27 19 1.19 

Rubbr 15 0.15 5 0.65 26 2.40 26 2.46 26 2.30 26 2.42 14 0.99 

Txtls 11 0.20 32 1.71 44 4.64 44 4.69 44 4.54 44 4.66 24 1.34 

BldMt 33 0.08 3 0.48 36 3.31 36 3.36 36 3.21 36 3.33 2 0.31 

Cnstr 40 0.05 18 0.98 37 3.34 37 3.39 37 3.23 37 3.36 11 0.75 

Steel 46 0.03 38 2.08 45 5.00 45 5.05 45 4.89 45 5.02 31 1.71 

FabPr 38 0.06 30 1.47 43 4.39 43 4.45 43 4.29 43 4.41 17 1.10 

Mach 27 0.10 4 0.64 30 2.83 30 2.89 30 2.73 30 2.85 7 0.68 

ElcEq 39 0.06 7 0.75 31 3.01 31 3.07 31 2.91 31 3.04 10 0.74 

Autos 30 0.10 10 0.85 32 3.09 32 3.15 32 2.99 32 3.11 8 0.73 

Aero 8 0.28 25 1.22 17 1.75 18 1.83 18 1.68 18 1.78 27 1.59 

Ships 3 0.53 13 0.90 41 3.86 41 3.93 41 3.77 41 3.88 4 0.53 

Guns 24 0.11 20 1.00 20 2.05 20 2.10 20 1.95 20 2.07 25 1.35 

Gold 47 0.02 47 3.98 47 6.90 47 6.95 47 6.80 47 6.92 47 3.61 

Mines 45 0.03 43 2.32 46 5.25 46 5.30 46 5.14 46 5.27 33 1.95 

Coal 48 0.02 48 6.89 48 9.81 48 9.86 48 9.71 48 9.83 48 6.52 

Oil 44 0.04 23 1.14 34 3.23 34 3.28 34 3.12 34 3.25 15 1.02 

Util 26 0.11 42 2.18 6 0.94 6 0.99 6 0.83 6 0.96 42 2.54 

Telcm 22 0.12 35 1.84 11 1.20 10 1.25 10 1.10 10 1.22 37 2.21 

PerSv 42 0.04 6 0.70 39 3.36 38 3.41 38 3.25 39 3.38 5 0.57 

BusSv 4 0.50 41 2.17 4 0.80 4 0.89 4 0.77 4 0.82 43 2.55 

Comps 18 0.13 24 1.21 19 1.85 19 1.90 19 1.75 19 1.87 26 1.55 

Chips 10 0.23 26 1.28 16 1.70 16 1.77 16 1.62 16 1.72 28 1.65 

LabEq 2 0.79 31 1.59 13 1.38 13 1.49 13 1.37 13 1.42 34 1.97 

Paper 25 0.11 28 1.31 18 1.75 17 1.81 17 1.65 17 1.77 30 1.67 

Boxes 31 0.09 21 1.01 22 2.14 22 2.19 22 2.03 22 2.16 23 1.33 

Trans 24 0.11 15 0.97 21 2.08 21 2.13 21 1.97 21 2.10 22 1.33 

Whlsl 19 0.13 34 1.82 12 1.22 11 1.27 11 1.11 12 1.24 36 2.18 

Rtail 9 0.26 40 2.13 5 0.85 5 0.91 5 0.77 5 0.87 41 2.51 

Meals 5 0.41 46 2.58 1 0.38 1 0.48 2 0.44 1 0.41 46 2.96 

Banks 36 0.07 1 0.40 35 3.24 35 3.29 35 3.13 35 3.26 3 0.50 

Insur 14 0.16 29 1.35 14 1.65 14 1.71 14 1.55 14 1.67 32 1.72 

RlEst 22 0.12 17 0.97 42 3.90 42 3.95 42 3.79 42 3.92 6 0.60 

Fin 34 0.08 11 0.85 28 2.56 28 2.61 28 2.45 28 2.58 13 0.99 

Other 35 0.07 8 0.84 27 2.51 27 2.57 27 2.41 27 2.54 18 1.11 
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spectrum, i.e. for the investors with high risk aversion. We can ob-

serve similar results for the power spectrum where the parameter

γ = 1 leads directly to the (degenerate) ideal portfolio Fun. On the

other hand, the worst representative portfolio according to DC-DEA

model Coal is not so bad for any parameter of risk spectra, e.g. it

is ranked as tenth for γ = 0 . 3 . 

Looking into Table 2 , the distances in the input-output (mean-

CVaRs) space, the rankings of Fun and Coal are similar. This can be

explained as a similar structure of the interdisciplinary portfolios

leads to similar mean-risk profile. 

As representative portfolio Fun is efficient, we cannot recon-

struct its risk-spectrum using Theorem 3.2 . However, if we realize

that Fun has the highest mean return, we can use a constant risk

spectrum equal to one, which corresponds to maximizing the ex-

pected value. Therefore Fun is the best for γ = 1 , the second best

for k = 0 . 4 , but it is bad for investors with higher risk aversion.

If we focus on the DC-DEA second best representative portfolio

LabEq, we can see that for some investors ( k = 0 . 4 , γ = 1 ) its pro-
ection to the efficient frontier can really correspond to the risk

version preferences. Even projection of coal need not to be far

rom ideal portfolios of some investors ( k = 10 , γ = 0 . 3 ). 

Table 4 contains rank correlations between DC-DEA scores and

he distances. It shows that the original DC-DEA ranking corre-

ponds rather to low risk aversion, i.e. there are significantly posi-

ive correlations with k = 0 . 4 , γ = 1 . On the other hand, the other

arameters suitable for investors with higher risk aversion provide

ifferent (opposite) ranking which is confirmed by significantly

egative rank correlations. 

Now, we can focus on the distances between representative and

deal portfolios. Table 5 confirms that if the representative portfolio

s contained in the ideal one, than it is closer. For instance, Fun is

ontained in ideal portfolios for k = 0 . 4 , γ = 1 . On the other hand,

abEq (ranked as second by the DC-DEA model) is not contained

n any ideal portfolio, so the distance is the worst possible, i.e. it

s equal to two which means which represents a complete revi-

ion of the portfolio. A slightly different situation appears in the
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Table 7 

Distances between representative and ideal portfolios according to directional distance. 

Exponential spectrum Power spectrum 

DEA k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

Rnk Score Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist Rnk Dist 

Agric 43 0.04 41 0.33 43 0.05 43 0.07 43 0.11 43 0.06 41 0.38 

Food 18 0.13 20 0.46 10 0.18 13 0.22 11 0.42 12 0.20 19 0.46 

Soda 13 0.19 12 0.47 7 0.20 9 0.27 8 0.46 8 0.23 13 0.46 

Beer 12 0.19 13 0.47 6 0.24 6 0.30 4 0.56 6 0.26 13 0.46 

Smoke 32 0.08 25 0.45 30 0.09 29 0.14 28 0.23 29 0.10 25 0.45 

Toys 41 0.05 37 0.36 41 0.06 41 0.08 41 0.14 41 0.06 38 0.40 

Fun 1 1.00 1 0.85 14 0.15 19 0.19 24 0.28 15 0.17 1 1.00 

Books 37 0.06 34 0.38 37 0.07 38 0.10 37 0.16 37 0.08 34 0.41 

Hshld 28 0.10 24 0.45 20 0.13 25 0.16 22 0.30 23 0.14 25 0.45 

Clths 6 0.36 10 0.47 12 0.17 14 0.22 16 0.34 13 0.19 11 0.47 

Hlth 29 0.10 23 0.45 26 0.10 23 0.17 23 0.28 26 0.12 22 0.45 

MedEq 7 0.28 4 0.48 4 0.28 3 0.37 5 0.55 3 0.34 5 0.47 

Drugs 16 0.15 11 0.47 13 0.16 8 0.27 7 0.47 12 0.20 10 0.47 

Chems 20 0.13 26 0.44 21 0.13 24 0.17 25 0.27 22 0.15 27 0.45 

Rubbr 15 0.15 15 0.46 19 0.13 21 0.19 20 0.31 17 0.16 17 0.46 

Txtls 11 0.20 43 0.29 35 0.07 36 0.11 36 0.17 35 0.09 43 0.33 

BldMt 33 0.08 33 0.38 32 0.08 31 0.13 32 0.20 31 0.10 32 0.43 

Cnstr 40 0.05 40 0.34 41 0.06 40 0.08 41 0.14 41 0.06 39 0.38 

Steel 46 0.03 45 0.24 46 0.03 46 0.05 46 0.08 46 0.04 45 0.28 

FabPr 38 0.06 44 0.28 39 0.06 37 0.10 38 0.16 38 0.07 44 0.32 

Mach 27 0.10 31 0.40 27 0.10 27 0.14 29 0.23 27 0.12 28 0.44 

ElcEq 39 0.06 35 0.37 39 0.06 39 0.09 39 0.15 39 0.07 33 0.41 

Autos 30 0.10 36 0.36 29 0.09 33 0.12 34 0.19 30 0.10 35 0.40 

Aero 8 0.28 6 0.48 8 0.20 8 0.27 10 0.42 7 0.24 6 0.47 

Ships 3 0.53 29 0.42 24 0.12 26 0.16 27 0.23 25 0.14 36 0.40 

Guns 24 0.11 16 0.46 22 0.12 15 0.21 14 0.35 20 0.15 16 0.46 

Gold 47 0.02 47 0.18 47 0.03 47 0.03 47 0.06 47 0.03 47 0.20 

Mines 45 0.03 46 0.23 45 0.04 45 0.05 45 0.08 45 0.04 46 0.27 

Coal 48 0.02 48 0.13 48 0.02 48 0.02 48 0.04 48 0.02 48 0.15 

Oil 44 0.04 40 0.34 44 0.05 44 0.06 44 0.10 44 0.05 40 0.38 

Util 26 0.11 22 0.45 17 0.14 22 0.18 18 0.33 19 0.15 23 0.45 

Telcm 22 0.12 17 0.46 18 0.14 16 0.20 15 0.35 18 0.16 16 0.46 

PerSv 42 0.04 38 0.35 42 0.05 42 0.07 42 0.12 42 0.06 38 0.40 

BusSv 4 0.50 3 0.49 2 0.31 2 0.39 3 0.59 2 0.37 3 0.48 

Comps 18 0.13 21 0.45 16 0.14 21 0.19 21 0.30 16 0.16 20 0.46 

Chips 10 0.23 7 0.48 9 0.18 11 0.24 13 0.36 9 0.21 7 0.47 

LabEq 2 0.79 2 0.50 3 0.29 5 0.35 6 0.52 4 0.33 2 0.48 

Paper 25 0.11 20 0.46 25 0.12 17 0.19 17 0.33 24 0.14 21 0.46 

Boxes 31 0.09 27 0.44 28 0.09 28 0.14 26 0.24 28 0.11 27 0.45 

Trans 24 0.11 18 0.46 23 0.12 18 0.19 19 0.32 22 0.14 18 0.46 

Whlsl 19 0.13 14 0.46 15 0.15 12 0.23 12 0.41 14 0.17 14 0.46 

Rtail 9 0.26 8 0.48 5 0.27 4 0.36 2 0.61 5 0.32 8 0.47 

Meals 5 0.41 5 0.48 1 0.43 1 0.52 1 0.73 1 0.51 4 0.47 

Banks 36 0.07 32 0.40 36 0.07 34 0.12 33 0.19 36 0.08 31 0.43 

Insur 14 0.16 9 0.47 11 0.17 10 0.26 9 0.43 10 0.21 9 0.47 

RlEst 22 0.12 42 0.32 34 0.08 35 0.11 35 0.17 34 0.09 42 0.37 

Fin 34 0.08 30 0.40 32 0.08 30 0.13 30 0.21 32 0.10 30 0.43 

Other 35 0.07 28 0.42 33 0.08 32 0.12 32 0.20 33 0.09 30 0.43 
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nput-output dimension. Fun is ranked in a similar way, however,

he mean-CVaRs profile of LabEq is similar to that of ideal portfo-

ios for k = 0 . 4 , γ = 1 , see Table 6 . We can see that Coal is a bad

hoice for any investor regardless of the risk profile. Finally, Table 7

hows ranking for the directional distance. Maybe surprisingly, Fun

s ranked well only for k = 0 . 4 and γ = 1 , but not for the other

hoices of risk spectra. On the other hand, LabEq is very close to

he ideal portfolios for all investors. Maybe a surprising “winner”

s Meals (ranked 5 by DC-DEA) which is very close to the ideal

ortfolio for all considered risk-spectra. We can also mention Coal,

hich remains the worst for all risk spectra. 

In comparison with Table 4 , interpretation of Table 8 contain-

ng the rank correlations is not so straightforward. The correlations

o not depend only on the parameters, but also on the selected

istance. We stress that we compare SSD efficient portfolios with

nefficient ones. Ranking according to the distance in the portfo-

io weight dimension x is weakly positively correlated with DC-

EA ranking. On the other hand, the ranking based on the input-

utput (mean-CVaRs) distance is similar as in Table 4 , i.e. there
re strong positive correlations for k = 0 . 4 , γ = 1 , and strong neg-

tive correlations otherwise. If we consider the distance based on

he risk-spectra, we can see strong positive correlations with the

C-DEA ranking for all considered risk spectra, which is a bit sur-

rising. Our suggestion is therefore to select the distance according

o the purpose, i.e. when the goal is to reduce the revision, then

easure the distance in the weight dimension, whereas when we

ould like to compare the mean-risk (mean-CVaRs) profile, then

he input-output distance is more suitable. 

We accessed robustness of considered criteria by applying a

imple approach, adding extreme scenarios to existing return re-

lizations and looking at their impact. The extreme scenarios are

reated from the average of the observed returns by subtracting,

esp. by adding three times the standard deviation, i.e. the first

cenario represents a crisis, whereas the second one is optimistic. 

ables 9, 10 contain correlations between original rankings and

ankings after including extreme scenarios with respect to all con-

idered criteria. We can observe that in most cases the correla-

ions are close to one, i.e. the extreme scenarios have (almost) no
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Table 8 

Rank correlations between DC-DEA optimal and ideal portfolios. 

Exponential spectrum Power spectrum 

k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

x 0.419 0.344 0.310 0.226 0.298 0.247 

input-output −0 . 151 0.625 0.611 0.611 0.622 −0 . 250 

directional distance 0.847 0.902 0.871 0.842 0.901 0.823 

Table 9 

Rank correlations between criteria based on unperturbed data and data with added scenario mean- 

3std (first three rows correspond to distances between DC-DEA optimal and ideal portfolios, the 

following three rows refer to distances between representative and ideal portfolios). 

DEA Exponential spectrum Power spectrum 

k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

x 0.989 0.844 0.822 0.870 0.858 0.535 0.704 

input-output 0.989 0.989 0.854 0.989 0.301 0.366 0.989 

φ 0.989 0.921 0.977 0.991 0.964 0.835 0.990 

x 0.989 0.999 0.863 0.892 0.460 0.824 1.000 

input-output 0.989 0.531 0.997 0.998 0.997 0.997 0.994 

directional distance 0.989 0.976 0.996 0.997 0.992 0.987 0.998 

Table 10 

Rank correlations between criteria based on unperturbed data and data with added scenario 

mean+3std (first three rows correspond to distances between DC-DEA optimal and ideal portfolios, 

the following three rows refer to distances between representative and ideal portfolios). 

DEA Exponential spectrum Power spectrum 

k = 0 . 4 k = 1 . 4 k = 10 γ = 0 . 3 γ = 0 . 65 γ = 1 

x 0.991 0.825 0.868 0.913 0.763 0.976 0.915 

input-output 0.991 0.994 0.931 0.993 0.912 0.899 0.994 

φ 0.991 0.895 0.947 0.991 0.995 0.980 0.878 

x 0.991 0.825 0.945 0.953 0.959 1.000 1.000 

input-output 0.991 1.000 1.000 1.000 1.000 1.000 1.000 

directional distance 0.991 1.000 0.999 0.999 1.000 0.999 1.000 
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influence and the criteria are stable/robust. Some instability can

be observed for the input-output distance (for γ ∈ {0.3, 0.65}) in

Table 9 where it can be explained by the fact that the risk mea-

sures are highly influenced by the crisis scenario. 

5. Conclusions 

In this paper, we have focused on risk aversion in data envel-

opment analysis models with diversification which are consistent

with the second order stochastic dominance. Our approach relies

on using spectral risk measures which can take into account the

risk aversion of a particular investor by the choice of the risk spec-

trum. 

We have proposed a way to detect the risk aversion which is

implicitly contained in the DC-DEA model. This approach allowed

us to reconstruct the shadow risk spectrum. By minimizing the

corresponding (shadow) spectral risk measure, we get a DC-DEA

and at the same time an SSD efficient portfolio. This portfolio can

be then compared with other efficient portfolios. We have pro-

posed several ways how to measure the distance to the ideal in-

vestment opportunity which represent the best choice for the in-

vestor taking into account individual risk aversion. In general, the

distances can be classified to four cases according to the dimension

where they measure the distance: portfolio weight, input-outputs,

risk spectra, and directional. 

Numerical study showed that the DC-DEA model implicitly

prefers the expected value criterion over the risk, which corre-

sponds to lower risk aversion. We can also conclude that the rank-

ing provided by the DEA scores can be very different from the

ranking based on the distances from the ideal investment oppor-

tunity, which was supported by the negative rank correlations ob-

tained for several choices of the risk spectra, mainly for higher risk
version. Thus, the use of an inappropriate criterion leads to mean-

ngless results. Our suggestion is that if the investor risk aversion

s known, than it must be taken into account using one of the pro-

osed approaches. On the other hand, if we do not have any esti-

ate of the risk aversion, a projection to the efficient frontier using

he DC-DEA model can be sufficient. 

We have also accessed robustness of the proposed criteria with

espect to two extreme scenarios. We can conclude that most of

hem are stable. We have observed instability only for the input-

utput space distance which is based on risk measures which are

ighly dependent on the return realizations. 

All considered approaches require performing two steps to sort

he investment opportunities. Future research will be focused on

nding a single step procedure. Extension to multiperiod models

s also of interest. 

cknowledgements 

This work was supported by National Natural Science Foun-

ation of China (Grant No. 61850410534 ), the Grant Agency

f the Czech Republic (19-28231X) and the OP RDE (OP

VV) funded project Research Center for Informatics, reg. No:

Z02.1.01/0.0./0.0./16 019/0 0 0 0765. 

ppendix A. Formal and axiomatic definitions 

Coherent risk measures were introduced by Artzner et al. [37] .

et L p (	) denote the Lebesgue space of functionals defined on

ome 	 with finite p -th moment. 

efinition A.1. We say that R : L p (	) → R , for some p ∈
 1 , . . . , ∞} , is a coherent risk measure if it satisfies 

https://doi.org/10.13039/501100001809
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(R1) translation equivariance: R (X + c) = R (X ) − c for all X ∈
L p (	) and constants c ∈ R , 

(R2) positive homogenity: R (0) = 0 , and R (λX ) = λR (X ) for all

X ∈ L p (	) and all λ≥ 0, 

(R3) subadditivity: R (X 1 + X 2 ) ≤ R (X 1 ) + R (X 2 ) for all X 1 , X 2 ∈
L p (	) , 

(R4) monotonicity: R (X 1 ) ≤ R (X 2 ) when X 1 ≥ X 2 , X 1 , X 2 ∈ L p (	) . 

Note that the axioms (R2) and (R3) imply convexity. 

A formal definition of Conditional Value at Risk (CVaR) for gen-

ral distribution of X can be found in paper by Rockafellar and

ryasev [38] . 

efinition A.2. For X ∈ L 1 (	) and α ∈ [0, 1), Conditional Value at

isk (CVaR) is defined as the mean of losses in the α-tail distribu-

ion with the distribution function: 

 α(η) = 

{ F (η) −α
1 −α , if η ≥ VaR α(X ) , 

0 , otherwise , 

here F (η) = P (−X ≤ η) and VaR α(X ) = min η { η s . t . F (η) ≥ α} . 
Rockafellar and Uryasev [38] also showed that CVaR α can be

omputed using the minimization formula: 

VaR α(X ) = min 

ξ∈ R 
ξ + 

1 

1 − α
E [ max { (−X − ξ ) , 0 } ] , (A.1) 

here VaR α( X ) is the optimal solution. This formula is often used

ithin the optimization problems because it does not require ex-

licit evaluation of VaR which can be highly demanding. If the dis-

ribution of random returns X is finite discrete with equiprobable

ealizations, denoting X [1] ≤ · · · ≤ X [ S] their sorted version starting

ith the smallest return, CVaR follows the simple formula 

VaR k/S (X ) = −E [ X | X ≤ X [ S−k ] ] = − 1 

S − k 

S−k ∑ 

s =1 

X [ s ] , (A.2)

or k = 1 , . . . , S − 1 . 

We propose formal definitions of the second order stochastic

ominance relation and efficiency based on twice cumulative dis-

ribution functions. However, this approach is equivalent to the

efinitions based on concave utility functions, see Lévy [23] . 

efinition A.3. Let F X (t) = P (X ≤ t) denote the cdf of X ∈ X ⊆
 1 (	) , the twice cumulative probability distribution function is

efined by 

 

(2) 
X 

(t) = 

∫ t 

−∞ 

F X (η) d η. 

hen the investment opportunity X dominates ˜ X with respect to

he second-order stochastic dominance (SSD), ˜ X �SSD X, if and only

f 

 

(2) 
X 

(t) ≤ F (2) 
˜ X 

(t) , ∀ t ∈ R , (A.3) 

he relation is strict, i.e. ˜ X ≺SSD X, if the inequality is strict for at

east one t ∈ R . We say that an investment opportunity X ∈ X is

SD efficient if there is no other ˜ X ∈ X for which X ≺SSD 
˜ X . 

Acerbi [12] defined the class of spectral risk measures which

re based on admissible risk spectra. 

efinition A.4. An element φ ∈ L 1 ([0 , 1]) is called an admissible

isk spectrum, cf., if it is 

(A1) positive: for all I ⊆[0, 1] holds ∫ 
I 

φ(p) dp ≥ 0 , 

(A2) non-increasing: for all q ∈ (0, 1) and ε > 0 such that [ q −
ε, q + ε] ⊂ [0 , 1] , holds ∫ q 

φ(p) dp ≥
∫ q + ε 

φ(p) dp, 

q −ε q 
(A3) normalized: 

‖ 

φ‖ 

= 

∫ 1 

0 

φ(p) dp = 1 . 

Then, the spectral risk measure (SRM) is defined as the

eighted quantiles of the random returns 

 φ(X ) = −
∫ 1 

0 

F −1 
X (p) φ(p) dp (A.4) 

here we consider the quantile function 

 

−1 
X (p) = min { x : F X (x ) ≥ p} , p ∈ [0 , 1] . (A.5) 

As an important special case, we can obtain CVaR for α ∈ [0, 1) 

VaR α(X ) = 

−1 

1 − α

∫ 1 −α

0 

F −1 
X ( p) dp 

or the risk spectrum 

(p) = 

1 

1 − α
I { 0 ≤ p ≤ 1 − α} . 

Note that Acerbi [12] considered so called expected shortfall in-

tead of CVaR, which can lead to some misunderstanding. However,

f we consider finite discrete distribution of X with equiprobable

ealizations, there is a simple relation between these two mea-

ures: 

VaR 

S 
1 −s/S (X ) = ES S s/S (X ) = 

−1 

s 

s ∑ 

t=1 

X [ t] , s = 1 , . . . , S. (A.6) 

emark A.1. We can interpret DC-DEA model (4) . Due to (3) , the

rst constraint implies 

 ≤ ϕ j ≤
E j 

(∑ n 
i =1 R i x i 

)
− E j (X 0 ) 

e j (X 0 ) 
≤

E j 
(∑ n 

i =1 R i x i 
)

− E j (X 0 ) 

max X∈X E j ( X ) − E j (X 0 ) 
≤ 1 . 

t can be showed that the inequalities turn into equalities to ob-

ain 

 j = 

E j 
(∑ n 

i =1 R i x i 
)

− E j (X 0 ) 

max X∈X E j ( X ) − E j (X 0 ) 
, 

nd thus ϕj denotes the fraction of the improvement of the opti-

al portfolio 
∑ j 

i =1 
R i x i over the maximal possible improvement in

eturn E j . Similarly, θ k denotes the fraction of the improvement of

he optimal portfolio 
∑ j 

i =1 
R i x i over the maximal possible improve-

ent in risk R j . The objective function then balances the mean

mprovement in risks in the numerator and the mean improve-

ents in returns in the denominator. 

ppendix B. Auxiliary results and proofs 

heorem B.1. Consider a closed convex set X , Lipschitz continuous

unctions f 1 , . . . , f J and g 1 , . . . , g K , any scalars a j , c k and positive

calars b k and d k which further satisfy 

 k ≥ c k − min 

x ∈ X 
g k (x ) . (B.1)

onsider further the optimization problem 

minimize x ∈ X,θ ,ϕ 

1 − 1 
K 

∑ K 
k =1 θk 

1 + 

1 
J 

∑ J 
j=1 

ϕ j 

s.t. f j (x ) ≥ a j + ϕ j b j , 

g k (x ) ≤ c k − θk d k , 

θk ≥ 0 , ϕ j ≥ 0 (B.2) 



14 L. Adam and M. Branda / Omega 102 (2021) 102338 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
b j 

∂ f

 

 

) ( ∑
j

D

0

T

a  

s  

m  

(

L  

t

∂

w

P

∂

w

∂

C  

s

P

∑

S  

w

φ

S

μ

w

C

w

and denote its optimal solution ( ̄x , θ̄ , ϕ̄ ) . Define 

λ j = 

1 

b j 

K ∑ 

k =1 

g k ( ̄x ) − c k + d k 
d k 

, 

μk = 

1 

d k 

J ∑ 

j=1 

f j ( ̄x ) − a j + b j 

b j 
. (B.3)

Then these constants are positive. Moreover, if f j ( ̄x ) > a j and g k ( ̄x ) <

c k , then x̄ is stationary point of 

minimize x ∈ X 
J ∑ 

j=1 

λ j (− f j (x )) + 

K ∑ 

k =1 

μk g k (x ) . (B.4)

Moreover, if f j are concave and h k are convex, then (B.4) is a convex

problem and x̄ is a global minimum of (B.4) . 

Proof. The structure of the objective of (B.2) implies that we need

to maximize both ϕj and θ k . Since f j ( ̄x ) > a j and g k ( ̄x ) < c k , for

the optimal solution we have ϕ̄ j > 0 and θ̄k > 0 . Thus, ( ̄x , θ̄ , ϕ̄ ) is

a local minimum of 

minimize x ∈ X,θ ,ϕ 

1 − 1 
K 

∑ K 
k =1 θk 

1 + 

1 
J 

∑ J 
j=1 

ϕ j 

s.t. f j (x ) ≥ a j + ϕ j b j , 

g k (x ) ≤ c k − θk d k . (B.5)

For any θ k we due to (B.1) obtain 

θk ≤
c k − g k (x ) 

d k 
≤ 1 , 

which implies that the numerator in the objective of (B.5) is non-

negative around ( ̄x , θ̄ , ϕ̄ ) . This further implies that locally around

this point we have 

ϕ j = 

f j (x ) − a j 

b j 
, 

θk = 

c k − g k (x ) 

d k 
. 

Plugging this into (B.5) yields that x̄ is a local minimum of 

minimize x ∈ X 
1 − 1 

K 

∑ K 
k =1 

c k −g k (x ) 
d k 

1 + 

1 
J 

∑ J 
j=1 

f j (x ) −a j 
b j 

= 

1 
K 

∑ K 
k =1 

g k (x ) −c k + d k 
d k 

1 
J 

∑ J 
j=1 

f j (x ) −a j + b j 
b j 

≈
∑ K 

k =1 
g k (x ) −c k + d k 

d k ∑ J 
j=1 

f j (x ) −a j + b j 
b j 

, (B.6)

where in the last step we mean that multiplying the objective by

the positive scalar J 
K does not change the optimal solution. Denote

the objective function of (B.6) by h . Due to [41, Theorem 8.15] we

obtain 0 ∈ ∂h ( ̄x ) + N X ( ̄x ) . Here, ∂h is the (Clarke) subdifferential of

h and N X is the (Clarke) normal cone to X which is a shortened

form to write the Lagrange multipliers. From the subdifferential

product rule derived in Lemma Appendix B.1 we obtain 

0 ∈ 

(∑ K 
k =1 

1 
d k 

∂g k ( ̄x ) 
)(∑ J 

j=1 

f j ( ̄x ) −a j + b j 
b j 

)
−

(∑ K 
k =1 

g k ( ̄x ) −c k + d k 
d k 

)(∑ J 
j=1(∑ J 

j=1 

f j ( ̄x ) −a j + b j 
b j 

)2 

Since the normal cone N X ( ̄x ) is a cone, we have N X ( ̄x ) = tN X ( ̄x ) for

any positive scalars t . Thus, the previous relation amounts to 

0 ∈ 

( 

K ∑ 

k =1 

1 

d k 
∂g k ( ̄x ) 

) ( 

J ∑ 

j=1 

f j ( ̄x ) − a j + b j 

b j 

) 

−
( 

K ∑ 

k =1 

g k ( ̄x ) − c k + d k
d k 
 j ( ̄x ) 
)

+ N X ( ̄x ) . 

J 
 

=1 

1 

b j 
∂ f j ( ̄x ) 

) 

+ N X ( ̄x ) . 

ue to [42, Theorem 10.20] we get 

0 ∈ 

( 

K ∑ 

k =1 

1 

d k 
∂g k ( ̄x ) 

) ( 

J ∑ 

j=1 

f j ( ̄x ) − a j + b j 

b j 

) 

+ 

+ 

( 

K ∑ 

k =1 

g k ( ̄x ) − c k + d k 
d k 

) ( 

J ∑ 

j=1 

1 

b j 
∂(− f j )( ̄x ) 

) 

+ N X ( ̄x ) . 

Using the definition (B.3) , we arrive at 

 ∈ 

J ∑ 

j=1 

λ j ∂(− f j )( ̄x ) + 

K ∑ 

K=1 

μk ∂g k ( ̄x ) + N X ( ̄x ) . 

hus, x̄ is a stationary point of problem (B.4) . If all − f j and g k 
re convex, their Clarke subdifferential coincides with their convex

ubdifferential. Moreover, from the theory of the convex program-

ing we infer that x̄ is an optimal solution of the convex program

B.4) . �

emma B.1. Consider Lipschitz functions f and g and a point x such

hat g ( x ) > 0 . Then 

 

(
f (x ) 

g(x ) 

)
⊂ ∂ f (x ) g(x ) − f (x ) ∂g(x ) 

( g(x ) ) 
2 

, 

here ∂ stands for the Clarke subdifferential. 

roof. From [42, Theorem 10.20] we obtain 

 

(
1 

g(x ) 

)
⊂ − ∂g(x ) 

( g(x ) ) 
2 
, 

hile from [42, Exercise 10.21] we have 

 

(
f (x ) h (x ) 

)
⊂ ∂ f (x ) h (x ) + f (x ) ∂h (x ) . 

ombining these two results with h = 

1 
g yields the lemma

tatement. �

roof of Lemma 2.1. Due to (A.2) we have 

S 
 

s =1 

μs CVaR 

S 
1 −s/S (X ) = 

S ∑ 

s =1 

μs 
−1 

s 

s ∑ 

t=1 

X [ t] = 

S ∑ 

t=1 

( 

S ∑ 

s = t 
μs 

−1 

s 

) 

X [ t] . 

ince the right-hand side needs to equal to M 

S 
φ
(X ) = −∑ S 

t=1 φt X [ t] ,

e solve the following system of equations 

t = 

S ∑ 

s = t 

μs 

s 
. 

etting φS+1 ≡ 0 , we have 

s = s (φs − φs +1 ) , 

hich is precisely (11) . Due to (A.2) , we have 

VaR 

S 
0 (X ) = −1 

S 

S ∑ 

s =1 

X [ s ] = −1 

S 

S ∑ 

s =1 

X s = −E (X ) , 

hich implies the second equality in (10) . �
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roof of Lemma 3.1. It was shown by [43] that a portofolio is

SD efficient if there is no other portfolio which has lower or

qual values of CVaRs on the set of levels { 0 , 1 /S, . . . , 1 − 1 /S} with

ne inequality strict. This correspond to the multicriteria efficiency

hich can be ensured by the aggregate function approach, see, e.g.,

44] . �

roof of Theorem 3.1. We apply Theorem Appendix B.1 with

f j (x ) = E j 
(∑ n 

i =1 R i x i 
)
, g k (x ) = R k 

(∑ n 
i =1 R i x i 

)
, a j = E j (X 0 ) , b j =

 j (X 0 ) , c k = R k (X 0 ) , d k = d k (X 0 ) and X = { x | ∑ n 
i =1 x i = 1 , x i ≥ 0 } .

irst observe that X is convex and compact and that 

 k = d k (X 0 ) = R k (X 0 ) − min 

X∈X 
R k (X ) = c k − min 

x ∈ X 
g k (x ) . 

hus, condition (B.1) is satisfied. Since weights (B.3) amount

o (15) and problem (B.4) to (16) , we obtain the theorem

tatement. �

roof of Theorem 3.2. It follows directly from Theorem 3.1 with

 = 1 , K = S − 1 , E 1 (X ) = E (X ) and R s (X ) = CVaR 1 −s/S (X ) . �
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