Analytic combinatorics Lecture 9

May 5, 2021

Suppose a function f is analytic in z_{0}, with series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. How to compute (or estimate) the coefficients a_{n} ?

Suppose a function f is analytic in z_{0}, with series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. How to compute (or estimate) the coefficients a_{n} ? One possibility is differentiation:

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!},
$$

where $f^{(n)}$ is the n-th derivative of f. But this is seldom useful in practice.

Suppose a function f is analytic in z_{0}, with series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. How to compute (or estimate) the coefficients a_{n} ? One possibility is differentiation:

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

where $f^{(n)}$ is the n-th derivative of f. But this is seldom useful in practice.
A more useful possibility is differentiation.

Suppose a function f is analytic in z_{0}, with series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. How to compute (or estimate) the coefficients a_{n} ? One possibility is differentiation:

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

where $f^{(n)}$ is the n-th derivative of f. But this is seldom useful in practice.
A more useful possibility is differentiation.
Convention: Any simple closed curve is oriented counterclockwise, unless specified otherwise.

Suppose a function f is analytic in z_{0}, with series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. How to compute (or estimate) the coefficients a_{n} ? One possibility is differentiation:

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

where $f^{(n)}$ is the n-th derivative of f. But this is seldom useful in practice.
A more useful possibility is differentiation.
Convention: Any simple closed curve is oriented counterclockwise, unless specified otherwise.

Theorem (Cauchy's integral formula)

Let $\gamma \subseteq \mathbb{C}$ be a simple closed curve, and let $z_{0} \in \operatorname{lnt}(\gamma)$. Let f be a function analytic on a domain Ω with $\gamma \cup \operatorname{lnt}(\gamma) \subseteq \Omega$, and suppose f admits the expansion
$f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. Then, for every $n \geq 0$ we have

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}}
$$

Suppose a function f is analytic in z_{0}, with series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. How to compute (or estimate) the coefficients a_{n} ? One possibility is differentiation:

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

where $f^{(n)}$ is the n-th derivative of f. But this is seldom useful in practice.
A more useful possibility is differentiation.
Convention: Any simple closed curve is oriented counterclockwise, unless specified otherwise.

Theorem (Cauchy's integral formula)

Let $\gamma \subseteq \mathbb{C}$ be a simple closed curve, and let $z_{0} \in \operatorname{Int}(\gamma)$. Let f be a function analytic on a domain Ω with $\gamma \cup \operatorname{lnt}(\gamma) \subseteq \Omega$, and suppose f admits the expansion
$f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. Then, for every $n \geq 0$ we have

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} .
$$

Consequence: The value $f\left(z_{0}\right)$ (which is equal to a_{0}) can be determined as $\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}}$, and in particular, the value of f in z_{0} is uniquely determined by its values on γ.

Proof of Cauchy's integral formula

$\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}$ is analytic

$$
\text { on } \Omega \backslash\left\{z_{0}\right\},
$$

WLOG 8 is a circle around z_{0} of small enough radius, smaller then the radius of conner gence of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{m}$

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega=\mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω.

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega=\mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω.
For contradiction, suppose for every w with $|w|=\rho, f$ has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon=\varepsilon(w)>0$.

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega=\mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω.
For contradiction, suppose for every w with $|w|=\rho, f$ has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon=\varepsilon(w)>0$.
The set $C=\{w \in \mathbb{C} ;|w|=\rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$ covers $\mathbb{R} C$

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega=\mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω.
For contradiction, suppose for every w with $|w|=\rho, f$ has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon=\varepsilon(w)>0$.
The set $C=\{w \in \mathbb{C} ;|w|=\rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$ covers P.
Hence f has an analytic continuation to $\Omega^{+}:=\Omega \cup \bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$.

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega=\mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω.
For contradiction, suppose for every w with $|w|=\rho, f$ has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon=\varepsilon(w)>0$.
The set $C=\{w \in \mathbb{C} ;|w|=\rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$ covers P.
Hence f has an analytic continuation to $\Omega^{+}:=\Omega \cup \bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$.
The domain Ω^{+}contains a circle γ centered at the origin with radius $R>\rho$. Cauchy:

$$
\left|a_{n}\right|=\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}\right| \leq \frac{1}{2 \pi} \cdot \operatorname{len}(\gamma) \cdot \frac{\max _{z \in \gamma}|f(z)|}{R^{n+1}}=\underbrace{\frac{\max _{z \in \gamma}|f(z)|}{R^{n}}}
$$

Theorem (Easy part of Pringsheim's theorem)

Suppose f is analytic in 0 , with series exansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose that the series has radius of convergence $\rho \in(0,+\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w|=\rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega=\mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω.
For contradiction, suppose for every w with $|w|=\rho, f$ has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon=\varepsilon(w)>0$.
The set $C=\{w \in \mathbb{C} ;|w|=\rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$ covers P.
Hence f has an analytic continuation to $\Omega^{+}:=\Omega \cup \bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$.
The domain Ω^{+}contains a circle γ centered at the origin with radius $R>\rho$. Cauchy:

$$
\left|a_{n}\right|=\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}\right| \leq \frac{1}{2 \pi} \cdot \operatorname{len}(\gamma) \cdot \frac{\max _{z \in \gamma}|f(z)|}{R^{n+1}}=\frac{\max _{z \in \gamma}|f(z)|}{R^{n}}
$$

Hence the exponential growth rate of $\left(a_{n}\right)$ is at most $\frac{1}{R}$, and its radius of convergence is at least $R>\rho$, a contradiction.

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}+a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+\cdots
$$

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}+a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+\cdots
$$

Definition

The coefficient a_{-1} in the above expansion is known as the residue of f in p, denoted $\operatorname{Res}_{p}(f)$. If a function f is analytic in p, we put $\operatorname{Res}_{p}(f)=0$.

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}+a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+\cdots
$$

Definition

The coefficient a_{-1} in the above expansion is known as the residue of f in p, denoted $\operatorname{Res}_{p}(f)$. If a function f is analytic in p, we put $\operatorname{Res}_{p}(f)=0$.

Theorem (Residue theorem (simplified))

Let γ be a closed simple curve, let f be a function meromorphic on a domain Ω containing $\gamma \cup \operatorname{lnt}(\gamma)$. Suppose that no pole of f is on γ, and only finitely many poles of f are in $\operatorname{Int}(\gamma)$. Let P be the set of poles of $f \operatorname{in} \operatorname{Int}(\gamma)$. Then

$$
\int_{\gamma} f=2 \pi i \sum_{p \in P} \operatorname{Res}_{p}(f)_{i}
$$

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}+a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+\cdots
$$

Definition

The coefficient a_{-1} in the above expansion is known as the residue of f in p, denoted $\operatorname{Res}_{p}(f)$. If a function f is analytic in p, we put $\operatorname{Res}_{p}(f)=0$.

Theorem (Residue theorem (simplified))

Let γ be a closed simple curve, let f be a function meromorphic on a domain Ω containing $\gamma \cup \operatorname{Int}(\gamma)$. Suppose that no pole of f is on γ, and only finitely many poles of f are in $\operatorname{Int}(\gamma)$. Let P be the set of poles of f in $\operatorname{Int}(\gamma)$. Then

$$
\int_{\gamma} f=2 \pi i \sum_{p \in P} \operatorname{Res}_{p}(f)
$$

Note: Cauchy's formula is a special case of the Residue theorem, since $\operatorname{Res}_{z_{0}}\left(\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\right)=a_{n}$.

$$
\int_{\gamma^{*}} \frac{g(z)}{\left(z-z_{0}\right)^{n+1}}=2 \pi i a_{n}
$$

Proof of the Residue theorem

around $p_{j}: f(z)=\underbrace{\frac{a_{-d}}{\left(z-p_{\gamma}\right)^{d}}+\ldots+}_{p-i m f .} \frac{a_{-1}}{z-p_{\dot{\delta}}}+\underbrace{a_{0}+a_{1}\left(z-p_{\gamma}^{(}\right)}_{\text {analy } t_{i c}}$

$$
\int_{\gamma_{i}} f=\int_{\gamma_{i}} f^{p-i m f}=2 \pi i a_{-1}=2 \pi i \operatorname{Res}(f)
$$

${ }^{c}$ small circle around $P j$

$$
\int_{\gamma} f=2 \pi i \sum_{j=1}^{k} \operatorname{Res}_{p_{i}}(f) \text {. }
$$

Bits of theory

Here are some facts about complex analysis, which are good to know, but not strictly necessary for this course.

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω.

Here are some facts about complex analysis, which are good to know, but not strictly necessary for this course.

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω.
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z_{0} without being analytic in z_{0}.)

Bits of theory

Here are some facts about complex analysis, which are good to know, but not strictly necessary for this course.

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω.
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z_{0} without being analytic in z_{0}.)
- Definition: A domain $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in Ω is homotopic in Ω to a point.
$\mathbb{C} \backslash\{0\}$ is
not simply connected

Here are some facts about complex analysis, which are good to know, but not strictly necessary for this course.

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω.
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z_{0} without being analytic in z_{0}.)
- Definition: A domain $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in Ω is homotopic in Ω to a point.
- Recall: For a function f analytic on a simply connected domain Ω and any closed curve $\gamma \subseteq \Omega$, we have $\int_{\gamma} f=0$.

Here are some facts about complex analysis, which are good to know, but not strictly necessary for this course.

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω.
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z_{0} without being analytic in z_{0}.)
- Definition: A domain $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in Ω is homotopic in Ω to a point.
- Recall: For a function f analytic on a simply connected domain Ω and any closed curve $\gamma \subseteq \Omega$, we have $\int_{\gamma} f=0$.
- Fact ("Morea's theorem"): Suppose that f is a continuous (not necessarily analytic) function on a (not necessarily simply connected) domain Ω such that for every closed curve $\gamma \subseteq \Omega$ we have $\int_{\gamma} f=0$. Then f has a primitive function F, on Ω, and in particular f and F are analytic on Ω.

Let s_{n} be the number of ordered set partitions of $[n]$. Here is what we already know:

- $\sum_{n=0}^{\infty} s_{n} \frac{z^{n}}{n!}=\frac{1}{2-\exp (z)}$ for $|z|<\ln 2$. Hence the exponential growth rate of $s_{n} / n!$ is $\frac{1}{\ln 2}$.

Ordered set partitions re-revisited
Let s_{n} be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_{n} \frac{z^{n}}{n!}=\frac{1}{2-\exp (z)}$ for $|z|<\ln 2$. Hence the exponential growth rate of s_{n} / n ! is $\frac{1}{\ln 2}$.
- The function $f(z)=\frac{1}{2-\exp (z)}$ is meromorphic on \mathbb{C} with the set of poles $P=\left\{p_{k} ; k \in \mathbb{Z}\right\}$, where $p_{k}=\ln 2+i 2 k \pi$.

Let s_{n} be the number of ordered set partitions of $[n]$. Here is what we already know:

- $\sum_{n=0}^{\infty} s_{n} \frac{z^{n}}{n!}=\frac{1}{2-\exp (z)}$ for $|z|<\ln 2$. Hence the exponential growth rate of $s_{n} / n!$ is $\frac{1}{\ln 2}$.
- The function $f(z)=\frac{1}{2-\exp (z)}$ is meromorphic on \mathbb{C} with the set of poles $P=\left\{p_{k} ; k \in \mathbb{Z}\right\}$, where $p_{k}=\ln 2+i 2 k \pi$.
- In a neighborhood of a pole $p_{k}, f(z)$ admits the expansion of the form

$$
f(z)=\underbrace{\frac{-1}{2\left(z-p_{k}\right)}}+a_{0}+a_{1}\left(z-p_{k}\right)+\cdots
$$

Let s_{n} be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_{n} \frac{z^{n}}{n!}=\frac{1}{2-\exp (z)}$ for $|z|<\ln 2$. Hence the exponential growth rate of $s_{n} / n!$ is $\frac{1}{\ln 2}$.
- The function $f(z)=\frac{1}{2-\exp (z)}$ is meromorphic on \mathbb{C} with the set of poles $P=\left\{p_{k} ; k \in \mathbb{Z}\right\}$, where $p_{k}=\ln 2+i 2 k \pi$.
- In a neighborhood of a pole $p_{k}, f(z)$ admits the expansion of the form

$$
f(z)=\underbrace{\frac{-1}{2\left(z-p_{k}\right)}}+a_{0}+a_{1}\left(z-p_{k}\right)+\cdots
$$

- For any $K>0$, taking the set $P_{K}=\{p \in P ;|p| \leq K\}$, the function

$$
\underbrace{f(z)}-\sum_{p \in P_{K}}-\frac{1}{2(z-p)}
$$

is analytic on $\mathcal{N}_{<K+\varepsilon}(0)$, and hence

$$
\frac{s_{n}}{n!}=\sum_{p \in P_{K}} \underbrace{\frac{1}{2 p^{n+1}}}+O\left(\frac{1}{K^{n}}\right) \text { as } \underbrace{n \rightarrow \infty}
$$

Let s_{n} be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_{n} \frac{z^{n}}{n!}=\frac{1}{2-\exp (z)}$ for $|z|<\ln 2$. Hence the exponential growth rate of $s_{n} / n!$ is $\frac{1}{\ln 2}$.
- The function $f(z)=\frac{1}{2-\exp (z)}$ is meromorphic on \mathbb{C} with the set of poles $P=\left\{p_{k} ; k \in \mathbb{Z}\right\}$, where $p_{k}=\ln 2+i 2 k \pi$.
- In a neighborhood of a pole $p_{k}, f(z)$ admits the expansion of the form

$$
f(z)=\frac{-1}{2\left(z-p_{k}\right)}+a_{0}+a_{1}\left(z-p_{k}\right)+\cdots
$$

- For any $K>0$, taking the set $P_{K}=\{p \in P ;|p| \leq K\}$, the function

$$
f(z)-\sum_{p \in P_{K}}-\frac{1}{2(z-p)}
$$

is analytic on $\mathcal{N}_{<K+\varepsilon}(0)$, and hence

$$
\frac{s_{n}}{n!}=\sum_{p \in P_{K}} \frac{1}{2 p^{n+1}}+O\left(\frac{1}{K^{n}}\right) \text { as } n \rightarrow \infty
$$

- Wanted: $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.

Ordered set partitions via residues

Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.

Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.

Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.
Residue theorem gives

$$
\underbrace{\int_{\gamma} \frac{f(z)}{z^{n+1}}}=2 \pi i \sum_{p \in(P \cap \operatorname{lnt}(\gamma)) \cup\{0\}} \operatorname{Res}_{p}\left(\frac{f(z)}{z^{n+1}}\right)
$$

Ordered set partitions via residues
Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.
Residue theorem gives

$$
\begin{aligned}
& \int_{\gamma} \frac{f(z)}{z^{n+1}}=2 \pi i \\
& \sum_{p \in(P \cap \operatorname{lnt}(\gamma)) \cup\{0\}} \operatorname{Res}_{p}\left(\frac{f(z)}{z^{n+1}}\right) \\
&=2 \pi i\left(\frac{s_{n}}{n!}+\sum_{p \in P \cap \operatorname{lnt}(\gamma)}-\frac{1}{2 p^{n+1}}\right) \\
& \quad \operatorname{res}\left(\frac{\ell}{z^{n+1}}\right)
\end{aligned}
$$

Wanted (recall): $: \frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.
Residue theorem gives

$$
\begin{aligned}
\int_{\gamma} \frac{f(z)}{z^{n+1}} & =2 \pi i \sum_{p \in(P \cap \operatorname{lnt}(\gamma)) \cup\{0\}} \operatorname{Res}_{p}\left(\frac{f(z)}{z^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}+\sum_{p \in P \cap \operatorname{lnt}(\gamma)}-\frac{1}{2 p^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}-\sum_{p \in P \cap \operatorname{lnt}(\gamma)} \frac{1}{2 p^{n+1}}\right)
\end{aligned}
$$

Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.
Residue theorem gives

$$
\begin{aligned}
\int_{\gamma} \frac{f(z)}{z^{n+1}} & =2 \pi i \sum_{p \in(P \cap \operatorname{lnt}(\gamma)) \cup\{0\}} \operatorname{Res}_{p}\left(\frac{f(z)}{z^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}+\sum_{p \in P \cap \operatorname{lnt}(\gamma)}-\frac{1}{2 p^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}-\sum_{p \in P \cap \operatorname{lnt}(\gamma)} \frac{1}{2 p^{n+1}}\right)
\end{aligned}
$$

Goal: Show (for a suitably chosen γ) that $\int_{\gamma} \frac{f(z)}{z^{n+1}}$ is small.

Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.
Residue theorem gives

$$
\begin{aligned}
\int_{\gamma} \frac{f(z)}{z^{n+1}} & =2 \pi i \sum_{p \in(P \cap \operatorname{lnt}(\gamma)) \cup\{0\}} \operatorname{Res}_{p}\left(\frac{f(z)}{z^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}+\sum_{p \in P \cap \operatorname{lnt}(\gamma)}-\frac{1}{2 p^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}-\sum_{p \in P \cap \operatorname{lnt}(\gamma)} \frac{1}{2 p^{n+1}}\right)
\end{aligned}
$$

Goal: Show (for a suitably chosen γ) that $\int_{\gamma} \frac{f(z)}{z^{n+1}}$ is small.
For $K \in \mathbb{N}$, take γ_{K} to be the square whose vertices are $\pm(2 K+1) \pi \pm i(2 K+1) \pi$
bound arr of the

Wanted (recall): $\frac{s_{n}}{n!}=\sum_{p \in P} \frac{1}{2 p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_{n} exactly.
With $f(z)=\frac{1}{2-\exp (z)}$ and P as before, let γ be a simple closed curve with $0 \in \operatorname{lnt}(\gamma)$ and with $P \cap \gamma=\emptyset$. Fix $n \in \mathbb{N}_{0}$.
Residue theorem gives

$$
\begin{aligned}
\int_{\gamma} \frac{f(z)}{z^{n+1}} & =2 \pi i \sum_{p \in(P \cap \operatorname{lnt}(\gamma)) \cup\{0\}} \operatorname{Res}_{p}\left(\frac{f(z)}{z^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}+\sum_{p \in P \cap \operatorname{lnt}(\gamma)}-\frac{1}{2 p^{n+1}}\right) \\
& =2 \pi i\left(\frac{s_{n}}{n!}-\sum_{p \in P \cap \operatorname{lnt}(\gamma)} \frac{1}{2 p^{n+1}}\right)
\end{aligned}
$$

Goal: Show (for a suitably chosen γ) that $\int_{\gamma} \frac{f(z)}{z^{n+1}}$ is small.
For $K \in \mathbb{N}$, take γ_{K} to be the square whose vertices are $\pm(2 K+1) \pi \pm i(2 K+1) \pi$ Note: $\operatorname{lnt}\left(\gamma_{K}\right) \cap P=\left\{p_{j} ; j=-K,-K+1, \ldots, K-1, K\right\}$.

Recall: We know that

$$
\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}=\underbrace{\frac{1}{2 \pi i} \int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}}
$$

Ordered set partitions - endgame
Recall: We know that

$$
\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}=\frac{1}{2 \pi i} \int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}
$$

We may check that for any K and any $z \in \gamma_{K},|f(z)| \leq(1)$ and $|z| \geq(2 K+1) \pi$.

Recall: We know that

$$
\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}=\frac{1}{2 \pi i} \int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}
$$

We may check that for any K and any $z \in \gamma_{K},|f(z)| \leq 1$ and $|z| \geq(2 K+1) \pi$. Concluding:

$$
\left|\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}\right|=\frac{1}{2 \pi}\left|\int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}\right|
$$

Recall: We know that

$$
\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}=\frac{1}{2 \pi i} \int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}
$$

We may check that for any K and any $z \in \gamma_{K},|f(z)| \leq 1$ and $|z| \geq(2 K+1) \pi$. Concluding:

$$
\begin{aligned}
\left|\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}\right| & =\frac{1}{2 \pi}\left|\int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}\right| \\
& \leq \frac{1}{2 \pi} \cdot \operatorname{len}\left(\gamma_{K}\right) \cdot \frac{1}{((2 K+1) \pi)^{n+1}}
\end{aligned}
$$

Recall: We know that

$$
\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}=\frac{1}{2 \pi i} \int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}
$$

We may check that for any K and any $z \in \gamma_{K},|f(z)| \leq 1$ and $|z| \geq(2 K+1) \pi$.
Concluding:

Recall: We know that

$$
\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}=\frac{1}{2 \pi i} \int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}
$$

We may check that for any K and any $z \in \gamma_{K},|f(z)| \leq 1$ and $|z| \geq(2 K+1) \pi$. Concluding:

$$
\begin{aligned}
\left|\frac{s_{n}}{n!}-\sum_{j=-K}^{K} \frac{1}{2 p_{j}^{n+1}}\right| & =\frac{1}{2 \pi}\left|\int_{\gamma_{K}} \frac{f(z)}{z^{n+1}}\right| \\
& \leq \frac{1}{2 \pi} \cdot \operatorname{len}\left(\gamma_{K}\right) \cdot \frac{1}{((2 K+1) \pi)^{n+1}} \\
& \leq \frac{1}{(2 \pi K)^{n}}
\end{aligned}
$$

which tends to 0 as $K \rightarrow \infty$, and for $K=n$ is much smaller than $\frac{1}{n!}$. Hence:

$$
s_{n}=n!\sum_{j=-\infty}^{\infty} \frac{1}{2 p_{j}^{n+1}}, \text { and }
$$

- s_{n} is the nearest integer to

$$
n!\sum_{j=-n}^{n} \frac{1}{2 p_{j}^{n+1}}=n!2\left(\frac{1}{\ln L}\right)^{n+1}+\ldots .
$$

