Analytic combinatorics Lecture 9

May 5, 2021

Suppose a function f is analytic in z_0 , with series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. How to compute (or estimate) the coefficients a_n ?

Suppose a function f is analytic in z_0 , with series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. How to compute (or estimate) the coefficients a_n ? One possibility is differentiation:

$$a_n=\frac{f^{(n)}(z_0)}{n!},$$

where $f^{(n)}$ is the *n*-th derivative of *f*. But this is seldom useful in practice.

Suppose a function f is analytic in z_0 , with series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. How to compute (or estimate) the coefficients a_n ? One possibility is differentiation:

$$a_n=\frac{f^{(n)}(z_0)}{n!},$$

where $f^{(n)}$ is the *n*-th derivative of *f*. But this is seldom useful in practice.

A more useful possibility is differentiation.

Suppose a function f is analytic in z_0 , with series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. How to compute (or estimate) the coefficients a_n ? One possibility is differentiation:

$$a_n=\frac{f^{(n)}(z_0)}{n!},$$

where $f^{(n)}$ is the *n*-th derivative of *f*. But this is seldom useful in practice.

A more useful possibility is differentiation.

Convention: Any simple closed curve is oriented counterclockwise, unless specified otherwise.

Suppose a function f is analytic in z_0 , with series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. How to compute (or estimate) the coefficients a_n ? One possibility is differentiation:

$$a_n=\frac{f^{(n)}(z_0)}{n!},$$

where $f^{(n)}$ is the *n*-th derivative of *f*. But this is seldom useful in practice.

A more useful possibility is differentiation.

Convention: Any simple closed curve is oriented counterclockwise, unless specified otherwise.

Theorem (Cauchy's integral formula)

Let $\gamma \subseteq \mathbb{C}$ be a simple closed curve, and let $z_0 \in \operatorname{Int}(\gamma)$. Let f be a function analytic on a domain Ω with $\gamma \cup \operatorname{Int}(\gamma) \subseteq \Omega$, and suppose f admits the expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. Then, for every $n \ge 0$ we have

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}}.$$

Suppose a function f is analytic in z_0 , with series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. How to compute (or estimate) the coefficients a_n ? One possibility is differentiation:

$$a_n=\frac{f^{(n)}(z_0)}{n!},$$

where $f^{(n)}$ is the *n*-th derivative of *f*. But this is seldom useful in practice.

A more useful possibility is differentiation.

Convention: Any simple closed curve is oriented counterclockwise, unless specified otherwise.

Theorem (Cauchy's integral formula)

Let $\gamma \subseteq \mathbb{C}$ be a simple closed curve, and let $z_0 \in \operatorname{Int}(\gamma)$. Let f be a function analytic on a domain Ω with $\gamma \cup \operatorname{Int}(\gamma) \subseteq \Omega$, and suppose f admits the expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. Then, for every $n \ge 0$ we have

$$a_n=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{(z-z_0)^{n+1}}.$$

Consequence: The value $f(z_0)$ (which is equal to a_0) can be determined as $\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-z_0}$, and in particular, the value of f in z_0 is uniquely determined by its values on γ .

Proof of Cauchy's integral formula

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

For contradiction, suppose for early w with $|w| = \rho$, f has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon = \varepsilon(w) > 0$.

The set $C = w \in \mathbb{C}$; |w| = p is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} N_{\leq \varepsilon}(w)$ covers P.

Hence f has an analytic continuation to $\Omega^+ := \Omega \cup \bigcup_{w \in P} \mathbb{N}_{<\varepsilon}(w)$.

The domain Ω^+ contains a circle γ centered at the origin with radius $R > \rho$. Cauchy:

$$|a_n| = \left|\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}\right| \le \frac{1}{2\pi} \cdot \operatorname{len}(\gamma) \cdot \frac{\max_{z \in \gamma} |f(z)|}{R^{n+1}} = \frac{\max_{z \in \gamma} |f(z)|}{R^n}.$$

Hence the exponential growth rate of (a_n) is at most $\frac{1}{R}$, and its radius of convergence is at least $R > \rho$, a contradiction.

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega = \mathbb{N}_{<\rho}(0)$. We know that f is analytic on Ω .

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega = \mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω .

For contradiction, suppose for every w with $|w| = \rho$, f has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon = \varepsilon(w) > 0$.

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega = \mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω .

For contradiction, suppose for every w with $|w| = \rho$, f has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon = \varepsilon(w) > 0$.

The set $C = \{w \in \mathbb{C}; |w| = \rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathbb{N}_{<\varepsilon}(w)$ covers \mathcal{P} , \mathcal{L}

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega = \mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω .

For contradiction, suppose for every w with $|w| = \rho$, f has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon = \varepsilon(w) > 0$.

The set $C = \{w \in \mathbb{C}; |w| = \rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathbb{N}_{<\varepsilon}(w)$ covers P.

Hence f has an analytic continuation to $\Omega^+ := \Omega \cup \bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$.

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega = \mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω .

For contradiction, suppose for every w with $|w| = \rho$, f has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon = \varepsilon(w) > 0$.

The set $C = \{w \in \mathbb{C}; |w| = \rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathbb{N}_{<\varepsilon}(w)$ covers P.

Hence f has an analytic continuation to $\Omega^+ := \Omega \cup \bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$.

The domain Ω^+ contains a circle γ centered at the origin with radius $R > \rho$. Cauchy:

$$|a_n| = \left|\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z^{n+1}}\right| \leq \frac{1}{2\pi}\cdot \operatorname{len}(\gamma)\cdot \frac{\max_{z\in\gamma}|f(z)|}{R^{n+1}} = \frac{\max_{z\in\gamma}|f(z)|}{R^n}.$$

Suppose f is analytic in 0, with series exansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose that the series has radius of convergence $\rho \in (0, +\infty)$. Then there is a point $w \in \mathbb{C}$ with $|w| = \rho$ such that f has no analytic continuation to a domain containing w.

Proof.

Let $\Omega = \mathcal{N}_{<\rho}(0)$. We know that f is analytic on Ω .

For contradiction, suppose for every w with $|w| = \rho$, f has an analytic continuation to a neighborhood $\mathcal{N}_{<\varepsilon}(w)$, for some $\varepsilon = \varepsilon(w) > 0$.

The set $C = \{w \in \mathbb{C}; |w| = \rho\}$ is compact. Hence it has a finite subset P s.t. $\bigcup_{w \in P} \mathbb{N}_{<\varepsilon}(w)$ covers P.

Hence f has an analytic continuation to $\Omega^+ := \Omega \cup \bigcup_{w \in P} \mathcal{N}_{<\varepsilon}(w)$.

The domain Ω^+ contains a circle γ centered at the origin with radius $R > \rho$. Cauchy:

$$|\mathsf{a}_n| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} \right| \le \frac{1}{2\pi} \cdot \operatorname{len}(\gamma) \cdot \frac{\max_{z \in \gamma} |f(z)|}{R^{n+1}} = \underbrace{\max_{z \in \gamma} |f(z)|}_{R^n},$$

Hence the exponential growth rate of (a_n) is at most $\frac{1}{R}$, and its radius of convergence is at least $R > \rho$, a contradiction.

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathbb{N}^*_{<\varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + a_2(z-p)^2 + \dots$$

Residue theorem

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathbb{N}^*_{<\varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \underbrace{a_{-1}}_{z-p} + a_0 + a_1(z-p) + a_2(z-p)^2 + \dots$$

Definition

The coefficient a_{-1} in the above expansion is known as the residue of f in p, denoted $\operatorname{Res}_p(f)$. If a function f is analytic in p, we put $\operatorname{Res}_p(f) = 0$.

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathbb{N}^*_{<\varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + a_2(z-p)^2 + \dots$$

Definition

The coefficient a_{-1} in the above expansion is known as the residue of f in p, denoted $\operatorname{Res}_p(f)$. If a function f is analytic in p, we put $\operatorname{Res}_p(f) = 0$.

Theorem (Residue theorem (simplified))

Let γ be a closed simple curve, let f be a function meromorphic on a domain Ω containing $\gamma \cup Int(\gamma)$. Suppose that no pole of f is on γ , and only finitely many poles of f are in $Int(\gamma)$. Let P be the set of poles of f in $Int(\gamma)$. Then

$$\int_{\gamma} f = 2\pi i \sum_{p \in P} \operatorname{Res}_p(f),$$

Recall: If a function f has a pole (of order d) in a point p, then on some $\mathbb{N}^*_{<\varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + a_2(z-p)^2 + \dots$$

Definition

The coefficient a_{-1} in the above expansion is known as the residue of f in p, denoted $\operatorname{Res}_p(f)$. If a function f is analytic in p, we put $\operatorname{Res}_p(f) = 0$.

Theorem (Residue theorem (simplified))

Let γ be a closed simple curve, let f be a function meromorphic on a domain Ω containing $\gamma \cup \text{Int}(\gamma)$. Suppose that no pole of f is on γ , and only finitely many poles of f are in $\text{Int}(\gamma)$. Let P be the set of poles of f in $\text{Int}(\gamma)$. Then

$$\int_{\gamma} f = 2\pi i \sum_{p \in P} \operatorname{Res}_{p}(f).$$

Note: Cauchy's formula is a special case of the Residue theorem, since $\operatorname{Res}_{z_0}\left(\frac{f(z)}{(z-z_0)^{n+1}}\right) = a_n.$ $\int \underbrace{f(z)}_{\mathcal{Y}} \underbrace{f(z)}_{\mathcal{Y}} = 2 \overline{f} \overline{f} \cdot \alpha_n$

Proof of the Residue theorem

Here are some facts about complex analysis, which are good to know, but not strictly necessary for this course.

• Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω .

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω .
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z₀ without being analytic in z₀.)

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω .
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z₀ without being analytic in z₀.)
- Definition: A domain $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in Ω is homotopic in Ω to a point.

(~ 10] is not simply connected

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω .
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z₀ without being analytic in z₀.)
- Definition: A domain $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in Ω is homotopic in Ω to a point.
- Recall: For a function f analytic on a simply connected domain Ω and any closed curve $\gamma \subseteq \Omega$, we have $\int_{\gamma} f = 0$.

- Definition: A function f is holomorphic on a domain Ω if it has a derivative in every point of Ω .
- Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic on Ω. (But beware: a function f can have a derivative in a point z₀ without being analytic in z₀.)
- Definition: A domain $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in Ω is homotopic in Ω to a point.
- Recall: For a function f analytic on a simply connected domain Ω and any closed curve $\gamma \subseteq \Omega$, we have $\int_{\gamma} f = 0$.
- Fact ("Morera's theorem"): Suppose that f is a continuous (not necessarily analytic) function on a (not necessarily simply connected) domain Ω such that for every closed curve $\gamma \subseteq \Omega$ we have $\int_{\gamma} f = 0$. Then f has a primitive function F on Ω , and in particular f and F are analytic on Ω .

Let s_n be the number of ordered set partitions of [n]. Here is what we already know:

• $\sum_{n=0}^{\infty} s_n \frac{z^n}{n!} = \frac{1}{2 - \exp(z)}$ for $|z| < \ln 2$. Hence the exponential growth rate of $s_n/n!$ is $\frac{1}{\ln 2}$.

Let s_n be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_n \frac{z^n}{n!} = \frac{1}{2 \exp(z)}$ for $|z| < \ln 2$. Hence the exponential growth rate of $s_n/n!$ is $\frac{1}{\ln 2}$.
- The function $f(z) = \frac{1}{2 \exp(z)}$ is meromorphic on \mathbb{C} with the set of poles $P = \{p_k; k \in \mathbb{Z}\}$, where $p_k = \ln 2 + i2k\pi$.

Let s_n be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_n \frac{z^n}{n!} = \frac{1}{2 \exp(z)}$ for $|z| < \ln 2$. Hence the exponential growth rate of $s_n/n!$ is $\frac{1}{\ln 2}$.
- The function $f(z) = \frac{1}{2 \exp(z)}$ is meromorphic on \mathbb{C} with the set of poles $P = \{p_k; k \in \mathbb{Z}\}$, where $p_k = \ln 2 + i2k\pi$.
- In a neighborhood of a pole p_k , f(z) admits the expansion of the form

$$f(z) = \frac{-1}{2(z-p_k)} + a_0 + a_1(z-p_k) + \cdots$$

Let s_n be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_n \frac{z^n}{n!} = \frac{1}{2 \exp(z)}$ for $|z| < \ln 2$. Hence the exponential growth rate of $s_n/n!$ is $\frac{1}{\ln 2}$.
- The function $f(z) = \frac{1}{2 \exp(z)}$ is meromorphic on \mathbb{C} with the set of poles $P = \{p_k; k \in \mathbb{Z}\}$, where $p_k = \ln 2 + i2k\pi$.
- In a neighborhood of a pole p_k , f(z) admits the expansion of the form

$$f(z) = \frac{-1}{2(z-p_k)} + a_0 + a_1(z-p_k) + \cdots$$

• For any K > 0, taking the set $P_K = \{p \in P; |p| \le K\}$, the function

$$f(z) - \sum_{p \in P_K} -\frac{1}{2(z-p)}$$

is analytic on $\mathcal{N}_{<\kappa+\varepsilon}(0)$, and hence

$$\frac{s_n}{n!} = \sum_{p \in P_K} \frac{1}{2p^{n+1}} + O(\frac{1}{K^n}) \text{ as } n \to \infty.$$

hidden constants
depend on K

Let s_n be the number of ordered set partitions of [n]. Here is what we already know:

- $\sum_{n=0}^{\infty} s_n \frac{z^n}{n!} = \frac{1}{2 \exp(z)}$ for $|z| < \ln 2$. Hence the exponential growth rate of $s_n/n!$ is $\frac{1}{\ln 2}$.
- The function $f(z) = \frac{1}{2 \exp(z)}$ is meromorphic on \mathbb{C} with the set of poles $P = \{p_k; k \in \mathbb{Z}\}$, where $p_k = \ln 2 + i2k\pi$.
- In a neighborhood of a pole p_k , f(z) admits the expansion of the form

$$f(z) = rac{-1}{2(z-p_k)} + a_0 + a_1(z-p_k) + \cdots$$

• For any K > 0, taking the set $P_K = \{p \in P; |p| \le K\}$, the function

$$f(z) - \sum_{p \in P_K} -\frac{1}{2(z-p)}$$

is analytic on $\mathcal{N}_{< K+\varepsilon}(0)$, and hence

$$\frac{s_n}{n!} = \sum_{p \in P_K} \frac{1}{2p^{n+1}} + O(\frac{1}{K^n}) \text{ as } n \to \infty.$$

• Wanted: $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed n, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Residue theorem gives

$$\int_{\gamma} \frac{f(z)}{z^{n+1}} = 2\pi i \sum_{p \in (P \cap \operatorname{Int}(\gamma)) \cup \{0\}} \operatorname{Res}_{p} \left(\frac{f(z)}{z^{n+1}} \right)$$

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Residue theorem gives

$$\int_{\gamma} \frac{f(z)}{z^{n+1}} = 2\pi i \sum_{\substack{p \in (P \cap \operatorname{Int}(\gamma)) \cup \{0\} \\ z^{n+1}}} \operatorname{Res}_{p} \left(\frac{f(z)}{z^{n+1}} \right)$$

$$= 2\pi i \left(\frac{s_{n}}{n!} + \sum_{\substack{p \in P \cap \operatorname{Int}(\gamma) \\ p \in P \cap \operatorname{Int}(\gamma)}} - \frac{1}{2p^{n+1}} \right)$$

$$\operatorname{res}_{p} \left(\frac{s}{z^{n+n}} \right) \qquad \operatorname{Fes}_{p} \left(\frac{s}{z^{n+n}} \right)$$

Wanted (recall): $\left(\frac{s_n}{n!}\right) = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Residue theorem gives

$$\sum_{\gamma} \frac{f(z)}{z^{n+1}} = 2\pi i \sum_{p \in (P \cap \operatorname{Int}(\gamma)) \cup \{0\}} \operatorname{Res}_{p} \left(\frac{f(z)}{z^{n+1}}\right)$$
$$= 2\pi i \left(\frac{s_{n}}{n!} + \sum_{p \in P \cap \operatorname{Int}(\gamma)} -\frac{1}{2p^{n+1}}\right)$$
$$= 2\pi i \left(\frac{s_{n}}{n!} - \sum_{p \in P \cap \operatorname{Int}(\gamma)} \frac{1}{2p^{n+1}}\right).$$

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Residue theorem gives

$$\int_{\gamma} \frac{f(z)}{z^{n+1}} = 2\pi i \sum_{p \in (P \cap \mathsf{Int}(\gamma)) \cup \{0\}} \mathsf{Res}_{p} \left(\frac{f(z)}{z^{n+1}}\right)$$
$$= 2\pi i \left(\frac{s_{n}}{n!} + \sum_{p \in P \cap \mathsf{Int}(\gamma)} -\frac{1}{2p^{n+1}}\right)$$
$$= 2\pi i \left(\frac{s_{n}}{n!} - \sum_{p \in P \cap \mathsf{Int}(\gamma)} \frac{1}{2p^{n+1}}\right).$$

Goal: Show (for a suitably chosen γ) that $\int_{\gamma} \frac{f(z)}{z^{n+1}}$ is small.

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Residue theorem gives

$$\begin{split} \int_{\gamma} \frac{f(z)}{z^{n+1}} &= 2\pi i \sum_{p \in (P \cap \operatorname{Int}(\gamma)) \cup \{0\}} \operatorname{Res}_{p} \left(\frac{f(z)}{z^{n+1}} \right) \\ &= 2\pi i \left(\frac{s_{n}}{n!} + \sum_{p \in P \cap \operatorname{Int}(\gamma)} -\frac{1}{2p^{n+1}} \right) \\ &= 2\pi i \left(\frac{s_{n}}{n!} - \sum_{p \in P \cap \operatorname{Int}(\gamma)} \frac{1}{2p^{n+1}} \right). \end{split}$$

Goal: Show (for a suitably chosen γ) that $\int_{\gamma} \frac{f(z)}{z^{n+1}}$ is small.

For $K \in \mathbb{N}$, take γ_K to be the square whose vertices are $\pm (2K+1)\pi \pm i(2K+1)\pi$ boundary of the

Wanted (recall): $\frac{s_n}{n!} = \sum_{p \in P} \frac{1}{2p^{n+1}}$ for fixed *n*, with explicit bounds on the speed of convergence, so that we can calculate p_n exactly.

With $f(z) = \frac{1}{2 - \exp(z)}$ and P as before, let γ be a simple closed curve with $0 \in Int(\gamma)$ and with $P \cap \gamma = \emptyset$. Fix $n \in \mathbb{N}_0$.

Residue theorem gives

$$\begin{split} \int_{\gamma} \frac{f(z)}{z^{n+1}} &= 2\pi i \sum_{p \in (P \cap \mathsf{Int}(\gamma)) \cup \{0\}} \mathsf{Res}_p\left(\frac{f(z)}{z^{n+1}}\right) \\ &= 2\pi i \left(\frac{s_n}{n!} + \sum_{p \in P \cap \mathsf{Int}(\gamma)} -\frac{1}{2p^{n+1}}\right) \\ &= 2\pi i \left(\frac{s_n}{n!} - \sum_{p \in P \cap \mathsf{Int}(\gamma)} \frac{1}{2p^{n+1}}\right). \end{split}$$

Goal: Show (for a suitably chosen γ) that $\int_{\gamma} \frac{f(z)}{z^{n+1}}$ is small. For $K \in \mathbb{N}$, take γ_K to be the square whose vertices are $\pm (2K + 1)\pi \pm i(2K + 1)\pi$ Note: $\operatorname{Int}(\gamma_K) \cap P = \{p_j; j = -K, -K + 1, \dots, K - 1, K\}$.

Recall: We know that

$$\frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} = \frac{1}{2\pi i} \int_{\gamma_K} \frac{f(z)}{z^{n+1}}.$$

Recall: We know that

$$\frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} = \frac{1}{2\pi i} \int_{\gamma_K} \frac{f(z)}{z^{n+1}}.$$

We may check that for any K and any $z \in \gamma_K$, $|f(z)| \le 1$ and $|z| \ge (2K + 1)\pi$. Concluding:

$$\left|\frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}}\right| = \frac{1}{2\pi} \left|\int_{\gamma_K} \frac{f(z)}{z^{n+1}}\right|$$

Recall: We know that

$$\frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} = \frac{1}{2\pi i} \int_{\gamma_K} \frac{f(z)}{z^{n+1}}.$$

We may check that for any K and any $z \in \gamma_K$, $|f(z)| \le 1$ and $|z| \ge (2K + 1)\pi$. Concluding:

$$\begin{vmatrix} \frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} \end{vmatrix} = \frac{1}{2\pi} \left| \int_{\gamma_K} \frac{f(z)}{z^{n+1}} \right|$$
$$\leq \frac{1}{2\pi} \cdot \operatorname{len}(\gamma_K) \cdot \frac{1}{((2K+1)\pi)^{n+1}}$$

Recall: We know that

$$\frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} = \frac{1}{2\pi i} \int_{\gamma_K} \frac{f(z)}{z^{n+1}}.$$

We may check that for any K and any $z \in \gamma_K$, $|f(z)| \leq 1$ and $|z| \geq (2K+1)\pi$. Concluding:

which tends to 0 as $K \to \infty$, and for K = n is much smaller than $\frac{1}{n!}$.

Recall: We know that

$$\frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} = \frac{1}{2\pi i} \int_{\gamma_K} \frac{f(z)}{z^{n+1}}.$$

We may check that for any K and any $z \in \gamma_K$, $|f(z)| \le 1$ and $|z| \ge (2K + 1)\pi$. Concluding:

$$\begin{split} \left| \frac{s_n}{n!} - \sum_{j=-K}^{K} \frac{1}{2p_j^{n+1}} \right| &= \frac{1}{2\pi} \left| \int_{\gamma_K} \frac{f(z)}{z^{n+1}} \right| \\ &\leq \frac{1}{2\pi} \cdot \operatorname{len}(\gamma_K) \cdot \frac{1}{((2K+1)\pi)^{n+1}} \\ &\leq \frac{1}{(2\pi K)^n}, \end{split}$$

which tends to 0 as $K \to \infty$, and for K = n is much smaller than $\frac{1}{n!}$. Hence:

•
$$s_n = n! \sum_{j=-\infty}^{\infty} \frac{1}{2p_j^{n+1}}$$
, and
• s_n is the nearest integer to
$$n! \sum_{j=-n}^{n} \frac{1}{2p_j^{n+1}} = N! 2 \left(\frac{1}{2n!}\right)^{n+1} + \dots$$