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Inequalities we know from the last time (and one more)
I Markov:

X ≥ 0⇒ P (X ≥ aE
(
X
)
) ≤ 1

a

I Chebyshev

P (|X − E
(
X
)
| ≥ aσX) ≤ 1

a2

I Chernoff (σX =
√
n)

X =

n∑
i=1

Xi, Xi = ±1⇒ P (|X − E
(
X
)
| > aσX) ≤ 2e−a

2/2



Overview

Limit theorems – approximation

Statistics – an introduction



Strong law of large numbers

Theorem
Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Let
Sn = (X1 + · · ·+Xn)/n be the sample mean. Then we have

lim
n→∞

Sn = µ almost surely (i.e. with probability 1).

We say that sequence Sn converges to µ almost surely. and
write Sn

a.s.−−→ µ).



Monte Carlo integration
How to compute

∫
x∈A g(x)dx?

In particular

g(x) =

{
1 for x ∈ S
0 otherwise

. . . area of a circle



Weak law of large numbers

Theorem
Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Let
Sn = (X1 + · · ·+Xn)/n be the sample mean. Then for every
ε > 0 we have

lim
n→∞

P (|Sn − µ| > ε) = 0.

We say that sequence Sn converges to µ in probability and
write Sn

P−→ µ).



Law of Large numbers→ Central Limit Theorem



Central Limit Theorem

Theorem
Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Put
Yn := ((X1 + · · ·+Xn)− nµ)/(

√
n · σ).

Then Yn
d−→ N(0, 1). This means, that if Fn is the cdf of Yn, then

lim
n→∞

Fn(x) = Φ(x) for every x ∈ R.

We say that the sequence Yn converges to N(0, 1) in
distribution.
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CLT another illustration
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Bonus: Moment generating function

Definition
For a random variable X we let

MX(t) = E
(
etX
)
.

Function MX(t) is called the moment generating function.

I MX(t) =
∑∞

n=0 E
(
Xn
)
tn

n! .
I MBern(p)(t) = p · et + (1− p).
I MX+Y (t) = MX(t)MY (t), jsou-li X, Y n.n.v.
I MBin(n,p) = (pet + 1− p)n

I MN(0,1) = et
2/2

I MExp(λ) = 1
1−t/λ

I If MX(t) = MY (t) on (−a, a) for some a > 0, then X = Y
a.s.
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Lecture overview

Models of randomness Observed data

Probability

Statistics



1st illustration – number of left-handed people



2nd illustration – running time of a program
I X1, . . . , Xn ∼ F i.i.d., F is their CDF
I Definition: Empirical CDF is defined by

F̂n(x) =

∑n
i=1 I(Xi ≤ x)

n
,

where I(Xi ≤ x) = 1 if Xi ≤ x and 0 otherwise.
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Empirical CDF – properties

Theorem
For a fixed x
I E

(
F̂n(x

)
) = F (x)

I var(F̂n(x)) = F (x)(1−F (x))
n

I F̂n(x) converges to F (x) in probability, F̂n(x)
P−→ F (x).

Důkaz.
Weak law of large numbers.
Note that nF̂ (x) ∼ Bin(n, F (x))



Empirical CDF – Dvoretzky-Kiefer-Wolfowitz (DKW)

Theorem
Let X1, . . . , Xn ∼ F be i.i.d., let F̂n be their empirical CDF. Let

E
(
Xi

)
be finite. Choose α ∈ (0, 1) and let ε =

√
1
2n log 2

α . The
we have

P (F̂n(x)− ε ≤ F (x) ≤ F̂n(x) + ε) ≥ 1− α.
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Intro – exploratory data analysis
I we collect data (and pay attention to systematic errors –

independence, bias, . . . )
I we make various tables
I any appropriate charts: histogram, boxplot, etc.
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Goals of confirmatory data analysis
I point estimates
I interval estimates
I hypothesis testing
I (linear) regression

Examples:
I We assume human height follows N(µ, σ2). What are µ

and σ?
I Is our coin/dice fair?
I Is a medical treatment beneficial?
I Is new version of a program faster?
I How does running time depend on size of input?
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