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Complex integration

What we know:
For a real function f : [a, b]→ R, we are familiar with the notion of integral∫ b
a f (t)dt =

∫ b
a f .

This can be extended to continuous complex-valued functions f : [a, b]→ C by∫ b
a f =

∫ b
a <(f ) + i=(f ) =

∫ b
a <(f ) + i

∫ b
a =(f ).

Definition

Let [a, b] be a real interval with a < b, let p : [a, b]→ C be a continuous function with
a finite derivative p′(t) everywhere on (a, b) except at most finitely many points, and
with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The
(piecewise smooth) curve parametrized by p is the set γ = {p(t); t ∈ [a, b]}, together
with the orientation from p(a) to p(b). The function p is then the parametrization
of γ.
The curve is said to be. . .

simple if p is injective,

closed if p(a) = p(b),

simple closed if p is injective on [a, b) and p(a) = p(b).

Fact (“Jordan’s curve theorem”)

If γ ⊆ C is a simple closed curve, then C \ γ is a disjoint union of two domains, one of
which is bounded and the other unbounded. The bounded one is the interior of γ,
denoted Int(γ), the other is the exterior of γ, denoted Ext(γ).
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Contour integral

Definition

Let γ ⊆ C be a curve with parametrization p : [a, b]→ C, let f : γ → C be a function.
The contour integral of f along γ, denoted

∫
γ f is defined as∫

γ
f :=

∫ b

a
f (p(t))p′(t)dt.

Fact: The value of the integral does not depend on the choice of the parametrization
of γ; it only depends on γ itself, including its orientation.

Example: For a curve γ ⊆ C, what is
∫
γ 1?

Remark: The length of a curve γ ⊆ C parametrized by p : [a, b]→ C, denoted len(γ)
is defined as

len(γ) =

∫ b

a
|p′(t)|dt.

Properties of
∫
γ :

Let −γ denote the curve obtained from γ by reversing its orientation. Then∫
−γ f = −

∫
γ f .

If γ is the concatenation of two curves α and β, then
∫
γ f =

∫
α f +

∫
β f .

For a parametrization p of γ, we have the estimate∣∣∣∣∫
γ

f

∣∣∣∣ =

∣∣∣∣∫ b

a
f (p(t))p′(t)dt

∣∣∣∣ ≤ ∫ b

a
|f (p(t))| · |p′(t)|dt ≤ sup

z∈γ
|f (z)| · len(γ).
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Primitive function

Definition

Let f be a function on a domain Ω ⊆ C. A function F : Ω→ C is a primitive function
(or antiderivative) of f on Ω, if for every z ∈ Ω, we have F ′(z) = f (z).

Observation

If f has an antiderivative F on Ω, and γ ⊆ Ω is a curve parametrized by p : [a, b]→ Ω,
then ∫

γ
f =

∫ b

a
f (p(t))p′(t)dt =

∫ b

a
F (p(t))′dt = F (p(b))− F (p(a)).

Corollary

Let F is an antiderivative of f on a domain Ω, and let u, v ∈ Ω be two points. Then
for any curve γ ⊆ Ω connecting u with v and oriented from u to v , we have∫

γ
f = F (v)− F (u).

In particular, if γ ⊆ Ω is a closed curve, then
∫
γ f = 0.
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then ∫

γ
f =

∫ b

a
f (p(t))p′(t)dt =

∫ b

a
F (p(t))′dt = F (p(b))− F (p(a)).

Corollary

Let F is an antiderivative of f on a domain Ω, and let u, v ∈ Ω be two points. Then
for any curve γ ⊆ Ω connecting u with v and oriented from u to v , we have∫

γ
f = F (v)− F (u).

In particular, if γ ⊆ Ω is a closed curve, then
∫
γ f = 0.



Local antiderivatives of analyic functions

Fact

Let f be analytic in z0, with an expansion f (z) =
∑∞

n=0 an(z − z0)n of radius of
convergence ρ. Then the function F : N<ρ(z0)→ C defined by

F (z) =
∞∑

n=0

an

n + 1
(z − z0)n+1

is an antiderivative of f on N<ρ(z0).

Example: Let k ∈ Z, let γ be the (counterclockwise) unit circle, parametrized by
p(t) = exp(it) with t ∈ [−π, π]. What is

∫
γ zk?

Note: Since
∫
γ

1
z

= 2πi 6= 0, it follows that f (z) = 1/z has no antiderivative on any
domain containing γ, even though it is analytic on the domain C \ {0}.
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Curve homotopy

Definition

Let ω ⊆ C be a domain, let γ and γ′ be two curves in Ω, both starting in the same
point v and ending in the same point w . We say that γ and γ′ are fixed-endpoint
homotopic (or just homotopic) in Ω if there is a continuous function
Γ(t, q) : [0, 1]× [0, 1]→ Ω with the following properties:

For every q ∈ [0, 1], the function pq : [0, 1]→ Ω defined as pq(t) = Γ(t, q) is a
parametrization of a curve γq starting in v and ending in w .

The function p0(t) is a parametrization of γ, and the function p1(t) is a
parametrization of γ′.

Definition

A closed curve γ is contractible (in Ω) if it is homotopic to a single point.

Fact

If γ is a simple closed curve inside a domain Ω such that Int(γ) ⊆ Ω, then γ is
contractible in Ω.
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Invariance of integral under homotopy

Fact

If f is analytic on a domain Ω, and if γ and γ′ are homotopic in Ω, then∫
γ

f =

∫
γ′

f .

In particular, if a closed curve γ is contractible in Ω, then
∫
γ f = 0.

Proof idea: Let Γ(t, q) : [0, 1]× [0, 1]→ Ω be a function witnessing the homotopy of γ
and γ′.

For q ∈ [0, 1], let γq be the curve parametrized by pq(t) = Γ(t, q), and let
I (q) :=

∫
γq

f . We claim that I (q) is a constant function of q on [0, 1].

To see this, we choose q ∈ [0, 1] and show that I (q) is constant on a neighborhood
of q.

The function f is analytic in every point z ∈ γq , hence there is an ε(z) > 0 such that
f is analytic on N<ε(z)(z) and therefore f has a primitive function Fz on N<ε(z)(z).
In particular, changing γq inside N<ε(z)(z) does not affect the value I (q).

By compactness of γq , there is a finite set P ⊆ γq such that γq ⊆
⋃

z∈P N<ε(z)(z).

For r “close enough” to q, the curve γr is also inside
⋃

z∈P N<ε(z)(z), and we can
modify γq into γr by operations that preserve the value of the integral, hence
I (q) = I (r) for r close enough to q. (See picture on next slide.)
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