Analytic combinatorics Lecture 8

April 28, 2021

• For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b)

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

The curve is said to be...

• simple if p is injective,

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

The curve is said to be...

- simple if *p* is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \setminus \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded.

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \setminus \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded. The bounded one is the interior of γ , denoted $\operatorname{Int}(\gamma)$, the other is the exterior of γ , denoted $\operatorname{Ext}(\gamma)$.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p: [a, b] \to \mathbb{C}$, let $f: \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p: [a, b] \to \mathbb{C}$, let $f: \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\Sigma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?

Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p: [a, b] \to \mathbb{C}$, denoted len (γ) is defined as

$$\operatorname{len}(\gamma) = \int_a^b |p'(t)| \mathrm{d}t$$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?

Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p: [a, b] \to \mathbb{C}$, denoted len (γ) is defined as

$$\operatorname{len}(\gamma) = \int_a^b |p'(t)| \mathrm{d}t.$$

Properties of \int_{γ} :

• Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f = -\int_{\gamma} f.$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?

Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p: [a, b] \to \mathbb{C}$, denoted len (γ) is defined as

$$\mathsf{len}(\gamma) = \int_a^b |p'(t)| \mathsf{d}t$$

Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f = -\int_{\gamma} f$.
- If γ is the concatenation of two curves α and β , then $\int_{\gamma} f = \int_{\alpha} f + \int_{\beta} f$.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?

Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p: [a, b] \to \mathbb{C}$, denoted len (γ) is defined as

$$\operatorname{len}(\gamma) = \int_a^b |p'(t)| \mathrm{d}t.$$

Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f = -\int_{\gamma} f$.
- If γ is the concatenation of two curves α and β , then $\int_{\gamma} f = \int_{\alpha} f + \int_{\beta} f$.
- For a parametrization p of γ , we have the estimate

$$\left|\int_{\gamma} f\right| = \left|\int_{a}^{b} f(p(t))p'(t)dt\right| \leq \int_{a}^{b} |f(p(t))| \cdot |p'(t)|dt \leq \sup_{z \in \gamma} |f(z)| \cdot \operatorname{len}(\gamma).$$

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F : \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

In particular, if $\gamma \subseteq \Omega$ is a closed curve, then $\int_{\gamma} f = 0$.

Primitive function

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F : \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

Observation

If f has an antiderivative F on Ω , and $\gamma \subseteq \Omega$ is a curve parametrized by $p: [a, b] \to \Omega$, then

$$\int_{\gamma} f = \int_a^b f(p(t))p'(t)dt = \int_a^b F(p(t))'dt = F(p(b)) - F(p(a)).$$

In particular, if $\gamma \subseteq \Omega$ is a closed curve, then $\int_{\gamma} f = 0$.

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F : \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

Observation

If f has an antiderivative F on Ω , and $\gamma \subseteq \Omega$ is a curve parametrized by $p: [a, b] \to \Omega$, then

$$\int_{\gamma} f = \int_a^b f(p(t))p'(t)dt = \int_a^b F(p(t))'dt = F(p(b)) - F(p(a)).$$

Corollary

Let F is an antiderivative of f on a domain Ω , and let $u, v \in \Omega$ be two points. Then for any curve $\gamma \subseteq \Omega$ connecting u with v and oriented from u to v, we have

$$\int_{\gamma} f = F(v) - F(u).$$

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F : \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

Observation

If f has an antiderivative F on Ω , and $\gamma \subseteq \Omega$ is a curve parametrized by $p: [a, b] \to \Omega$, then

$$\int_{\gamma} f = \int_a^b f(p(t))p'(t)dt = \int_a^b F(p(t))'dt = F(p(b)) - F(p(a)).$$

Corollary

Let F is an antiderivative of f on a domain Ω , and let $u, v \in \Omega$ be two points. Then for any curve $\gamma \subseteq \Omega$ connecting u with v and oriented from u to v, we have

$$\int_{\gamma} f = F(v) - F(u).$$

In particular, if $\gamma \subseteq \Omega$ is a closed curve, then $\int_{\gamma} f = 0$.

Local antiderivatives of analyic functions

Fact

Let f be analytic in z_0 , with an expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ of radius of convergence ρ . Then the function $F \colon \mathbb{N}_{<\rho}(z_0) \to \mathbb{C}$ defined by

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1} = \frac{a_n}{1} \left(\frac{a_n}{2-2} \right)^n + \frac{a_1}{2} \left(\frac{a_n}{2-2} \right)^n$$

rivative of f on $\mathbb{N}_{<\rho}(z_0)$.

is an antide

Let f be analytic in z_0 , with an expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ of radius of convergence ρ . Then the function $F \colon \mathbb{N}_{<\rho}(z_0) \to \mathbb{C}$ defined by

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$$

is an antiderivative of f on $\mathbb{N}_{<\rho}(z_0)$.

Let f be analytic in z_0 , with an expansion $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ of radius of convergence ρ . Then the function $F \colon \mathbb{N}_{<\rho}(z_0) \to \mathbb{C}$ defined by

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$$

is an antiderivative of f on $\mathcal{N}_{<\rho}(z_0)$.

Example: Let $k \in \mathbb{Z}$, let γ be the (counterclockwise) unit circle, parametrized by $p(t) = \exp(it)$ with $t \in [-\pi, \pi]$. What is $\int_{\gamma} z^k$? Note: Since $\int_{\gamma} \frac{1}{z} = 2\pi i \neq 0$, it follows that f(z) = 1/z has no antiderivative on any domain containing γ , even though it is analytic on the domain $\mathbb{C} \setminus \{0\}$.

Curve homotopy

Definition

Let $\forall \zeta \subseteq \mathbb{C}$ be a domain, let γ and γ' be two curves in Ω , both starting in the same point v and ending in the same point w. We say that γ and γ' are fixed-endpoint homotopic (or just homotopic) in Ω if there is a continuous function $\Gamma(t, q): [0, 1] \times [0, 1] \rightarrow \Omega$ with the following properties:

- For every $q \in [0, 1]$, the function $p_q: [0, 1] \to \Omega$ defined as $p_q(t) = \Gamma(t, q)$ is a parametrization of a curve γ_q starting in v and ending in w.
- The function p₀(t) is a parametrization of γ, and the function p₁(t) is a parametrization of γ'.

Curve homotopy

Definition

Let $\omega \subseteq \mathbb{C}$ be a domain, let γ and γ' be two curves in Ω , both starting in the same point v and ending in the same point w. We say that γ and γ' are fixed-endpoint homotopic (or just homotopic) in Ω if there is a continuous function $\Gamma(t,q): [0,1] \times [0,1] \to \Omega$ with the following properties:

- For every $q \in [0, 1]$, the function $p_q : [0, 1] \to \Omega$ defined as $p_q(t) = \Gamma(t, q)$ is a parametrization of a curve γ_q starting in v and ending in w.
- The function p₀(t) is a parametrization of γ, and the function p₁(t) is a parametrization of γ'.

Definition

A closed curve γ is contractible (in Ω) if it is homotopic to a single point.

Curve homotopy

Definition

Let $\omega \subseteq \mathbb{C}$ be a domain, let γ and γ' be two curves in Ω , both starting in the same point v and ending in the same point w. We say that γ and γ' are fixed-endpoint homotopic (or just homotopic) in Ω if there is a continuous function $\Gamma(t,q): [0,1] \times [0,1] \to \Omega$ with the following properties:

- For every $q \in [0, 1]$, the function $p_q: [0, 1] \to \Omega$ defined as $p_q(t) = \Gamma(t, q)$ is a parametrization of a curve γ_q starting in v and ending in w.
- The function p₀(t) is a parametrization of γ, and the function p₁(t) is a parametrization of γ'.

Definition

A closed curve γ is contractible (in Ω) if it is homotopic to a single point.

Fact

If γ is a simple closed curve inside a domain Ω such that $Int(\gamma) \subseteq \Omega$, then γ is contractible in Ω .

Invariance of integral under homotopy

Fact

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int_{\gamma} f = \int_{\gamma'} f.$$

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int_{\gamma} f = \int_{\gamma'} f.$$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int_{\gamma} f = \int_{\gamma'} f.$$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

Proof idea: Let $\Gamma(t,q)$: $[0,1] \times [0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ' .

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int (0) = \int_{\gamma} f = \int_{\gamma'} f = \int (1)$$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

Proof idea: Let $\Gamma(t,q)$: $[0,1] \times [0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ' .

For $q \in [0, 1]$, let γ_q be the curve parametrized by $p_q(t) = \Gamma(t, q)$, and let $I(q) := \int_{\gamma_q} f$. We claim that I(q) is a constant function of q on [0, 1].

10 - × , x= ×

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int_{\gamma} f = \int_{\gamma'} f.$$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

Proof idea: Let $\Gamma(t,q)$: $[0,1] \times [0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ' .

For $q \in [0, 1]$, let γ_q be the curve parametrized by $p_q(t) = \Gamma(t, q)$, and let $I(q) := \int_{\gamma_q} f$. We claim that I(q) is a constant function of q on [0, 1].

To see this, we choose $q \in [0,1]$ and show that I(q) is constant on a neighborhood of q.

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int_{\gamma} f = \int_{\gamma'} f.$$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

Proof idea: Let $\Gamma(t,q)$: $[0,1] \times [0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ' .

For $q \in [0, 1]$, let γ_q be the curve parametrized by $p_q(t) = \Gamma(t, q)$, and let $I(q) := \int_{\gamma_q} f$. We claim that I(q) is a constant function of q on [0, 1].

To see this, we choose $q \in [0,1]$ and show that I(q) is constant on a neighborhood of q.

The function f is analytic in every point $z \in \gamma_q$, hence there is an $\varepsilon(z) > 0$ such that f is analytic on $\mathcal{N}_{<\varepsilon(z)}(z)$ and therefore f has a primitive function F_z on $\mathcal{N}_{<\varepsilon(z)}(z)$. In particular, changing γ_q inside $\mathcal{N}_{<\varepsilon(z)}(z)$ does not affect the value I(q).

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then

$$\int_{\gamma} f = \int_{\gamma'} f.$$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

Proof idea: Let $\Gamma(t,q)$: $[0,1] \times [0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ' .

For $q \in [0, 1]$, let γ_q be the curve parametrized by $p_q(t) = \Gamma(t, q)$, and let $I(q) := \int_{\gamma_q} f$. We claim that I(q) is a constant function of q on [0, 1].

To see this, we choose $q \in [0,1]$ and show that I(q) is constant on a neighborhood of q.

The function f is analytic in every point $z \in \gamma_q$, hence there is an $\varepsilon(z) > 0$ such that f is analytic on $\mathcal{N}_{<\varepsilon(z)}(z)$ and therefore f has a primitive function F_z on $\mathcal{N}_{<\varepsilon(z)}(z)$. In particular, changing γ_q inside $\mathcal{N}_{<\varepsilon(z)}(z)$ does not affect the value I(q).

By compactness of γ_q , there is a finite set $P \subseteq \gamma_q$ such that $\gamma_q \subseteq \bigcup_{z \in P} \mathcal{N}_{\langle \varepsilon(z)}(z)$.

If f is analytic on a domain Ω , and if γ and γ' are homotopic in Ω , then \neg

 $\int_{\gamma} f = \int_{\gamma'} f.$

In particular, if a closed curve γ is contractible in Ω , then $\int_{\gamma} f = 0$.

Proof idea: Let $\Gamma(t,q)$: $[0,1] \times [0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ' .

For $q \in [0, 1]$, let γ_q be the curve parametrized by $p_q(t) = \Gamma(t, q)$, and let $\lfloor I(q) := \int_{\gamma_q} f$. We claim that I(q) is a constant function of q on [0, 1].

To see this, we choose $q \in [0,1]$ and show that I(q) is constant on a neighborhood of q.

The function f is analytic in every point $z \in \gamma_q$, hence there is an $\varepsilon(z) > 0$ such that f is analytic on $\mathcal{N}_{<\varepsilon(z)}(z)$ and therefore f has a primitive function F_z on $\mathcal{N}_{<\varepsilon(z)}(z)$. In particular, changing γ_q inside $\mathcal{N}_{<\varepsilon(z)}(z)$ does not affect the value I(q).

By compactness of γ_q , there is a finite set $P \subseteq \gamma_q$ such that $\gamma_q \subseteq \bigcup_{z \in P} \mathbb{N}_{<\varepsilon(z)}(z)$. For r "close enough" to q, the curve γ_r is also inside $\bigcup_{z \in P} \mathbb{N}_{<\varepsilon(z)}(z)$, and we can modify γ_q into γ_r by operations that preserve the value of the integral, hence I(q) = I(r) for r close enough to q. (See picture on next slide.)

) { = 1 8r 8