Analytic combinatorics Lecture 8

April 28, 2021

Complex integration

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is infective,
- closed if $p(a)=p(b)$,

- simple closed if p is infective on $[a, b)$ and $p(a)=p(b)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or (a, b], respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \backslash \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The (piecewise smooth) curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \backslash \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded. The bounded one is the interior of γ, denoted $\operatorname{Int}(\gamma)$, the other is the exterior of γ, denoted $\operatorname{Ext}(\gamma)$.

Contour integral

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.

Contour integral

Definition
Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.
Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?
Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p:[a, b] \rightarrow \mathbb{C}$, denoted len (γ) is defined as

$$
\operatorname{len}(\gamma)=\int_{a}^{b}\left|p^{\prime}(t)\right| \mathrm{d} t
$$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.
Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?
Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p:[a, b] \rightarrow \mathbb{C}$, denoted len (γ) is defined as

$$
\operatorname{len}(\gamma)=\int_{a}^{b}\left|p^{\prime}(t)\right| \mathrm{d} t
$$

Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f=-\int_{\gamma} f$.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.
Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?
Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p:[a, b] \rightarrow \mathbb{C}$, denoted len (γ) is defined as

$$
\operatorname{len}(\gamma)=\int_{a}^{b}\left|p^{\prime}(t)\right| \mathrm{d} t
$$

Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f=-\int_{\gamma} f$.
- If γ is the concatenation of two curves α and β, then $\int_{\gamma} f=\int_{\alpha} f+\int_{\beta} f$.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.
Example: For a curve $\gamma \subseteq \mathbb{C}$, what is $\int_{\gamma} 1$?
Remark: The length of a curve $\gamma \subseteq \mathbb{C}$ parametrized by $p:[a, b] \rightarrow \mathbb{C}$, denoted len (γ) is defined as

$$
\operatorname{len}(\gamma)=\int_{a}^{b}\left|p^{\prime}(t)\right| \mathrm{d} t
$$

Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f=-\int_{\gamma} f$.
- If γ is the concatenation of two curves α and β, then $\int_{\gamma} f=\int_{\alpha} f+\int_{\beta} f$.
- For a parametrization p of γ, we have the estimate

$$
\left|\int_{\gamma} f\right|=\left|\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t\right| \leq \int_{a}^{b}|f(p(t))| \cdot\left|p^{\prime}(t)\right| \mathrm{d} t \leq \sup _{z \in \gamma}|f(z)| \cdot \operatorname{len}(\gamma) .
$$

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Observation

If f has an antiderivative F on Ω, and $\gamma \subseteq \Omega$ is a curve parametrized by $p:[a, b] \rightarrow \Omega$, then

$$
\int_{\gamma} f=\int_{a}^{b} f(p(t)) p^{\prime}(t) d t=\int_{a}^{b} F(p(t))^{\prime} d t=F(p(b))-F(p(a)) .
$$

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Observation

If f has an antiderivative F on Ω, and $\gamma \subseteq \Omega$ is a curve parametrized by $p:[a, b] \rightarrow \Omega$, then

$$
\int_{\gamma} f=\int_{a}^{b} f(p(t)) p^{\prime}(t) d t=\int_{a}^{b} F(p(t))^{\prime} d t=F(p(b))-F(p(a))
$$

Corollary

Let F is an antiderivative of f on a domain Ω, and let $u, v \in \Omega$ be two points. Then for any curve $\gamma \subseteq \Omega$ connecting u with v and oriented from u to v, we have

$$
\int_{\gamma} f=F(v)-F(u) .
$$

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Observation

If f has an antiderivative F on Ω, and $\gamma \subseteq \Omega$ is a curve parametrized by $p:[a, b] \rightarrow \Omega$, then

$$
\int_{\gamma} f=\int_{a}^{b} f(p(t)) p^{\prime}(t) d t=\int_{a}^{b} F(p(t))^{\prime} d t=F(p(b))-F(p(a))
$$

Corollary

Let F is an antiderivative of f on a domain Ω, and let $u, v \in \Omega$ be two points. Then for any curve $\gamma \subseteq \Omega$ connecting u with v and oriented from u to v, we have

$$
\int_{\gamma} f=F(v)-F(u)
$$

In particular, if $\gamma \subseteq \Omega$ is a closed curve, then $\int_{\gamma} f=0$.

Local antiderivatives of analyic functions

Fact

Let f be analytic in z_{0}, with an expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ of radius of convergence ρ. Then the function $F: \mathcal{N}_{<\rho}\left(z_{0}\right) \rightarrow \mathbb{C}$ defined by

$$
\begin{aligned}
& F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(z-z_{0}\right)^{n+1}=+\frac{a_{0}}{1}\left(z-z_{0}\right)+\frac{a_{1}}{2}\left(z-z_{0}\right)^{2}+ \\
& \mathcal{N}_{<\rho}\left(z_{0}\right) .
\end{aligned}
$$

Local antiderivatives of analyic functions

Fact
Let f be analytic in z_{0}, with an expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ of radius of convergence ρ. Then the function $F: \mathcal{N}_{<\rho}\left(z_{0}\right) \rightarrow \mathbb{C}$ defined by

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(z-z_{0}\right)^{n+1}
$$

is an antiderivative of f on $\mathcal{N}_{<\rho}\left(z_{0}\right)$.
Example: Let $k \in \mathbb{Z}$, let γ be the (counterclockwise) unit circle, parametrized by $p(t)=\exp (i t)$ with $t \in[-\pi, \pi]$. What is $\int_{\gamma} z^{k}$?
$k \geqslant 0$: z^{k} is ambyoic on $\mathbb{C} \mathbb{C}$

$$
\Rightarrow \int_{8} z^{k}=0
$$

$$
k=-1 \Longrightarrow \int_{8} z^{\frac{z^{2}}{}}=0 \int_{S_{y} \frac{1}{z}=\int_{-\pi}^{\pi} \frac{1}{e^{i t}} \cdot i \cdot e^{i t} d t=2 \pi i}^{k+1}
$$

Fact

Let f be analytic in z_{0}, with an expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ of radius of convergence ρ. Then the function $F: \mathcal{N}_{<\rho}\left(z_{0}\right) \rightarrow \mathbb{C}$ defined by

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(z-z_{0}\right)^{n+1}
$$

is an antiderivative of f on $\mathcal{N}_{<\rho}\left(z_{0}\right)$.
Example: Let $k \in \mathbb{Z}$, let γ be the (counterclockwise) unit circle, parametrized by $p(t)=\exp (i t)$ with $t \in[-\pi, \pi]$. What is $\int_{\gamma} z^{k}$?
Note: Since $\int_{\gamma} \frac{1}{z}=2 \pi i \neq 0$, it follows that $f(z)=1 / z$ has no antiderivative on any domain containing γ, even though it is analytic on the domain $\mathbb{C} \backslash\{0\}$.

Definition

Let $\alpha \subseteq \mathbb{C}$ be a domain, let γ and γ^{\prime} be two curves in Ω, both starting in the same point v and ending in the same point w. We say that γ and γ^{\prime} are fixed-endpoint homotopic (or just homotopic) in Ω if there is a continuous function $\Gamma(t, q):[0,1] \times[0,1] \longrightarrow \Omega$ with the following properties:

- For every $q \in[0,1]$, the function $p_{q}:[0,1] \rightarrow \Omega$ defined as $p_{q}(t)=\Gamma(t, q)$ is a parametrization of a curve γ_{q} starting in v and ending in w.
- The function $p_{0}(t)$ is a parametrization of γ, and the function $p_{1}(t)$ is a parametrization of γ^{\prime}.

Definition

Let $\omega \subseteq \mathbb{C}$ be a domain, let γ and γ^{\prime} be two curves in Ω, both starting in the same point v and ending in the same point w. We say that γ and γ^{\prime} are fixed-endpoint homotopic (or just homotopic) in Ω if there is a continuous function $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ with the following properties:

- For every $q \in[0,1]$, the function $p_{q}:[0,1] \rightarrow \Omega$ defined as $p_{q}(t)=\Gamma(t, q)$ is a parametrization of a curve γ_{q} starting in v and ending in w.
- The function $p_{0}(t)$ is a parametrization of γ, and the function $p_{1}(t)$ is a parametrization of γ^{\prime}.

Definition

A closed curve γ is contractible (in Ω) if it is homotopic to a single point.

Definition

Let $\omega \subseteq \mathbb{C}$ be a domain, let γ and γ^{\prime} be two curves in Ω, both starting in the same point v and ending in the same point w. We say that γ and γ^{\prime} are fixed-endpoint homotopic (or just homotopic) in Ω if there is a continuous function $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ with the following properties:

- For every $q \in[0,1]$, the function $p_{q}:[0,1] \rightarrow \Omega$ defined as $p_{q}(t)=\Gamma(t, q)$ is a parametrization of a curve γ_{q} starting in v and ending in w.
- The function $p_{0}(t)$ is a parametrization of γ, and the function $p_{1}(t)$ is a parametrization of γ^{\prime}.

Definition

A closed curve γ is contractible (in Ω) if it is homotopic to a single point.

Fact

If γ is a simple closed curve inside a domain Ω such that $\operatorname{lnt}(\gamma) \subseteq \Omega$, then γ is contractible in Ω.

Invariance of integral under homotopy

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

Invariance of integral under homotopy

Fact
If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.

$$
\int_{\gamma} \frac{1}{z}=2 \pi i, \gamma=
$$

Invariance of integral under homotopy

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.
Proof idea: Let $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ^{\prime}.

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
I(0)=\int_{\gamma} f=\int_{\gamma^{\prime}} f .=I(1)
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.
Proof idea: Let $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ^{\prime}.
For $q \in[0,1]$, let γ_{q} be the curve parametrized by $p_{q}(t)=\Gamma(t, q)$, and let $I(q):=\int_{\gamma_{q}} f$. We claim that $I(q)$ is a constant function of q on $[0,1]$.

$$
\gamma_{0}=\gamma, \gamma_{1}=\gamma
$$

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.
Proof idea: Let $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ^{\prime}.
For $q \in[0,1]$, let γ_{q} be the curve parametrized by $p_{q}(t)=\Gamma(t, q)$, and let $I(q):=\int_{\gamma_{q}} f$. We claim that $I(q)$ is a constant function of q on $[0,1]$.
To see this, we choose $q \in[0,1]$ and show that $I(q)$ is constant on a neighborhood of q.

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.
Proof idea: Let $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ^{\prime}.
For $q \in[0,1]$, let γ_{q} be the curve parametrized by $p_{q}(t)=\Gamma(t, q)$, and let $I(q):=\int_{\gamma_{q}} f$. We claim that $I(q)$ is a constant function of q on $[0,1]$.
To see this, we choose $q \in[0,1]$ and show that $I(q)$ is constant on a neighborhood of q.
The function f is analytic in every point $z \in \gamma_{q}$, hence there is an $\varepsilon(z)>0$ such that f is analytic on $\mathcal{N}_{<\varepsilon(z)}(z)$ and therefore f has a primitive function F_{z} on $\mathcal{N}_{<\varepsilon(z)}(z)$. In particular, changing γ_{q} inside $\mathcal{N}_{<\varepsilon(z)}(z)$ does not affect the value $I(q)$.

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.
Proof idea: Let $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ^{\prime}.
For $q \in[0,1]$, let γ_{q} be the curve parametrized by $p_{q}(t)=\Gamma(t, q)$, and let $I(q):=\int_{\gamma_{q}} f$. We claim that $I(q)$ is a constant function of q on $[0,1]$.
To see this, we choose $q \in[0,1]$ and show that $I(q)$ is constant on a neighborhood of q.
The function f is analytic in every point $z \in \gamma_{q}$, hence there is an $\varepsilon(z)>0$ such that f is analytic on $\mathcal{N}_{<\varepsilon(z)}(z)$ and therefore f has a primitive function F_{z} on $\mathcal{N}_{<\varepsilon(z)}(z)$. In particular, changing γ_{q} inside $\mathcal{N}_{<\varepsilon(z)}(z)$ does not affect the value $I(q)$.
By compactness of γ_{q}, there is a finite set $P \subseteq \gamma_{q}$ such that $\gamma_{q} \subseteq \bigcup_{z \in P} \mathcal{N}_{<\varepsilon(z)}(z)$.
$S \subseteq \mathbb{C}$ is compact $\Leftrightarrow S$ is closed and bounded S is compact ${ }_{H} \Leftrightarrow$ for any collection of open sets covering S there is a finite subcollectisin covering. S.

Fact

If f is analytic on a domain Ω, and if γ and γ^{\prime} are homotopic in Ω, then

$$
\int_{\gamma} f=\int_{\gamma^{\prime}} f
$$

In particular, if a closed curve γ is contractible in Ω, then $\int_{\gamma} f=0$.
Proof idea: Let $\Gamma(t, q):[0,1] \times[0,1] \rightarrow \Omega$ be a function witnessing the homotopy of γ and γ^{\prime}.
For $q \in[0,1]$, let γ_{q} be the curve parametrized by $p_{q}(t)=\Gamma(t, q)$, and let $I(q):=\int_{\gamma_{q}} f$. We claim that $I(q)$ is a constant function of q on $[0,1]$.
To see this, we choose $q \in[0,1]$ and show that $I(q)$ is constant on a neighborhood of q.
The function f is analytic in every point $z \in \gamma_{q}$, hence there is an $\varepsilon(z)>0$ such that f is analytic on $\mathcal{N}_{<\varepsilon(z)}(z)$ and therefore f has a primitive function F_{z} on $\mathcal{N}_{<\varepsilon(z)}(z)$. In particular, changing γ_{q} inside $\mathcal{N}_{<\varepsilon(z)}(z)$ does not affect the value $I(q)$.
By compactness of γ_{q}, there is a finite set $P \subseteq \gamma_{q}$ such that $\gamma_{q} \subseteq \bigcup_{z \in P} \mathcal{N}_{<\varepsilon(z)}(z)$. For r "close enough" to q, the curve γ_{r} is also inside $\bigcup_{z \in P} \mathcal{N}_{<\varepsilon(z)}(z)$, and we can modify γ_{q} into γ_{r} by operations that preserve the value of the integral, hence $I(q)=I(r)$ for r close enough to q. (See picture on next slide.)

$$
\int_{\delta_{r}} f=\int_{\delta_{1}} f
$$

