NMAI059 Probability and statistics 1 Class 9

Robert Šámal

Overview

Continuous random vectors

Covariance and correlation

Inequalities

Limit theorems - approximation

What we know

- joint cdf

$$
F_{X, Y}(x, y)=P(X \leq x \& Y \leq y)
$$

- joint pdf: $f_{X, Y} \geq 0$ such that

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(s, t) d t d s
$$

- important example: multivariate normal distribution

Image by Wikipedia editors Piotrg and Bscan.

Conditioning

Definition (restricting a r.v. to a subset)
X is a r.v. on $(\Omega, \mathcal{F}, P), B \in \mathcal{F}$, s.t. $P(B)>0$.

$$
F_{X \mid B}(x):=P(X \leq x \mid B)
$$

$f_{X \mid B}$ is the corresponding pdf.

- if $B=\{X \in S\}$, then

$$
f_{X \mid B}(x)= \begin{cases}\frac{f_{X}(x)}{P(X \in S)} & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

Total cdf \& pdf

Theorem (total cdf, total pdf)
Let X be a continuous r.v., let B_{1}, B_{2}, \ldots be a partition of Ω. Then

$$
\begin{aligned}
F_{X}(x) & =\sum_{i} P\left(B_{i}\right) F_{X \mid B_{i}}(x) \quad \text { and } \\
f_{X}(x) & =\sum_{i} P\left(B_{i}\right) f_{X \mid B_{i}}(x)
\end{aligned}
$$

Proof: law of total probability.

Marginal pdf

Theorem

$$
\begin{array}{r}
f_{X}(x)=\int_{y \in \mathbb{R}} f_{X, Y}(x, y) d y \\
f_{Y}(y)=\int_{x \in \mathbb{R}} f_{X, Y}(x, y) d x
\end{array}
$$

Conditional pdf

Definition
For continuous r.v. X, Y we define their conditional pdf by

$$
f_{X \mid Y}(x \mid y):=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

when $f_{Y}(y)>0$, otherwise we do not define it.

- recall that $f_{Y}(y)=\int_{x \in \mathbb{R}} f_{X, Y}(x, y) d x$
- for a fixed y the function $x \mapsto f_{X \mid Y}(x \mid y)$ is a pdf

Conditional, joint and marginal pdf

Theorem

$$
\begin{aligned}
f_{X, Y}(x, y) & =f_{Y}(y) f_{X \mid Y}(x \mid y) \\
f_{X}(x) & =\int_{-\infty}^{\infty} f_{Y}(y) f_{X \mid Y}(x \mid y) d y
\end{aligned}
$$

Sum of continuous r.v.

Theorem
Let X, Y be independent random variables. Then $Z=X+Y$ is also a continuous r.v. and its pdf is a convolution of f_{X}, f_{Y}. That is,

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

Example of a convolution

Conditional density and expectation

- $\mathbb{E}(X \mid B):=\int_{-\infty}^{\infty} x \cdot f_{X \mid B}(x) d x$
- $\mathbb{E}(g(X) \mid B)=\int_{-\infty}^{\infty} g(x) f_{X \mid B}(x) d x$

Theorem (total expectation)
Let X be a continuous r.v. If B_{1}, B_{2}, \ldots is a partition of Ω, then

$$
\mathbb{E}(X)=\sum_{i} P\left(B_{i}\right) \mathbb{E}\left(X \mid B_{i}\right)
$$

Proof: by total pdf.

Conditional pdf and expectation

- $f_{X \mid Y}(x \mid y):=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ is a pdf of X, given $Y=y$
- $\mathbb{E}(X \mid Y=y):=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x, y) d x$ is the expectation of this r.v.
- $\mathbb{E}(g(X) \mid Y=y)=\int_{-\infty}^{\infty} g(x) \cdot f_{X \mid Y}(x, y) d x$
- An analogy of the law of total expectation:

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} \mathbb{E}(X \mid Y=y) f_{Y}(y) d y
$$

- $\mathbb{E}(X)=\mathbb{E}(\mathbb{E}(X \mid Y))$

Overview

Continuous random vectors

Covariance and correlation

Inequalities

Limit theorems - approximation

Covariance

Definition
For r.v.'s X, Y we define their covariance by formula

$$
\operatorname{cov}(X, Y)=\mathbb{E}((X-\mathbb{E} X)(Y-\mathbb{E} Y)) .
$$

Theorem

$$
\operatorname{cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- $\operatorname{var}(X)=\operatorname{cov}(X, X)$
- $\operatorname{cov}(X, a Y+b Z+c)=a \operatorname{cov}(X, Y)+b \operatorname{cov}(X, Z)$
- $\operatorname{cov}(X, Y)=0$ if X, Y are independent
- but not only then

Correlation

Definition
Correlation of random variables X, Y is defined by

$$
\varrho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}} .
$$

- "scaled covariance"
- $-1 \leq \varrho(X, Y) \leq 1$ (exercise)
- Correlation does not imply causation! (In particular, correlation is symmetric.)
- OTOH, uncorrelation does not imply independence. (Extreme case: X any r.v., $Y=+X$ or $Y=-X$, both with the same probability.)

Variance of a sum

Theorem
Let $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{var}(X)=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}\left(X_{i}, X_{j}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{cov}\left(X_{i}, X_{j}\right) .
$$

In particular, if X_{1}, \ldots, X_{n} are independent, then

$$
\operatorname{var}(X)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right) .
$$

Overview

Continuous random vectors
 Covariance and correlation

Inequalities

Limit theorems - approximation

Cauchy inequality

Theorem
Let X, Y have finite expectation and variance. Then

$$
\mathbb{E}(X Y) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

- Corollary for correlation: $-1 \leq \varrho(X, Y) \leq 1$

Jensen inequality

Theorem
Let X have finite expectation and let g be a convex real functin. Then

$$
\mathbb{E}(g(X)) \geq g(\mathbb{E}(X)) .
$$

(For concave function we have the opposite inequality.)

Markov inequality

Theorem
Suppose $X \geq 0$ and $a>0$. Then

$$
P(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
$$

Chebyshev inequality

Theorem
Let X have finite expectation μ and variance σ^{2}, let $a>0$. Then

$$
P(|X-\mu| \geq a \cdot \sigma) \leq \frac{1}{a^{2}} .
$$

Chernoff inequality

Theorem
Let $X=\sum_{i=1}^{n} X_{i}$, where X_{i} are i.i.d. attaining ± 1 with probability $1 / 2$. Then for $t>0$ we have

$$
P(X \leq-t)=P(X \geq t) \leq e^{-t^{2} / 2 \sigma^{2}}
$$

where $\sigma=\sigma_{X}=\sqrt{n}$.
Without proof.

Overview

Continuous random vectors

Covariance and correlation

Inequalities

Limit theorems - approximation

Strong law of large numbers

Theorem
Let X_{1}, \ldots, X_{n} be i.i.d. with expectation μ and variance σ^{2}. Let $S_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$ be the sample mean. Then we have $\lim _{n \rightarrow \infty} S_{n}=\mu \quad$ almost surely (i.e. with probability 1).

We say that sequence S_{n} converges to μ almost surely.

Monte Carlo integration

How to compute $\int_{x \in A} g(x) d x$?
In particular

$$
g(x)= \begin{cases}1 & \text { for } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

... area of a circle

Weak law of large numbers

Theorem
Let X_{1}, \ldots, X_{n} be i.i.d. with expectation μ and variance σ^{2}. Let $S_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$ be the sample mean. Then for every
$\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} P\left(\left|S_{n}-\mu\right|>\varepsilon\right)=0 .
$$

We say that sequence S_{n} converges to μ in probability.

Central Limit Theorem

Central Limit Theorem

Theorem
Let X_{1}, \ldots, X_{n} be i.i.d. with expectation μ and variance σ^{2}. Put $Y_{n}:=\left(\left(X_{1}+\cdots+X_{n}\right)-n \mu\right) /(\sqrt{n} \cdot \sigma)$.
Then $Y_{n} \xrightarrow{d} N(0,1)$. This means, that if F_{n} is the cdf of Y_{n}, then

$$
\lim _{n \rightarrow \infty} F_{n}(x)=\Phi(x) \quad \text { for every } x \in \mathbb{R} .
$$

We say that the sequence Y_{n} converges to $N(0,1)$ in distribution.

Moment generating function

Definition
For a random variable X we let

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)
$$

Function $M_{X}(t)$ is called the moment generating function.

- $M_{\operatorname{Bern}(p)}(t)=p \cdot e^{t}+(1-p)$.
- $M_{X}(t)=\sum_{n=0}^{\infty} \mathbb{E}\left(X^{n}\right) \frac{t^{n}}{n!}$.
- $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$, jsou-li X, Y n.n.v.
- $M_{B i n(n, p)}=\left(p e^{t}+1-p\right)^{n}$
- $M_{N(0,1)}=e^{t^{2} / 2}$
- $M_{E x p(\lambda)}=\frac{1}{1-t / \lambda}$
- If $M_{X}(t)=M_{Y}(t)$ on $(-a, a)$ for some $a>0$, then $X=Y$ a.s.

