
Extra loops

In this section it will be proved that Moufang loops with squares in the nucleus
coincide with loops fulfilling the identity xy ·xz = x(yz ·x). Such loops are called ex-
tra loops. The section concludes by a construction of extra loops that encompasses
the loop of octonions, which is probably the most well known Moufang loop.

Other results of this section include a proof that all nuclei are associative subloops
(i.e., groups).

From autotopisms to nuclear elements. Let Q be a loop and let α, β, γ ∈
Sym(Q).

(1) (α, idQ, γ) ∈ Atp(Q) ⇒ ∃ a ∈ Nλ(Q) such that α = γ = La;
(2) (idQ, β, γ) ∈ Atp(Q) ⇒ ∃ a ∈ Nρ(Q) such that β = γ = Ra; and

(3) (α, β, idQ) ∈ Atp(Q) ⇒ ∃ a, b ∈ Nµ(Q) such that ab = 1, α = Ra = R−1
b

and β = L−1
a = Lb.

Proof. If (α, idQ, γ) ∈ Atp(Q), then α(x)y = γ(xy) for all x, y ∈ Q. Setting y = 1
yields α = γ, setting x = 1 provides ay = γ(y), where a = α(1).

Suppose that (α, β, idQ) ∈ Atp(Q). Then α(x)β(y) = xy for all x, y ∈ Q. Put
a = α(1) and b = β(1). Substitutions x = 1 and y = 1 give β = L−1

a , where
a = α(1), and α = R−1

b , where b = β(1). Thus x/b · a\y = xy for all x, y ∈ Q.

Putting x = b provides Lb = L−1
a = β, and y = a yields R−1

b = Ra = α. Therefore
LaLb = RaRb = idQ and thus 1 = idQ(1) = LaLb(1) = ab = RaRb(1) = ba. �

LIP and RIP elements. Let Q be a loop. An element a ∈ Q is said to be a LIP
element if there exists b ∈ Q such that L−1

a = Lb. Arguments used in case of LIP
loops may be applied without a change to show that if L−1

a = Lb, then b = 1/a =
a\1. Hence b may be denoted by a−1. If x ∈ Q, then a−1(ax) = x = a(a−1x).

RIP elements are defined symmetrically. An element that is both RIP and LIP
is called an IP element.

Nuclei and inverse properties. If (La, idQ, La) ∈ Atp(Q), Q a loop, then
(L−1

a , idQ, L
−1
a ) ∈ Atp(Q). Therefore for each a ∈ Nλ(Q) there exists b ∈ Nλ(Q)

such that L−1
a = Lb. This shows that elements of the left nucleus satisfy the LIP,

and that Nλ(Q) is closed under inverses. Similarly elements of the right nucleus
satisfy the RIP, and Nρ(Q) is closed under inverses.

If c ∈ Nµ(Q), then (R−1
c , Lc, idQ) ∈ Atp(Q). By the statement above there exist

a, b ∈ Nµ(Q) such that R−1
c = Ra = R−1

b and Lc = L−1
a = Lb. Hence c = b. This

means that each element of a middle nucleus is an IP element, and Nµ(Q) is closed
under inverses.

Nuclei are groups. Let Q be a loop. Then each of sets Nλ(Q), Nµ(Q) and Nρ(Q)
is an associative subloop of Q (i.e., a group).

Proof. Suppose that a, b ∈ Nλ(Q). Then

(La, idQ, La)(Lb, idQ, Lb) = (LaLb, idQ, LaLb) ∈ Atp(Q).

Therefore there exists c ∈ Nλ(Q) such that Lc = LaLb. Since c = Lc(1) =
LaLb(1) = ab, we have ab ∈ Nλ(Q) for all a, b ∈ Nλ(Q). If a, b, c ∈ Nλ(Q),
then a · bc = ab · c. This proves that Nλ(Q) is a subsemigroup of Q in which every
element possesses an inverse. That makes Nλ(Q) a group.

The case of Nρ(Q) can be obtained by mirroring. To prove that Nµ(Q) is a
semigroup closed under inverses start from

(R−1
a , La, idQ)(R−1

b , Lb, idQ) = (R−1
ab , Lab, idQ), for all a, b ∈ Nµ(Q).
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The nucleus. If Q is a loop, then N(Q) = Nλ(Q) ∩Nρ(Q) ∩Nµ(Q) is called the
nucleus of Q. In general all three nuclei may by pairwise distinct. Since each of
them is a subloop of Q, the nucleus always is an associative subloop of Q. In some
cases, like in Moufang loops, all three nuclei coincide and are equal to N(Q).

Inverted Moufang indentities. Let Q be a Moufang loop. Then

(xy · z)x−1 = x(y · zx−1) and x−1(y · zx) = (x−1y · z)x.

Proof. This is essentially only one identity since x = (x−1)−1. The identity can be
also expressed as xy·z = x(y·zx−1)x. The right hand is equal to xy·(zx−1·x) = xy·z,
by (Mm). �

The argument might be reversed. Since both

(xy · z)(x\1) = x(y · z(x\1)) and (xy · z)(1/x) = x(y · z(1/x))

yield the IP property, as may be verified readily, each of them is an equivalent
formulation of the Moufang identity.

An identity induced by squares in nucleus. Let Q be a Moufang loop such
that x2 ∈ N(Q) for every x ∈ Q. Then Q satisfies the identity

(xy · z)x = x(y · zx). (mE)

Proof. (xy · z)x = (xy · z)(x−1 · x2) = ((xy · z)x−1)x2 = (x(y · zx−1))x2 = x(y ·
(zx−1)x2) = x(y · zx). �

Equivalence of the extra identities. The identity (mE) is equivalent to each
these two identities:

xy · xz = x(yx · z) and (lE)

zx · yx = (z · xy)x. (rE)

Proof. Let us first verify that each of the three identities yields a flexible IP loop.
The flexibility may be obtained by setting z = 1. Further on, only (mE) and (lE)
will be considered since (rE) is a mirror image of (lE).

In the case of (xy · z)x = x(y · zx) set z = 1/x to get the RIP, and y = x\1 to
obtain the LIP. For xy · xz = x(yx · z) set z = x\1 to get the RIP. To obtain the
LIP consider first the equality

xy · (x · yz) = x(yx · yz) = x · y(xy · z).

The RIP implies the existence of two sided inverses. Setting z = (xy)−1 gives
xy · (x · y(xy)−1) = xy. Hence x · y(xy)−1 = 1. Since x−1 is the two sided inverse,
y(xy)−1 = x−1. Applying the RIP yields y = x−1(xy).

Writing (xy · z)x = x(y · zx) as (xy · z/x)x = x · yz shows that Q satisfies (mE)
if and only if

∀x ∈ Q (Lx, R
−1
x , R−1

x Lx) ∈ Atp(Q).

Expressing xy · xz = x(yx · z) as (x(y/x) · xz = x · yz yields the formulation

∀x ∈ Q (LxR
−1
x , Lx, Lx) ∈ Atp(Q).

Since we are dealing with IP loops, a switching of coordinates and the identity
IR−1

x I = Lx provide

(LxR
−1
x , Lx, Lx) ∈ Atp(Q) ⇔ (Lx, R

−1
x , LxR

−1
x ) ∈ Atp(Q).

The rest follows from the flexibility. �
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Extra loops are Moufang loops with squares in the nucleus. Identities
(mE), (rE) and (lE) are known as the extra identities. A loop satisfying an extra
identity is said to be an extra loop. A loop Q is extra if and only if Q is a Moufang
loop such that x2 ∈ N(Q) for each x ∈ Q.

Proof. As shown above, Moufang loops with nuclear squares fulfil (mE). To prove
the converse consider an extra loop Q. Both (LxR

−1
x , Lx, Lx) and (Lx, R

−1
x , R−1

x Lx)
are autotopisms for each x ∈ Q. Hence

(R−1
x Lx, Lx, Lx)(L−1

x , Rx, L
−1
x Rx) = (R−1

x , LxRx, Rx)

is an autotopism of Q for each x ∈ Q too. This means that Q is a Moufang loop
since these autotopisms describe the identity (rM).

By the (mM) identity, (Lx, Rx, LxRx) ∈ Atp(Q) for every x ∈ Q. Therefore

(Lx, Rx, LxRx)(L−1
x , Rx, L

−1
x Rx) = (idQ, R

2
x, LxRxL

−1
x Rx)

is an autotopism for each x ∈ Q. Hence x2 = R2
x(1) ∈ Nρ(Q) = N(Q), for each

x ∈ Q. �

The centre. For a loop Q put

Z(Q) = {a ∈ N(Q); ax = xa for every x ∈ Q.}

This is the centre of Q. An element a ∈ N(Q) thus belongs to the centre if and
only if La = Ra.

Central elements are IP elements since Z(Q) ⊆ Nµ(Q). If a, b ∈ Z(Q), then
Lab = Lba = LbLa = RbRa = Rab and La−1 = L−1

a = R−1
a = Ra−1 . That makes

Z(Q) a subgroup of N(Q).
A subloop Z of Q is said to be central if Z ≤ Z(Q).
Consider a central subloop Z ≤ Q. If x, y ∈ Q and a, b ∈ Z, then xa = yb implies

y = xc = cx, where c = ab−1 = b−1a. This shows that Q may be partitioned into
cosets xZ = Zx. We have xZ · yZ = xyZ for all x, y ∈ Q, and this defines the
structure of a factor loop Q/Z. (Later we shall pay attention to conditions under
which a factor loop Q/S may be defined if S ≤ Q is not necessary central.)

Involutory Moufang loops are groups. A loop Q is said to be involutory if
x2 = 1 for all x ∈ Q. As is well known, involutory groups are commutative, and
thus coincide with the class of elementary abelian 2-groups. Let us observe that
the same is true for Moufang loops.

They are commutative since if x, y ∈ Q, then xy · yx = xy2x = x2 = 1, and that
implies yx = (xy)−1 = xy. Hence y = x2y = x(xy) = xyx for all x, y ∈ Q. They
are associative since zx · y = y · zx = y · zx−1 = x(y · zx−1)x = xy · z = z · xy.

A journey to octonions. A 4-element vector space may be represented by a
triangle. The vertices correspond to nonzero vectors. The sum of two distinct
vertices is the third vertex.

An 8-element vector space may be represented by a Fano plane. The vertices
correspond to nonzero vectors. The sum of two distinct vertices is the vertex that
completes the line passing through the two vertices.

Suppose that v0, v1 and v2 are pairwise distinct nonzero elements of a 8-element
vector space V such that v2 6= v0 + v1. Define a sequence of vectors vi, i ≥ 0, by
setting vi+3 = vi + vi+1. Thus

v3 = v0 + v1, v4 = v1 + v2, v5 = v2 + v3 = v0 + v1 + v2, v6 = v3 + v4 = v0 + v2,

v7 = v4 + v5 = v0, v8 = v5 + v6 = v1 and v9 = v6 + v7.
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Hence vi, 0 ≤ i ≤ 6, are all nonzero vectors of V , the indices i may be computed
modulo 7, and {vi, vi+1, vi+3}, 0 ≤ i ≤ 6, are all lines of the Fano plane that is
induced by V .

We have obtained a representation of Fano plane upon an oriented cycle of 7
elements. Let it be called a circular representation of Fano plane.

Let us get oriented. An oriented triangle may be thought as a representation of
the quaternion group Q8. If the triangle is oriented as (a0 a1 a2), then there exists
a unique quaternion group upon {ai,−ai; 0 ≤ i ≤ 2} ∪ {−1, 1} such that a2i = −1
and aiai+1 = ai−1, i ∈ Z3.

Suppose now that each line of a Fano plane obtains one of two possible orien-
tations. This yields seven oriented 3-cycles each of which is further on interpreted
as a quaternion group. Elements −1 and 1 are considered to be common for all of
the seven quaternion groups. Denote by U their union. Any two elements x, y ∈ U
occur in one of these groups, and so their product is well defined. This makes U
a loop, and this loop is diassociative. The set Z = {−1, 1} is a central subgroup,
and U/Z ∼= (V,+).

The question is whether there exists an orientation that makes U a Moufang
loop (and thus also an extra loop). In fact, there exist several such orientations.
However, loops produced by these orientations are mutually isomorphic.

The orientation that is standardly used to produce a Moufang loop is based upon
the circular representation of Fano plane. This results in setting U = {ei,−ei; 0 ≤
i ≤ 6} ∪ {−1, 1} where −1 is a central element equal to each e2i , and eiei+1 = ei+3,
0 ≤ i ≤ 6. This loop is known as the loop of octonions. More precisely U is
the loop of octonion units, similarly as {±1,±i,±j,±k} is the group of quaternion
units. (Quaternions H are a division ring upon R4 and octonions O are an algebra
upon R8.)

In fact U is up to isomorphism the only Moufang loop Q of order 16 for which
there exists a central subloop Z = {1, z} such that x2 = z for each x ∈ Q \ Z.

We shall now show that if such a loop Q exists, then it has to be isomorphic to
U . However, the very existence of Q will be verified later.

Proof. First note that there exists an 8-element vector space V such that (V,+) ∼=
Q/Z. This is because Q/Z is an involuntory Moufang loop. If x, y ∈ Q \ Z and
y /∈ {x, xz}, then 〈x, y〉/Z is isomorphic to Klein group, and 〈x, y〉 is a group
isomorphic to the group of quaternions Q8. This follows from the diassociativity of
Q (a direct proof is also possible). Hence xy = yxz and xyx = y.

Denote the nonzero vectors of V by vi, 0 ≤ i ≤ 6, so that each {vi, vi+1, vi+3}
is a line of the corresponding Fano plane. For i ∈ {0, 1, 2} choose any ei such that
eiZ = vi. Set e3 = e0e1, e4 = e1e2, e5 = e2e3 and e6 = e3e4. Then eiZ = vi
for every i ∈ {0, . . . , 6}. The choice and definitions of ei establish an orientation
(vi, vi+1, vi+3) of a line for i ∈ {0, 1, 2, 3}. It remains to observe that the Moufang
law forces out this orientation for the remaining values of i as well. Now, e4e5 =
e1e2 · e2e3 = e2e1z · ze3e2 = e2e1 · e3e2 = e2 · e1e3 · e2 = e2e0e2 = e0. Similarly,
e5e6 = e2e3 · e3e4 = e3 · e2e4 · e3 = e3e1e3 = e1. Finally, e6e0 = e3e4 · e0 =
(e0e1 · e4)e0 = z(e1e0 · e4)e0 = z(e1 · e0e4e0) = ze1e4 = e4e1 = e2. �

A construction using quadratic forms. Let V be a vector space over a field
F . A mapping g : V → F is said to be a quadratic form if h : (x, y) 7→ g(x + y) −
g(x) − g(y) is a bilinear form V × V → F and g(λx) = λ2g(x) for all x ∈ V and
λ ∈ F . If char(F ) = 2, then the bilinear form is alternating (which means that
h(x, x) = 0 for every x ∈ V ).

Recall that if h : V ×V → F is alternating and bilinear, then h(x, y) = −h(y, x),
for all x, y ∈ F (no assumption on char(F ) is being made here). Recall also that
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a multilinear mapping f : V n → F is said to be alternating if f(x1, . . . , xn) = 0
whenever xi = xj , where 1 ≤ i < j ≤ n. If σ ∈ Sn and f is alternating, then

f(xσ(1), . . . , xσ(n)) = (−1)sgn(σ)f(x1, . . . , xn). Alternating multilinear mappings in
characteristic two thus are symmetric.

Theorem. Let V be a vector space over a field F , char(F ) = 2, and let q : V ×V →
F be such that for each v ∈ V the mapping x 7→ q(x, v) is a quadratic form, while
the mapping x 7→ q(v, x) is a linear form. Put Q = V × F and define a binary
operation upon Q by

(u, a)(v, b) = (u+ v, q(u, v) + a+ b)

and assume that q(u + v, u) = q(u, u) + q(v, u) for all u, v ∈ V . Then (Q, ·) is a
Moufang loop. Furthermore, the mapping A : V ×V ×V → F defined by A(u, v, w) =
q(u + v, w) + q(u,w) + q(v, w) is an alternating trilinear mapping, and a triple of
elements ((u, a), (v, b), (w, c)) ∈ Q3 is associative if and only if A(u, v, w) = 0.

Proof. The multilinearity of A follows directly from the assumptions on q. Clearly,
A(u, v, w) = A(v, u, w) and A(u, u, v) = 0, for any u, v, w ∈ V . To verify that A
is an alternating trilinear form it thus remains to show that A(u, v, u) = 0. This
follows from q(u+ v, u) + q(u, u) + q(v, u) = q(u, u) + q(v, u) + q(u, u) + q(v, u) = 0.

The neutral element is (0, 0) since q(u, 0) = q(0, u) for all u ∈ V . The operation
· thus yields a loop. Each element (0, a) is central and (u, a) = (u, 0)(0, a). A triple
((u, a), (v, b), (w, c)) is thus associative if and only if the triple ((u, 0), (v, 0), (w, 0))
is associative. Now, ((u, 0) · (v + w, q(v, w)) = (u + v + w, q(u, v + w) + q(v, w))
is equal to (u + v, q(u, v)) · (w, 0) = (u + v + w, q(u + v, w) + q(u, v)) if and only
if A(u, v, w) = q(u,w) + q(v, w) + q(u + v, w) is equal to 0 since q(u, v + w) =
q(u, v) + q(u,w).

To verify that (Q, ·) is a Moufang loop it suffices to show that

(u, 0)(v, 0) · (w, 0)(u, 0) = (u, 0)((v, 0)(w, 0) · (u, 0)).

Note that (v, 0)(w, 0)·(u, 0) = (v+w, q(v, w))(u, 0) = (v+w+u, q(v+w, u)+q(v, w)).
The left hand side of the Moufang identity is

(u+ v, q(u, v)) · (w + u, q(w, u)) = (v + w, q(u, v) + q(w, u) + q(u+ v, w + u)),

while the right hand side is equal to

(u, 0)·(u+v+w, q(v+w, u)+q(v, w)) = (v+w, q(u, u+v+w)+q(v+w, u)+q(v, w)).

The question thus is whether

q(u, v) + q(u+ v, u) + q(w, u) + q(u+ v, w) =

q(u, v) + q(u, u) + q(v, u) + q(w, u) + q(u+ v, w)

is equal to
q(u, v) + q(u, u) + q(u,w) + q(v + w, u) + q(v, w).

That really holds since q(v, u) + q(w, u) + q(v + w, u) = A(v, w, u) is equal to
A(u, v, w) = q(u+ v, w) + q(u,w) + q(v, w). �

Parameters for quadratic forms. Let F be a field of characteristic 2, let V be a
vector space over F , and let b1, . . . , bn be a basis of V . A quadratic form g : V → F
is fully determined by values of g at bi and bi + bj , 1 ≤ i < j ≤ n. This fact follows
from the formula

g
(∑

λibi

)
=
∑
i

λ2i g(bi) +
∑
i<j

λiλj(g(bi) + g(bj) + g(bi + bj))

that may be easily proved. Whenever g(bi), g(bj) and g(bi + bj) are given, then the
formula defines a quadratic form.
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Suppose now that n = 3 and set

q
(∑

λibi,
∑

νibi

)
= λ21(ν1 + ν2 + ν3) + λ22(ν2 + ν3) + λ23ν3

+ λ1λ2ν3 + λ1λ3ν2 + λ2λ3ν1.

Fixing any value of the second coordinate thus yields a quadratic form, while fixing
any value for the first coordinate provides a linear form. Set A(u, v, w) = q(u,w) +
q(v, w) + q(u + v, w). This is a trilinear form. Suppose that u =

∑
λibi, v =∑

ρibi and w =
∑
νibi. Since λ2i + ρ2i = (λ + ρi)

2 the first part of the formula
defining q contributes nothing to A(u, v, w). Let now {i, j, k} = {1, 2, 3}. Then
λiλjνk + ρiρjνk + (λi + ρi)(λj + ρj)νk = λiρjνk + λjρiνk. Since A(u, v, w) is
obtained by summing over all i, j, k, there has to be A(u, v, w) = det(u, v, w) (i.e.,
a determinant of the matrix in which the columns are formed by coefficients of
u, v and w, respectively). Thus A(u, v, u) = 0, and that shows that q as defined
can be used to build a Moufang loop on V × F . The operation of the loop is
(u, a)(v, b) = (u+ v, q(u, v) + a+ b).

Use now the same formula for F = {0, 1}. To see that the construction yields a
Moufang loop in which (u, a)(u, a) = (0, 1) whenever u 6= 0 we have to show that if
at least one of λi ∈ F is nonzero and u = λ1b1 + λ2b2 + λ3b3, then q(u, u) = 1.

It is easy to verify that

q(u, u) = λ1λ2λ3 + λ1λ2 + λ2λ3 + λ1λ3 + λ1 + λ2 + λ3.

This yields 1 if λ1 = λ2 = λ3 = 1. If λ3 = 0, then the formula to consider is
λ1λ2 +λ1 +λ2. That is equal to 0 if and only if λ1 = λ2 = 0. We can thus conclude
by stating:

The loop of octonion units. There exists a Moufang loop Q upon elements
±1,±e0, . . . ,±e6 such that (−1)(±ei) = ∓ei, e2i = −1, −1 is a central element,
eiej = −ejei if 0 ≤ i ≤ 6, and

eiei+1 = ei+3, eiei+2 = ei−1, eiei+3 = −ei+1

for each i ∈ {0, . . . , 6}, with the indices computed modulo 7.
Let V be a vector space over F with nonzero vectors v0, . . . , v6 such that vi +

vi+1 = vi+3 for each i ∈ {0, . . . , 6}. Denote by π the mapping ±ei 7→ vi, ±1 7→ 0.
Then π is a homomorphism (Q, ·)→ (V,+). A triple (x, y, z) ∈ Q3 is associative if
and only if det(π(x), π(y), π(z)) = 0 since the trilinear mapping A coincides with
the determinant. The associativity is thus equivalent to linear dependence.


