Analytic combinatorics Lecture 7

April 21, 2021

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Suppose p is a zero of order1 d of h, i.e., $h(z) = \sum_{n \ge d} a_n (z - p)^n$ on some $\mathbb{N}_{<\varepsilon}(p)$, with $a_d \ne 0$. It follows that $\frac{h(z)}{(z-p)^d} = \sum_{n \ge 0} a_{n+d} (z-p)^n$ defines an analytic function h^* on $\mathbb{N}_{<\varepsilon}(p)$, with $h^*(p) = a_d \ne 0$. Consequently, $(z - p)^d f(z) = \frac{g(z)}{h^*(z)}$ is analytic in p, hence f has a pole of order at most d (possibly a removable singularity) in p.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Suppose p is a zero of order1 d of h, i.e., $h(z) = \sum_{n \ge d} a_n (z - p)^n$ on some $\mathbb{N}_{<\varepsilon}(p)$, with $a_d \ne 0$. It follows that $\frac{h(z)}{(z-p)^d} = \sum_{n \ge 0} a_{n+d} (z - p)^n$ defines an analytic function h^* on $\mathbb{N}_{<\varepsilon}(p)$, with $h^*(p) = a_d \ne 0$. Consequently, $(z - p)^d f(z) = \frac{g(z)}{h^*(z)}$ is analytic in p, hence f has a pole of order at most d (possibly a removable singularity) in p.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Proof of " \Leftarrow ".

Suppose $f(z) = \frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Proof of " \Leftarrow ".

Suppose $f(z) = \frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p. Suppose p is a zero of order d of h, i.e., $h(z) = \sum_{n \geq d} a_n (z - p)^n$ on some $\mathcal{N}_{<\varepsilon}(p)$, with $a_d \neq 0$.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Proof of " \Leftarrow ".

Suppose $f(z) = \frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p. Suppose p is a zero of order1 d of h, i.e., $h(z) = \sum_{n \geq d} a_n (z - p)^n$ on some $\mathbb{N}_{<\varepsilon}(p)$, with $a_d \neq 0$. It follows that $\frac{h(z)}{(z-p)^d} = \sum_{n \geq 0} a_{n+d} (z-p)^n$ defines an analytic function h^* on $\mathbb{N}_{<\varepsilon}(p)$, with $h^*(p) = a_d \neq 0$.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Proof of " \Leftarrow ".

Suppose $f(z) = \frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p. Suppose p is a zero of order 1 d of h, i.e., $h(z) = \sum_{n \ge d} a_n (z - p)^n$ on some $\mathbb{N}_{<\varepsilon}(p)$, with $a_d \neq 0$. It follows that $\frac{h(z)}{(z-p)^d} = \sum_{n \ge 0} a_{n+d} (z-p)^n$ defines an analytic function h^* on $\mathbb{N}_{<\varepsilon}(p)$, with $h^*(p) = a_d \neq 0$. Consequently, $(z - p)^d f(z) = \frac{g(z)}{h^*(z)}$ is analytic in p, hence f has a pole of order at most d (possibly a removable singularity) in p.

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

- the radius of convergence of g(z) around 0 is greater than ρ ,
- and therefore its exponential growth rate is smaller than $\frac{1}{a}$,
- hence $[z^n]g(z) \leq rac{1}{
 ho^n}$ for n large enough, and
- most importantly, $[z^n]f(z) = [z^n]R(z) + O(\frac{1}{\rho^n})$.

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Corollary

Let Ω , f, g and R be as above, and suppose f is analytic in 0. Let $[z^n]f(z)$ denote the coefficient of degree n in the power series expansion of f in 0. In particular, we know that

 $[z^n]f(z) = [z^n]R(z) + [z^n]g(z).$

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Corollary

Let Ω , f, g and R be as above, and suppose f is analytic in 0. Let $[z^n]f(z)$ denote the coefficient of degree n in the power series expansion of f in 0. In particular, we know that

$$[z^n]f(z) = [z^n]R(z) + [z^n]g(z).$$

Suppose now that Ω contains $\mathbb{N}_{\leq \rho}(0)$ for some $\rho > 0$. Then

• the radius of convergence of g(z) around 0 is greater than ρ ,

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Corollary

Let Ω , f, g and R be as above, and suppose f is analytic in 0. Let $[z^n]f(z)$ denote the coefficient of degree n in the power series expansion of f in 0. In particular, we know that

$$[z^n]f(z) = [z^n]R(z) + [z^n]g(z).$$

- the radius of convergence of g(z) around 0 is greater than ρ ,
- and therefore its exponential growth rate is smaller than $\frac{1}{a}$,

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Corollary

Let Ω , f, g and R be as above, and suppose f is analytic in 0. Let $[z^n]f(z)$ denote the coefficient of degree n in the power series expansion of f in 0. In particular, we know that

$$[z^n]f(z) = [z^n]R(z) + [z^n]g(z).$$

- the radius of convergence of g(z) around 0 is greater than ρ ,
- and therefore its exponential growth rate is smaller than $\frac{1}{a}$,
- hence $[z^n]g(z) \leq \frac{1}{\rho^n}$ for n large enough, and

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Corollary

Let Ω , f, g and R be as above, and suppose f is analytic in 0. Let $[z^n]f(z)$ denote the coefficient of degree n in the power series expansion of f in 0. In particular, we know that

$$[zn]f(z) = [zn]R(z) + [zn]g(z).$$

- the radius of convergence of g(z) around 0 is greater than ρ ,
- and therefore its exponential growth rate is smaller than $\frac{1}{a}$,
- hence $[z^n]g(z) \leq \frac{1}{\rho^n}$ for n large enough, and
- most importantly, $[z^n]f(z) = [z^n]R(z) + O(\frac{1}{\rho^n})$.

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let k = |P|.

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let k = |P|. Choose $p \in P$, and let the order of p. We know that on some $\mathbb{N}^*_{\leq \varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{b_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{b_{-1}}{z-p} + a_0 + a_1(z-p) + \dots$$

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let k = |P|. Choose $p \in P$, and let d be the order of p. We know that on some $\mathbb{N}^*_{< c}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + \dots$$

Define, for every $p \in P$, the rational function

$$R_p(z) = rac{a_{-d}}{(z-p)^d} + rac{a_{-d+1}}{(z-p)^{d-1}} + \dots + rac{a_{-1}}{z-p}$$

and take $R(z) = \sum_{\rho \in P} R_{\rho}(z)$. We claim that g(z) := f(z) - R(z) is analytic on Ω .

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let k = |P|. Choose $p \in P$, and let d be the order of p. We know that on some $\mathbb{N}^*_{<\varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + \dots$$

Define, for every $p \in P$, the rational function

$$R_{p}(z) = \frac{a_{-d}}{(z-p)^{d}} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p}, \text{ analytic only for a set of the set$$

and take $R(z) = \sum_{\rho \in P} R_{\rho}(z)$. We claim that g(z) := f(z) - R(z) is analytic on Ω . If $z_0 \in \Omega \setminus P$, then clearly g is analytic in z_0 .

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z)has an analytic continuation to Ω . Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let k = |P|. Choose $p \in P$, and let d be the order of p. We know that on some $\mathbb{N}^*_{<\varepsilon}(p)$, we have

$$f(z) = \frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + \dots$$

Define, for every $p \in P$, the rational function

$$R_{p}(z) = \frac{a_{-d}}{(z-p)^{d}} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \cdots + \frac{a_{-1}}{z-p},$$

and take $R(z) = \sum_{p \in P} R_p(z)$. We claim that g(z) := f(z) - R(z) is analytic on Ω . If $z_0 \in \Omega \setminus P$, then clearly g is analytic in z_0 . If $z_0 = p \in P$, then on a punctured neighborhood of p we have

$$g(z) = f(z) - R_p(z) - \sum_{q \in P \setminus \{p\}} R_q(z) = \left(\sum_{n \ge 0} a_n(z-p)^n\right) - \sum_{q \in P \setminus \{p\}} R_q(z),$$

which is analytic in $z_0 = p$.

Ordered set partitions revisited

Recall: Ordered set partitions of [n] are the ordered sequences of nonempty disjoint 24 sets whose union is [n]. Let p_n be their number. Their EGF is $f(z) = \frac{1}{2 - \exp(z)}$. n! Hence, $\frac{p_n}{n!}$ has radius of convergence ln 2 and exponential growth rate $\frac{1}{\ln 2}$. Goal: Find a better estimate for p_n . $f(z) = \frac{1}{2-e^2}$, meromorphic on C Poles of g: P= { ln 2, ... }= { z ∈ C; e^z=2 } $z = x + iy_1 x_1 y \in \mathbb{R}, \quad e^z = e^{x + i \delta} = e^z \cdot e^{i \delta} =$ $= e^x (\cos y + i \sin y). \quad |e^z| = |e^x \cdot e^{i \delta}| = |e^x| = 2$ =) x=ln2 =) $\chi = \ln L$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ $e^{2} = 2 \Rightarrow \operatorname{Im}(e^{2}) = 0 = e^{2} \cdot \frac{4}{5} \sin y \Rightarrow y \in \frac{5}{5} k_{\pi}$ P={ ln 2+ i 2kt; k = 2 }

 $\begin{cases} (z) = \frac{1}{2 - e^{z}} i & P_{k} := l_{h} 2 + 2k\pi i \\ z - e^{z} & f(z) = \frac{-\frac{1}{2}}{2 - P_{0}} + a_{0} + q_{1}(z - P_{0}) \\ k \in \mathbb{Z}' \\ \\ (hoose \quad g \in (|P_{0}|_{1} |P_{1}|] \\ \\ (R(z) = \frac{-\frac{1}{2}}{2 - P_{0}} = \frac{1}{2 \cdot l_{h} z} \cdot \frac{1}{1 - \frac{z}{e_{h} z}} \\ = \frac{1}{2 \cdot l_{h} z} \cdot \frac{1}{1 - \frac{z}{e_{h} z}} \\ \end{cases}$ $\begin{bmatrix} 1 & \sum_{n=2}^{\infty} \left(\frac{3}{4n^2}\right)^n \\ \frac{2 \cdot l_{n2}}{\left[z^n\right] f(z)} = [z^n] R + O(\frac{1}{p^n}) \\ \frac{1}{2} \cdot l_{n2}$ Ω = Mg N_{<p}(0) J has pole po in SL g= R + g = analytic in SL Pn = 1 (1) * for any rational, with pole po rational, with pole po what is the order of po as pole of fi = min = (z-po) f(z) del is an - $(z-p_0)$ $g(z) = \frac{z-p_0}{2-e^3}$ is bounded around give po, for zell hence it has no pole & hence it has a removable singularity: lim Z-Po = (-1) z-> po 2- t p 2) CHOSpital

Permutations without *k*-cycles

Example: What is the probability that a random permutation of [n] has no cycle of length k? (Assume k fixed, $n \to \infty$.) k=1 ... = 1 kEN fixed: 9n == perms without cycles of length k, wanted: <u>In</u> flog:= EGF of perms without k-cyclis g(s): EGF of perms with 1 cycle, whose length the g (2) $q(z) = \sum_{h=d}^{n} \frac{1}{h!} = \left(\sum_{n=d}^{d} \frac{z^{n}}{n}\right) - \frac{1}{2}$ EGT of petty of perms with thes cycles, of length + le g(2) = 1+ g(2) + g(2) + ... = exp(g(2)) $g(z) = \left(\tilde{\sum_{k=0}^{n} n! \frac{z^{n}}{n!} \right). \tilde{e}$ ·expl--1-2

 $f(z) = \frac{\exp(-\frac{z^{2}}{L})}{1}$, meromorphic on () only pole: p=1, $\Omega := \mathbb{C} \xrightarrow{q_n} \stackrel{n \to \infty}{\longrightarrow} e^{-1/k}$ f(2) (2-1) is analytic in p=1 => tagres order of p=1 $f(z) = \frac{a-1}{z-p} + a_0 + a_1 (z-p) + a_2 (z-p)^2 + \cdots + (p=1)$ $\alpha_{-1} = \lim_{z \to 0} (z - p) \cdot f(z) = -\exp\left(-\frac{1}{k}\right)$ $f(z) = \frac{-\exp(-\frac{1}{k})}{z - 1} + (\text{something analytic})$ $f(z) = \frac{-\exp(-\frac{1}{k})}{z - 1} + (\text{something analytic})$ $f(z) = \frac{-1}{k} \cdot (\sum_{k=0}^{\infty} z^{k}) + - O(z^{k})$

Complex integration

What we know:

• For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.

The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

The curve is said to be...

- simple if *p* is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

The curve is said to be...

- simple if *p* is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ .

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ . The curve is said to be...

• simple if p is injective,

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ . The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ . The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i\Im(f) = \int_a^b \Re(f) + i\int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ . The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ . The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \setminus \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded.

- For a real function $f: [a, b] \to \mathbb{R}$, we are familiar with the notion of integral $\int_a^b f(t) dt = \int_a^b f$.
- This can be extended to continuous complex-valued functions $f: [a, b] \to \mathbb{C}$ by $\int_a^b f = \int_a^b \Re(f) + i \Im(f) = \int_a^b \Re(f) + i \int_a^b \Im(f)$.

Definition

Let [a, b] be a real interval with a < b, let $p: [a, b] \to \mathbb{C}$ be a continuous function with a finite derivative p'(t) everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The curve parametrized by p is the set $\gamma = \{p(t); t \in [a, b]\}$, together with the orientation from p(a) to p(b). The function p is then the parametrization of γ . The curve is said to be...

- simple if p is injective,
- closed if p(a) = p(b),
- simple closed if p is injective on [a, b) and p(a) = p(b).

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \setminus \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded. The bounded one is the interior of γ , denoted $\operatorname{Int}(\gamma)$, the other is the exterior of γ , denoted $\operatorname{Ext}(\gamma)$.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subset \mathbb{C}$, what is $\int_{\gamma} 1$?

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subset \mathbb{C}$, what is $\int_{\gamma} 1$?

Properties of \int_{γ} :

• Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f = -\int_{\gamma} f.$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p \colon [a, b] \to \mathbb{C}$, let $f \colon \gamma \to \mathbb{C}$ be a function. The contour integral of f along γ , denoted $\int_{\gamma} f$ is defined as

$$\int_{\gamma} f := \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t.$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subset \mathbb{C}$, what is $\int_{\gamma} 1$?

Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f = -\int_{\gamma} f$.
- If γ is the concatenation of two curves α and β , then $\int_{\gamma} f = \int_{\alpha} f + \int_{\beta} f$.

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F \colon \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F : \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

Observation

If f has a primitive function F on Ω , and $\gamma \subseteq \Omega$ is a curve parametrized by $p \colon [a, b] \to \Omega$, then

$$\int_{\gamma} f = \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t = \int_{a}^{b} F(p(t))' \mathrm{d}t = F(p(b)) - F(p(a)).$$

In particular, $\int_{\gamma} f$ only depends on the values of F in the endpoints of γ . Moreover, if γ is a closed curve, then $\int_{\gamma} f = 0$.

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F : \Omega \to \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω , if for every $z \in \Omega$, we have F'(z) = f(z).

Observation

If f has a primitive function F on Ω , and $\gamma \subseteq \Omega$ is a curve parametrized by $p \colon [a, b] \to \Omega$, then

$$\int_{\gamma} f = \int_{a}^{b} f(p(t))p'(t) \mathrm{d}t = \int_{a}^{b} F(p(t))' \mathrm{d}t = F(p(b)) - F(p(a)).$$

In particular, $\int_{\gamma} f$ only depends on the values of F in the endpoints of γ . Moreover, if γ is a closed curve, then $\int_{\gamma} f = 0$.

Example: Let $k \in \mathbb{Z}$, let γ be the counterclockwise unit circle, parametrized by $p(t) = \exp(it)$ with $t \in [-\pi, \pi]$. What is $\int_{\gamma} z^k$?