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Meromorphic functions

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either
analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h
analytic on Ω, with h not identically zero on Ω, such that

f (z) =
g(z)

h(z)

for every z ∈ Ω \ {z; h(z) = 0}.

Proof of “⇐”.

Suppose f (z) = g(z)
h(z)

as above. Choose p ∈ Ω. If h(p) 6= 0, then f is analytic in p.
Suppose p is a zero of order1 d of h, i.e., h(z) =

∑
n≥d an(z − p)n on some N<ε(p),

with ad 6= 0.
It follows that h(z)

(z−p)d
=

∑
n≥0 an+d (z − p)n defines an analytic function h∗ on

N<ε(p), with h∗(p) = ad 6= 0.
Consequently, (z − p)d f (z) = g(z)

h∗(z)
is analytic in p, hence f has a pole of order at

most d (possibly a removable singularity) in p.
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Approximating meromorphic functions by rational functions

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles
in Ω. Then there is a rational function R(z) such that the function g(z) = f (z)−R(z)
has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f .

Corollary

Let Ω, f , g and R be as above, and suppose f is analytic in 0. Let [zn]f (z) denote the
coefficient of degree n in the power series expansion of f in 0. In particular, we know
that

[zn]f (z) = [zn]R(z) + [zn]g(z).

Suppose now that Ω contains N≤ρ(0) for some ρ > 0. Then

the radius of convergence of g(z) around 0 is greater than ρ,

and therefore its exponential growth rate is smaller than 1
ρ
,

hence [zn]g(z) ≤ 1
ρn for n large enough, and

most importantly, [zn]f (z) = [zn]R(z) + O( 1
ρn ).
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Approximating meromorphic functions by rational functions
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Proof. Let P ⊆ Ω be the set of poles of f , let k = |P|.
Choose p ∈ P, and let d be the order of p. We know that on some N∗<ε(p), we have

f (z) =
a−d

(z − p)d
+

a−d+1

(z − p)d−1 + · · ·+
a−1

z − p
+ a0 + a1(z − p) + · · ·

Define, for every p ∈ P, the rational function

Rp(z) =
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+

a−d+1
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a−1

z − p
,

and take R(z) =
∑

p∈P Rp(z). We claim that g(z) := f (z)− R(z) is analytic on Ω.
If z0 ∈ Ω \ P, then clearly g is analytic in z0.
If z0 = p ∈ P, then on a punctured neighborhood of p we have

g(z) = f (z)− Rp(z)−
∑

q∈P\{p}
Rq(z) =

∑
n≥0

an(z − p)n

− ∑
q∈P\{p}

Rq(z),

which is analytic in z0 = p.
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Ordered set partitions revisited

Recall: Ordered set partitions of [n] are the ordered sequences of nonempty disjoint
sets whose union is [n]. Let pn be their number. Their EGF is f (z) = 1

2−exp(z)
.

Hence, pn
n!

has radius of convergence ln 2 and exponential growth rate 1
ln 2 .

Goal: Find a better estimate for pn.
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Permutations without k-cycles

Example: What is the probability that a random permutation of [n] has no cycle of
length k? (Assume k fixed, n→∞.)
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Complex integration

What we know:

For a real function f : [a, b]→ R, we are familiar with the notion of integral∫ b
a f (t)dt =

∫ b
a f .

This can be extended to continuous complex-valued functions f : [a, b]→ C by∫ b
a f =

∫ b
a <(f ) + i=(f ) =

∫ b
a <(f ) + i

∫ b
a =(f ).

Definition

Let [a, b] be a real interval with a < b, let p : [a, b]→ C be a continuous function with
a finite derivative p′(t) everywhere on (a, b) except at most finitely many points, and
with finite right (and left) derivative everywhere on [a, b) (or (a, b], respectively). The
curve parametrized by p is the set γ = {p(t); t ∈ [a, b]}, together with the orientation
from p(a) to p(b). The function p is then the parametrization of γ.
The curve is said to be. . .

simple if p is injective,

closed if p(a) = p(b),

simple closed if p is injective on [a, b) and p(a) = p(b).

Fact (“Jordan’s curve theorem”)

If γ ⊆ C is a simple closed curve, then C \ γ is a disjoint union of two domains, one of
which is bounded and the other unbounded. The bounded one is the interior of γ,
denoted Int(γ), the other is the exterior of γ, denoted Ext(γ).
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Contour integral

Definition

Let γ ⊆ C be a curve with parametrization p : [a, b]→ C, let f : γ → C be a function.
The contour integral of f along γ, denoted

∫
γ f is defined as∫

γ
f :=

∫ b

a
f (p(t))p′(t)dt.

Fact: The value of the integral does not depend on the choice of the parametrization
of γ; it only depends on γ itself, including its orientation.

Example: For a curve γ ⊂ C, what is
∫
γ 1?

Properties of
∫
γ :

Let −γ denote the curve obtained from γ by reversing its orientation. Then∫
−γ f = −

∫
γ f .

If γ is the concatenation of two curves α and β, then
∫
γ f =

∫
α f +

∫
β f .
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Primitive function

Definition

Let f be a function on a domain Ω ⊆ C. A function F : Ω→ C is a primitive function
(or antiderivative) of f on Ω, if for every z ∈ Ω, we have F ′(z) = f (z).

Observation

If f has a primitive function F on Ω, and γ ⊆ Ω is a curve parametrized by
p : [a, b]→ Ω, then∫

γ
f =

∫ b

a
f (p(t))p′(t)dt =

∫ b

a
F (p(t))′dt = F (p(b))− F (p(a)).

In particular,
∫
γ f only depends on the values of F in the endpoints of γ. Moreover, if

γ is a closed curve, then
∫
γ f = 0.

Example: Let k ∈ Z, let γ be the counterclockwise unit circle, parametrized by
p(t) = exp(it) with t ∈ [−π, π]. What is

∫
γ zk?
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