Analytic combinatorics Lecture 7

April 21, 2021

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash \underbrace{\{z ; h(z)=0\}}$;

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash\{z ; h(z)=0\}$.
Proof of " \Leftarrow ".
Suppose $f(z)=\frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p.

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash\{z ; h(z)=0\}$.

Proof of " \Leftarrow ".

Suppose $f(z)=\frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p.
 with $a_{d} \neq 0$.

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash\{z ; h(z)=0\}$.

Proof of " \Leftarrow ".

Suppose $f(z)=\frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p. Suppose p is a zero of order1 d of h, i.e., $h(z)=\sum_{n \geq d} a_{n}(z-p)^{n}$ on some $\mathcal{N}_{<\varepsilon}(p)$, with $a_{d} \neq 0$.
It follows that $\frac{h(z)}{(z-p)^{d}}=\sum_{n \geq 0} a_{n+d}(z-p)^{n}$ defines an analytic function h^{*} on $\mathcal{N}_{<\varepsilon}(p)$, with $h^{*}(p)=a_{d} \neq 0$.

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash\{z ; h(z)=0\}$.

Proof of " \Leftarrow ".

Suppose $f(z)=\frac{g(z)}{h(z)}$ as above. Choose $p \in \Omega$. If $h(p) \neq 0$, then f is analytic in p. Suppose p is a zero of order1 d of h, i.e., $h(z)=\sum_{n \geq d} a_{n}(z-p)^{n}$ on some $\mathcal{N}<\varepsilon(p)$, with $a_{d} \neq 0$.
It follows that $\frac{h(z)}{(z-p)^{d}}=\sum_{n \geq 0} a_{n+d}(z-p)^{n}$ defines an analytic function h^{*} on $\mathcal{N}_{<\varepsilon}(p)$, with $h^{*}(p)=a_{d} \neq 0$.
Consequently, $(z-p)^{d} f(z)=\frac{g(z)}{h^{*}(z)}$ is analytic in p, hence f has a pole of order at most d (possibly a removable singularity) in p.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Corollary

Let Ω, f, g and R be as above, and suppose f is analytic in 0 . Let $\left[z^{n}\right] f(z)$ denote the coefficient of degree n in the power series expansion of f in 0 . In particular, we know that

$$
\left[z^{n}\right] f(z)=\left[z^{n}\right] R(z)+\left[z^{n}\right] g(z)
$$

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Corollary

Let Ω, f, g and R be as above, and suppose f is analytic in 0 . Let $\left[z^{n}\right] f(z)$ denote the coefficient of degree n in the power series expansion of f in 0 . In particular, we know that

$$
\left[z^{n}\right] f(z)=\left[z^{n}\right] R(z)+\left[z^{n}\right] g(z) .
$$

Suppose now that Ω contains $\mathcal{N}_{\leq \rho}(0)$ for some $\rho>0$. Then

- the radius of convergence of $g(z)$ around 0 is greater than ρ,

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Corollary

Let Ω, f, g and R be as above, and suppose f is analytic in 0 . Let $\left[z^{n}\right] f(z)$ denote the coefficient of degree n in the power series expansion of f in 0 . In particular, we know that

$$
\left[z^{n}\right] f(z)=\left[z^{n}\right] R(z)+\left[z^{n}\right] g(z) .
$$

Suppose now that Ω contains $\mathcal{N}_{\leq \rho}(0)$ for some $\rho>0$. Then

- the radius of convergence of $g(z)$ around 0 is greater than ρ,
- and therefore its exponential growth rate is smaller than $\frac{1}{\rho}$,

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Corollary

Let Ω, f, g and R be as above, and suppose f is analytic in 0 . Let $\left[z^{n}\right] f(z)$ denote the coefficient of degree n in the power series expansion of f in 0 . In particular, we know that

$$
\left[z^{n}\right] f(z)=\left[z^{n}\right] R(z)+\left[z^{n}\right] g(z) .
$$

Suppose now that Ω contains $\mathcal{N}_{\leq \rho}(0)$ for some $\rho>0$. Then

- the radius of convergence of $g(z)$ around 0 is greater than ρ,
- and therefore its exponential growth rate is smaller than $\frac{1}{\rho}$,
- hence $\left[z^{n}\right] g(z) \leq \frac{1}{\rho^{n}}$ for n large enough, and

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Corollary

Let Ω, f, g and R be as above, and suppose f is analytic in 0 . Let $\left[z^{n}\right] f(z)$ denote the coefficient of degree n in the power series expansion of f in 0 . In particular, we know that

$$
\left[z^{n}\right] f(z)=\left[z^{n}\right] R(z)+\underbrace{\left[z^{n}\right] g(z)} .
$$

Suppose now that Ω contains $\mathcal{N}_{\leq \rho}(0)$ for some $\rho>0$. Then

- the radius of convergence of $g(z)$ around 0 is greater than ρ,
- and therefore its exponential growth rate is smaller than $\frac{1}{\rho}$,
- hence $\left|\left[z^{n}\right] g(z)\right| \leq \frac{1}{\rho^{n}}$ for n large enough, and
- most importantly, $\underbrace{\left[z^{n}\right] f(z)}=\underbrace{\left[z^{n}\right] R(z)}+\underbrace{O\left(\frac{1}{\rho^{n}}\right)}$.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let $k=|P|$.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let $k=|P|$.
Choose $p \in P$, and let(d)be the order of p. We know that on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\frac{\left(a_{-d}\right)}{(z-p)^{d}}+\frac{\left(\frac{(-d+1}{-d}\right)}{(z-p)^{d-1}}+\cdots+\frac{\left(a_{-1}\right)}{z-p}+a_{0}+a_{1}(z-p)+\cdots
$$

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let $k=|P|$.
Choose $p \in P$, and let d be the order of p. We know that on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\underbrace{\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}}+a_{0}+a_{1}(z-p)+\cdots
$$

Define, for every $p \in P$, the rational function

$$
R_{p}(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}
$$

and take $R(z)=\sum_{p \in P} R_{p}(z)$. We claim that $g(z):=f(z)-R(z)$ is analytic on Ω.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let $k=|P|$.
Choose $p \in P$, and let d be the order of p. We know that on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
f(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}+a_{0}+a_{1}(z-p)+\cdots
$$

Define, for every $p \in P$, the rational function

$$
\left.R_{p}(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p} \text {, analytic on } \mathbb{C} \backslash p\right\}
$$

and take $R(z)=\sum_{p \in P} R_{p}(z)$. We claim that $g(z):=f(z)-R(z)$ is analytic on Ω. If $z_{0} \in \Omega \backslash P$, then clearly g is analytic in z_{0}.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω. Moreover, the only poles of R are the poles of f.

Proof. Let $P \subseteq \Omega$ be the set of poles of f, let $k=|P|$.
Choose $p \in P$, and let d be the order of p. We know that on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, we have

$$
\rightarrow f(z) \fallingdotseq \frac{\partial d}{(z-p)^{d}}+\frac{2-d+1}{(z-p)^{d-1}}+\cdots+\frac{\partial \chi_{1}}{z-R_{p}}+a_{0}+a_{1}(z-p)+\cdots
$$

Define, for every $p \in P$, the rational function

$$
\longrightarrow \quad R_{p}(z)=\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p},
$$

and take $R(z)=\sum_{p \in P} R_{p}(z)$. We claim that $g(z):=f(z)-R(z)$ is analytic on Ω. If $z_{0} \in \Omega \backslash P$, then clearly g is analytic in z_{0}.
If $z_{0}=p \in P$, then on a punctured neighborhood of p we have

$$
\begin{aligned}
& g(z)=\overbrace{f(z)-R_{p}(z)}-\overbrace{\sum_{q \in P \backslash\{p\}} R_{q}(z)}^{a_{n}}=\underbrace{\left(\sum_{n \geq 0} a_{n}(z-p)^{n}\right)}-\underbrace{}_{q \in P \backslash\{p\}} R_{q}(z), \\
& \text { which is analytic in } z_{0}=p \text {. }
\end{aligned}
$$

Recall: Ordered set partitions of [n] are the ordered sequences of nonempty disjoint sets whose union is $[n]$. Let p_{n} be their number. Their EGF is $f(z)=\frac{1}{2-\exp (z)}=\sum p_{n} \frac{z^{n}}{n!}$ Hence, $\frac{p_{n}}{n!}$ has radius of convergence $\ln 2$ and exponential growth rate $\frac{1}{\ln 2}$. Goal: Find a better estimate for p_{n}.
1
$f(z)=\frac{1}{2-e^{z}}$, meromorphic on \mathbb{C}
Poles of $f: P=\{\ln 2, \ldots\}=,\left\{z \in \mathbb{C}_{j} e^{z}=2\right\}$
$\left.z=x+i y, x, y \in \mathbb{R}, \quad e^{z}=e^{x+i}\right\}=e^{x} \cdot e^{i y}=$
$=e^{x}(\cos y+i \sin y) \cdot\left|e^{z}\right|=\left|e^{x} \cdot e^{i} \gamma\right|=\left|e^{x}\right|=2$
$\Rightarrow x=\ln 2$
$e^{z}=2 \Rightarrow \operatorname{Im}_{x}\left(e^{z}\right)=0=e^{x} \cdot\left\{\sin y \Rightarrow y \in\left\{\begin{array}{c}k \pi_{1} \\ k \in z\end{array}\right\}\right.$

$$
\begin{aligned}
& e^{t}=2 \Rightarrow \operatorname{le}\left(e^{z}\right)=2=e^{x} \cdot \cos y \Rightarrow \cos y=1 \Rightarrow y \in\{2 k \pi, k \in \notin\} \\
& P=\left\{\ln 2+i 2 k \pi_{j} k \in \mathbb{Z}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.f(z)=\frac{1}{2-e^{z}} ; \quad p_{k}:=\ln 2+2 k \pi i\right) f(z)=\frac{-\frac{1}{2}}{k \in Z}+a_{0}+a_{1}\left(z-p_{0}\right) \\
& \text { Choose } \rho \in\left(\left|p_{0}\right|,\left|p_{1}\right|\right] \\
& \Omega=\text { 㤨 } \eta_{<\rho}(0) \\
& \text { I has pole } p_{0} \text { in } \Omega=\frac{1}{\frac{1}{2 \cdot \ln 2} \cdot \sum_{n=0}^{\infty}\left(\frac{z}{\ln 2}\right)^{n}} \frac{\left.\ln]^{n}\right] f(z)=\left[z^{n}\right] R_{n}+O\left(\frac{1}{\rho^{n}}\right)}{\left[\frac{11}{n}\right)}
\end{aligned}
$$ rational, with pole po

Whats the order of p_{0} as pole of $f ?=\min :\left(z-p_{0}\right)^{f} f(z)$ $\left(z-p_{0}\right) f(z)=\frac{z-p_{0}}{2-e^{z}}$ is bounded around is anapoifor $z \in \mathbb{R}$, hance it has no pole hence it has a removable singularity; $\lim _{z \rightarrow p_{0}} \frac{z-p_{0}}{2-z}=-\frac{1}{2}$ Hospital

Example: What is the probability that a random permutation of [n] has no cycle of length k ? (Assume k fixed, $n \rightarrow \infty$.)
$\left.k=1 \cdots \frac{1}{e} \right\rvert\, k \in \mathbb{N}$ fixed: $g_{n}:=\#$ of perms without cycles of length k, wanted: $\frac{g_{n}}{n!}$
$f(A):=$ EGF of perms without k-cycles
$g(z)$: EGF of perms with 1 cycle, whose length th

$$
\left.g(z)=\sum_{\substack{n=1 \\ n \neq k}}^{\infty} \frac{n i l}{n!}=\left(\sum_{n=1}^{\infty} \frac{z^{n}}{n}\right)-\frac{z^{k}}{k}\right) \quad \frac{g^{2}(z)}{2 \text { EGF of pet }}=E G F
$$

of perms with ${ }^{n \neq k}$ two cycles, of length $\neq k$

$$
\begin{aligned}
& \text { of perms uilh }{ }^{n \neq k}+w o \text { cycles, of length } \neq k \\
& \left.f(z)=1+g(z)+\frac{g^{2}(z)}{2!}+\cdots \exp ^{2!} g(z)\right)=\left(\exp \left(\sum_{n=1}^{n} \frac{z^{n}}{n}\right)^{\prime}\right. \\
& f(z)=\left(\sum_{n=0}^{\infty} n!\frac{z^{n}}{n!}\right) \cdot e^{-z^{k} / k}=\frac{e^{-z^{k} / k}}{1-z}
\end{aligned}
$$

$f(z)=\frac{\exp \left(-\frac{z^{k}}{k}\right)}{1-z}$, meromorphic on \mathbb{C}
only pole: $p=1, \Omega:=\mathbb{C} \xrightarrow[{\left(\frac{2_{n}}{n!} \xrightarrow{n \rightarrow \infty} e^{-1 / k}\right.}]{ }$ $f(z)(z-1)$ is analytic in $p^{01} \Rightarrow$ order of $p=1$

$$
\begin{aligned}
& f(z)=\frac{a-1}{z-p}+a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+\cdots(p=l) \\
& a_{-1}=\lim _{z \rightarrow p}(z-p) \cdot f(z)=-\exp \left(-\frac{1}{k}\right) \\
& f(z)=\frac{z \rightarrow p}{\substack{g_{n} \\
n!}}=\frac{\exp \left(-\frac{1}{k}\right)}{z-1}+(\text { something analytic }
\end{aligned}
$$

Complex integration

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \backslash \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded.

What we know:

- For a real function $f:[a, b] \rightarrow \mathbb{R}$, we are familiar with the notion of integral $\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f$.
- This can be extended to continuous complex-valued functions $f:[a, b] \rightarrow \mathbb{C}$ by $\int_{a}^{b} f=\int_{a}^{b} \Re(f)+i \Im(f)=\int_{a}^{b} \Re(f)+i \int_{a}^{b} \Im(f)$.

Definition

Let $[a, b]$ be a real interval with $a<b$, let $p:[a, b] \rightarrow \mathbb{C}$ be a continuous function with a finite derivative $p^{\prime}(t)$ everywhere on (a, b) except at most finitely many points, and with finite right (and left) derivative everywhere on $[a, b$) (or ($a, b]$, respectively). The curve parametrized by p is the set $\gamma=\{p(t) ; t \in[a, b]\}$, together with the orientation from $p(a)$ to $p(b)$. The function p is then the parametrization of γ.
The curve is said to be...

- simple if p is injective,
- closed if $p(a)=p(b)$,
- simple closed if p is injective on $[a, b)$ and $p(a)=p(b)$.

Fact ("Jordan's curve theorem")

If $\gamma \subseteq \mathbb{C}$ is a simple closed curve, then $\mathbb{C} \backslash \gamma$ is a disjoint union of two domains, one of which is bounded and the other unbounded. The bounded one is the interior of γ, denoted $\operatorname{lnt}(\gamma)$, the other is the exterior of γ, denoted $\operatorname{Ext}(\gamma)$.

Contour integral

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function.
The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t .
$$

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subset \mathbb{C}$, what is $\int_{\gamma} 1$?

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t .
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subset \mathbb{C}$, what is $\int_{\gamma} 1$?
Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f=-\int_{\gamma} f$.

Definition

Let $\gamma \subseteq \mathbb{C}$ be a curve with parametrization $p:[a, b] \rightarrow \mathbb{C}$, let $f: \gamma \rightarrow \mathbb{C}$ be a function. The contour integral of f along γ, denoted $\int_{\gamma} f$ is defined as

$$
\int_{\gamma} f:=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t .
$$

Fact: The value of the integral does not depend on the choice of the parametrization of γ; it only depends on γ itself, including its orientation.

Example: For a curve $\gamma \subset \mathbb{C}$, what is $\int_{\gamma} 1$?
Properties of \int_{γ} :

- Let $-\gamma$ denote the curve obtained from γ by reversing its orientation. Then $\int_{-\gamma} f=-\int_{\gamma} f$.
- If γ is the concatenation of two curves α and β, then $\int_{\gamma} f=\int_{\alpha} f+\int_{\beta} f$.

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Observation

If f has a primitive function F on Ω, and $\gamma \subseteq \Omega$ is a curve parametrized by $p:[a, b] \rightarrow \Omega$, then

$$
\int_{\gamma} f=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t=\int_{a}^{b} F(p(t))^{\prime} \mathrm{d} t=F(p(b))-F(p(a)) .
$$

In particular, $\int_{\gamma} f$ only depends on the values of F in the endpoints of γ. Moreover, if γ is a closed curve, then $\int_{\gamma} f=0$.

Definition

Let f be a function on a domain $\Omega \subseteq \mathbb{C}$. A function $F: \Omega \rightarrow \mathbb{C}$ is a primitive function (or antiderivative) of f on Ω, if for every $z \in \Omega$, we have $F^{\prime}(z)=f(z)$.

Observation

If f has a primitive function F on Ω, and $\gamma \subseteq \Omega$ is a curve parametrized by $p:[a, b] \rightarrow \Omega$, then

$$
\int_{\gamma} f=\int_{a}^{b} f(p(t)) p^{\prime}(t) \mathrm{d} t=\int_{a}^{b} F(p(t))^{\prime} \mathrm{d} t=F(p(b))-F(p(a)) .
$$

In particular, $\int_{\gamma} f$ only depends on the values of F in the endpoints of γ. Moreover, if γ is a closed curve, then $\int_{\gamma} f=0$.

Example: Let $k \in \mathbb{Z}$, let γ be the counterclockwise unit circle, parametrized by $p(t)=\exp (i t)$ with $t \in[-\pi, \pi]$. What is $\int_{\gamma} z^{k}$?

