NMAI059 Probability and statistics 1 Class 8

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Continuous distributions

Random vectors

Back to the basics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Which distributions we have seen

•
$$U(a,b)$$
 – uniform on interval $[a,b]$

▶ $N(\mu, \sigma^2)$ – normal – how much does a bread weigh

Gamma distribution

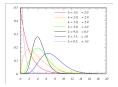
 Gamma(w, λ), gamma distribution with parameters w > 0 and λ > 0 has PDF

$$f(x) = \begin{cases} 0 & \text{for } x \le 0\\ \frac{1}{\Gamma(w)} \lambda^w x^{w-1} e^{-\lambda x} & \text{for } x \ge 0 \end{cases}$$

where $\Gamma(w)=(w-1)!=\int_0^\infty x^{w-1}e^{-x}dx.$

- For w = 1 we get exponential distribution again.
- If X₁,..., X_n are i.i.d with distribution Exp(λ), then X₁ + ··· + X_n ~ Gamma(n, λ).
- Models lifetime of an electronic component, total of rainfall in a year, web-server latency.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



A many others

- ▶ Beta(s, t) beta distribution

(日) (日) (日) (日) (日) (日) (日)

- Student t-distribution
- etc. etc.

Uniform distribution

▶ R.v. *X* has a uniform distribution on [a, b], we write $X \sim U(a, b)$, if $f_X(x) = 1/(b-a)$ for $x \in [a, b]$ and $f_X(x) = 0$ otherwise.

Universality of uniform

Theorem

Let *X* be a r.v. with CDF $F_X = F$, let *F* be continuous and increasing. Then $F(X) \sim U(0,1)$.

Theorem

Let *F* be a function "of CDF-type": non-decreasing right-continuous function with $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$. Let *Q* be the corresponding quantile function.

Let $U \sim U(0,1)$ and X = Q(U). Then X has CDF F.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□

Overview

Continuous distributions

Random vectors

Back to the basics

Joint cdf

Definition

For r.v. X, Y on probability space (Ω, \mathcal{F}, P) we define their joint cdf $F_{X,Y} : \mathbb{R}^2 \to [0, 1]$ by

$$F_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) \le x \& Y(\omega) \le y\}).$$

- Formal condition: we need {X ≤ x & Y ≤ y} ∈ F, otherwise (X, Y) is not a random vector.
- We can define this also for more than two r.v.: $F_{X_1,...,X_n}(x_1,...,x_n) =$
- From here we can derive the probability of a rectangle: $P(X \in (a, b] \& Y \in (c, d]) =$

Joint pdf

Often we can write a joint cdf as an integral of a nonnegative function f_{X,Y}

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) dt ds.$$

- Then we call r.v. X, Y jointly continuous. Function f_{X,Y} is their joint pdf.
- ▶ As in the one-dimension case we can have $f_{X,Y} > 1$.
- As in the one-dimension case we can use joint pdf to find other probabilities for a "reasonable set A".

$$P((X,Y) \in A) = \int_A f_{X,Y}(x,y) dx dy.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

•
$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

$$\blacktriangleright f_{X,Y}(x,y) \doteq \frac{P(x \leq X \leq x + \Delta_x \& y \leq Y \leq y + \Delta_y)}{\Delta_x \Delta_y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

LOTUS

• We have a similar formula as for the discrete case:

$$\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy.$$

And as in the discrete case we conclude:

$$\mathbb{E}(aX + bY + c) = a \cdot \mathbb{E}(X) + b \cdot \mathbb{E}(Y) + c.$$

Independence of continuous random variables

Definition

We call random variables X, Y independent, if the events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for any $x, y \in \mathbb{R}$. Equivalently,

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y),$$

$$F_{X,Y}(x, y) = F_X(x)F_Y(y)$$

Theorem

Let *X*, *Y* have joint pdf $f_{X,Y}$ (and pdf's f_X , f_Y). The following are equivalent:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

X, Y are independent

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Multidimensional normal distribution

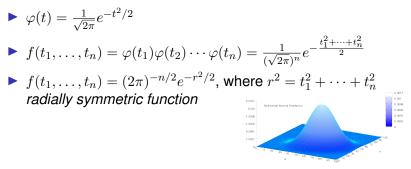


Image by Wikipedia editor Piotrg.

• Let
$$Z = (Z_1, \dots, Z_n)$$
 have a pdf f .

- $Z_1, ..., Z_n$ are i.i.d., $Z_i \sim N(0, 1)$
- ▶ Z/||Z|| is a uniformly random point on a unit sphere in \mathbb{R}^n .
- Thus the inner product of Z with any unit vector is N(0, 1).

•
$$\langle u, Z \rangle = \sum_{i=1}^{n} u_i Z_i$$
 follows $N(0, 1)$

General multidimensional normal distribution

- ▶ In general we can take a random vector with joint pdf $c \cdot e^{-Q(t)}$, where c > 0 is an appropriate constant and Q(t) is a positive definite quadratic function.
- Is used in machine learning.
- Coordinates are not independent!

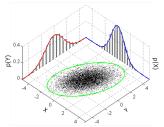


Image by Wikipedia editor Bscan.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sum of continuous random variables

Theorem

Suppose X, Y are independent continuous variables. Then Z = X + Y is a continuous random variable and its pdf is obtained by a convolution of f_X and f_Y . Explicitly,

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conditioning

Definition X is a r.v. on (Ω, \mathcal{F}, P) , $B \in \mathcal{F}$.

 $F_{X|B}(x) := P(X \le x \mid B)$

The corresponding pdf is denoted by $f_{X|B}$.

Theorem

Let B_1, B_2, \ldots be a partition of Ω . Then

$$F_X(x) = \sum_i F_{X|B_i} P(B_i)$$
 and
 $f_X(x) = \sum_i f_{X|B_i} P(B_i).$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Proof: Theorem on total probability.

Overview

Continuous distributions

Random vectors

Back to the basics

Covariance

Definition For r.v.'s X, Y we define their covariance by formula

$$cov(X,Y) = \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y)).$$

Theorem

$$cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

but not only then

Correlation

Definition

Correlation of random variables X, Y is defined by

$$\varrho(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X) var(Y)}}.$$

•
$$-1 \le \varrho(X, Y) \le 1$$
 (exercise)

- Correlation does not imply causation! (In particular, correlation is symmetric.)
- ► OTOH, uncorrelation does not imply independence. (Extreme case: X any r.v., Y = +X or Y = -X, both with the same probability.)

Variance of a sum

Theorem Let $X = \sum_{i=1}^{n} X_i$. Then $var(X) = \sum_{i=1}^{n} \sum_{j=1}^{n} cov(X_i, X_j) = \sum_{i=1}^{n} var(X_i) + \sum_{i \neq i} cov(X_i, X_j).$

In particular, if X_1, \ldots, X_n are independent, then

$$var(X) = \sum_{i=1}^{n} var(X_i).$$

(日) (日) (日) (日) (日) (日) (日)