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Prigsheim’s theorem

Recall:

Fact (Pringsheim, Vivanti; 1890’s)

Let
∑∞

n=0 anxn be a power series with radius of convergence ρ ∈ (0,+∞), and let us
define f : N<ρ(0)→ C by f (z) =

∑∞
n=0 anzn. Then there is at least one point w with

|w | = ρ such that f has no analytic continuation to any domain containing w . If we
additionally assume that an ≥ 0 for all n, then the conclusion holds for w = ρ.
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Example: ordered set partitions

An ordered set partition of the set [n] is an ordered sequence (B1,B2, . . . ,Bk ) of
nonempty pairwise disjoint sets whose union is [n]. Let pn be the number of ordered
set partitions of [n].

Goal: find an estimate of pn.

Approach:
1 Find a generating function for ordered set partitions
2 Apply Pringsheim’s theorem
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Rational functions

Definition

A rational function is a function of the form P(z)
Q(z)

, where P(z) and Q(z) are
polynomials.

Observe:
We may assume that P and Q have no common root (if r were a common root,
i.e., P(r) = Q(r) = 0, we could cancel (z − r) from the fraction P(z)

Q(z)
).

The function f (z) = P(z)
Q(z)

is analytic in any point z0 such that Q(z0) 6= 0.

The function f (z) = P(z)
Q(z)

has no analytic continuation to any domain containing
a root of Q, because if Q(r) = 0, then f is unbounded on N∗<ε(r) for any ε > 0.
Suppose Q has k distinct roots. Let r1, . . . , rk be the distinct roots of Q, and let
mi be the multiplicity of the root ri . Then Q(z) can be written as
c
∏k

j=1(z − rj )
mj for a constant c ∈ C.

Suppose f is analytic in 0, and in particular Q(0) 6= 0. Then

Q(z) = Q(0)
k∏

j=1

(
1−

z

rj

)mj

.

Note:
1(

1− z
r

)m =
∞∑

n=0

(n + m − 1
m − 1

) zn

rn
for z ∈ N<r (0).
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Partial fraction decomposition

Fact (Partial fraction decomposition)

Suppose that f (z) = P(z)
Q(z)

, where P and Q are polynomials with no common roots,
Q(0) 6= 0, Q has k distinct roots r1, . . . , rk , the root rj has multiplicity mj , and
|r1| ≤ |r2| ≤ · · · ≤ |rk |. Then

f (z) = R(z) +
k∑

j=1

mj∑
`=1

cj,`(
1− z

rj

)` ,
where R(z) is a polynomial of degree at most deg(P)− deg(Q), and cj,` are constants.

In particular, for ρ = |r1| > 0 and any z ∈ N<ρ(0), we have f (z) =
∑∞

n=0 anzn, where
for every n > deg(R), we have

an =
k∑

j=1

1
rn
j

mj∑
`=1

cj,`

(n + `− 1
`− 1

)
.

Consequently, if |r1| < |r2|, then

|an| =
Θ(nm1−1)

ρn
.
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Singularities, poles, zeros

Definition

Let Ω be a domain, let f : Ω→ C a function analytic on Ω, let p ∈ C be a point in the
complex plane. We say that p is an isolated singularity of f , if N∗<ε(p) ⊆ Ω for
some ε > 0.

We distinguish three types of isolated singularities:

p is a removable singularity, if f has an analytic continuation to Ω ∪ {p}.
Example: f (z) = sin z

z
on Ω = C \ {0}.

p is a pole of f , if there is a natural number d such that the function
g(z) = f (z)(z − p)d has an analytic continuation to N<ε(p) for some ε > 0. The
smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p).
Example: any rational function P(z)

Q(z)
, with Q(p) = 0 6= P(p).

p is an essential singularity in any other case. Example: exp(1/z) and p = 0.

Fact

(“Picard’s theorem”) If f has an essential singularity in p, then on every N∗<ε(p) it
attains all possible values from C, except at most one.

If f has a pole in p, then limz→p |f (z)| = +∞.

If f has a removable singularity in p, then limz→p f (z) ∈ C.
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Properties of poles

Proposition

A function f has a pole of degree d in p, iff it can be expressed, on some N∗<ε(p), as

f (z) =
∞∑

n=−d

an(z − p)n

=
a−d

(z − p)d
+

a−d+1

(z − p)d−1 + · · ·+
a−1

z − p
+ a0 + a1(z − p) + a2(z − p)2 + · · ·

with a−d 6= 0.

Note: A series of the form
∑∞

n=−∞ an(z − p)n is known as Laurent series.
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Poles and zeros

Definition

A function g analytic in a point p has a zero of order d (a.k.a. degree d , or
multiplicity d) in p, if it can be expressed, on some N<ε(p), as

g(z) =
∞∑

n=d

an(z − p)n, and ad 6= 0.

Proposition

A function g has a zero of degree d > 0 in p iff 1
g
has a pole of degree d in p.
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Meromorphic functions

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either
analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h
analytic on Ω, with h not identically zero on Ω, such that

f (z) =
g(z)

h(z)

for every z ∈ Ω \ {z; h(z) = 0}.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles
in Ω. Then there is a rational function R(z) such that the function
g(z) = f (z)− R(z) has an analytic continuation to Ω.
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