Analytic combinatorics Lecture 6

April 14, 2021

Recall:

Fact (Pringsheim, Vivanti; 1890's)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence $\rho \in (0, +\infty)$, and let us define $f: \mathbb{N}_{<\rho}(0) \to \mathbb{C}$ by $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Then there is at least one point w with $|w| = \rho$ such that f has no analytic continuation to any domain containing w. If we additionally assume that $a_n \ge 0$ for all n, then the conclusion holds for $w = \rho$.

Example: ordered set partitions

An ordered set partition of the set [n] is an ordered sequence (B_1, B_2, \ldots, B_k) of nonempty pairwise disjoint sets whose union is [n]. Let p_n be the number of ordered set partitions of [n].

$$P_{0} = 1$$

$$P_{4} = 1 \quad (\{1\})$$

$$P_{2} = 3 \quad (\{1\}, \{2\}), \quad (\{2\}, \{13\}), \quad (\{1, 2\})$$

Example: ordered set partitions

An ordered set partition of the set [n] is an ordered sequence (B_1, B_2, \ldots, B_k) of nonempty pairwise disjoint sets whose union is [n]. Let p_n be the number of ordered set partitions of [n].

Goal: find an estimate of p_n .

n-th Bell number < Pn < n!

Example: ordered set partitions

An ordered set partition of the set [n] is an ordered sequence (B_1, B_2, \ldots, B_k) of nonempty pairwise disjoint sets whose union is [n]. Let p_n be the number of ordered Pringsheim: P(x) has radius of convex set partitions of [n]. ln Zi.e. (1)-E Goal: find an estimate of p_n . Approach: EGF PW=ZP \bigvee • Find a generating function for ordered set partitions 2 Apply Pringsheim's theorem Partitions W. 1. × + 1. × + with 2 blocks B(A) is the of ordered s.p. with & blocks KEN : B (+) ... EGF of or.s.p. + B(4) + B(4) + ... P(x) = 12- exp(2) analytic on I := {ze (, exp(z) =2] { Zel, exp(2)=2}

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

Observe:

• We may assume that P and Q have no common root (if r were a common root,

i.e., P(r) = Q(r) = 0, we could cancel (z - r) from the fraction $\frac{P(z)}{Q(z)}$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

- We may assume that P and Q have no common root (if r were a common root, i.e., P(r) = Q(r) = 0, we could cancel (z r) from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z) = \frac{P(z)}{Q(z)}$ is analytic in any point z_0 such that $Q(z_0) \neq 0$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

- We may assume that P and Q have no common root (if r were a common root, i.e., P(r) = Q(r) = 0, we could cancel (z r) from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z) = \frac{P(z)}{Q(z)}$ is analytic in any point z_0 such that $Q(z_0) \neq 0$.
- The function $f(z) = \frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if Q(r) = 0, then f is unbounded on $\mathbb{N}^*_{\leq \varepsilon}(r)$ for any $\varepsilon > 0$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

- We may assume that P and Q have no common root (if r were a common root, i.e., P(r) = Q(r) = 0, we could cancel (z r) from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z) = \frac{P(z)}{Q(z)}$ is analytic in any point z_0 such that $Q(z_0) \neq 0$.
- The function $f(z) = \frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if Q(r) = 0, then f is unbounded on $\mathbb{N}^*_{<\varepsilon}(r)$ for any $\varepsilon > 0$.
- Suppose Q has k distinct roots. Let r_1, \ldots, r_k be the distinct roots of Q, and let m_i be the multiplicity of the root r_i . Then Q(z) can be written as $c \prod_{j=1}^k (z r_j)^{m_j}$ for a constant $c \in \mathbb{C}$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

- We may assume that P and Q have no common root (if r were a common root, i.e., P(r) = Q(r) = 0, we could cancel (z r) from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z) = \frac{P(z)}{Q(z)}$ is analytic in any point z_0 such that $Q(z_0) \neq 0$.
- The function $f(z) = \frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if Q(r) = 0, then f is unbounded on $\mathbb{N}^*_{<\varepsilon}(r)$ for any $\varepsilon > 0$.
- Suppose Q has k distinct roots. Let r_1, \ldots, r_k be the distinct roots of Q, and let m_i be the multiplicity of the root r_i . Then Q(z) can be written as $c \prod_{j=1}^k (z r_j)^{m_j}$ for a constant $c \in \mathbb{C}$.
- Suppose f is analytic in 0, and in particular $Q(0) \neq 0$. Then

$$Q(z) = Q(0) \prod_{j=1}^k \left(1 - \frac{z}{r_j}\right)^{m_j}.$$

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, i.e., P(r) = Q(r) = 0, we could cancel (z r) from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z) = \frac{P(z)}{Q(z)}$ is analytic in any point z_0 such that $Q(z_0) \neq 0$.
- The function $f(z) = \frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if Q(r) = 0, then f is unbounded on $\mathbb{N}^*_{<\varepsilon}(r)$ for any $\varepsilon > 0$.
- Suppose Q has k distinct roots. Let r_1, \ldots, r_k be the distinct roots of Q, and let m_i be the multiplicity of the root r_i . Then Q(z) can be written as $c \prod_{j=1}^{k} (z r_j)^{m_j}$ for a constant $c \in \mathbb{C}$.

• Suppose f is analytic in 0, and in particular $Q(0) \neq 0$. Then 1 - 2

$$\begin{pmatrix} \frac{1}{1-z} \end{pmatrix}^{n} = (A + Z + \overline{z} + \cdots)^{n}$$

$$= \prod_{i=0}^{n} C_{n} \stackrel{\text{def}}{=} \left(2 = Q(0) \prod_{i=1}^{k} \left(1 - \frac{z}{r_{i}} \right)^{m_{i}} \cdot \left(\frac{1}{1-z} \right)^{n} = \left(4 + 2 + \overline{z} + \cdots \right)^{n}$$

$$= \prod_{i=0}^{n} C_{n} \stackrel{\text{def}}{=} \left(1 - \frac{z}{r_{i}} \right)^{m_{i}} \cdot \left(\frac{1}{1-z} \right)^{n} = \left(1 + 2 + \overline{z} + \cdots \right)^{n}$$

$$= \sum_{i=0}^{n} C_{n} \stackrel{\text{def}}{=} \left(1 - \frac{z}{r_{i}} \right)^{m_{i}} \cdot \left(\frac{1}{1-z} \right)^{n} = \left(1 + 2 + \overline{z} + \cdots \right)^{n}$$

$$= \sum_{i=0}^{n} C_{n} \stackrel{\text{def}}{=} \left(1 - \frac{z}{r_{i}} \right)^{m_{i}} \cdot \left(\frac{1}{1-z} \right)^{n} = \sum_{i=0}^{n} C_{n} \stackrel{\text{def}}{=} \left(1 - \frac{z}{r_{i}} \right)^{n} \text{ for } z \in \mathbb{N}_{\leq r}(0).$$

$$= \sum_{i=0}^{n} C_{n} \stackrel{\text{def}}{=} \sum_{i=0}^{n} C_{n} \stackrel{\text{def$$

Fact (Partial fraction decomposition)

Suppose that $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common roots, $Q(0) \neq 0$, Q has k distinct roots r_1, \ldots, r_k , the root r_j has multiplicity m_j , and $|r_1| \leq |r_2| \leq \cdots \leq |r_k|$. Then

$$f(z) = R(z) + \sum_{j=1}^{k} \sum_{\ell=1}^{m_j} \frac{c_{j,\ell}}{\left(1 - \frac{z}{r_j}\right)^{\ell}},$$

where R(z) is a polynomial of degree at most deg(P) - deg(Q), and $c_{j,\ell}$ are constants.

<u>c (</u>

Fact (Partial fraction decomposition)

Suppose that $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common roots, $Q(0) \neq 0$, Q has k distinct roots r_1, \ldots, r_k , the root r_j has multiplicity m_j , and $|r_1| \leq |r_2| \leq \cdots \leq |r_k|$. Then

$$f(z) = \frac{R(z)}{m} + \sum_{j=1}^{k} \sum_{\ell=1}^{m_j} \frac{c_{j,\ell}}{\left(1 - \frac{z}{r_j}\right)^{\ell}},$$

where R(z) is a polynomial of degree at most deg(P) - deg(Q), and $c_{j,\ell}$ are constants.

In particular, for $\rho = |r_1| > 0$ and any $z \in \mathbb{N}_{<\rho}(0)$, we have $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where for every $n \ge \deg(R)$, we have

Fact (Partial fraction decomposition)

Suppose that $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common roots, $Q(0) \neq 0$, Q has k distinct roots r_1, \ldots, r_k , the root r_j has multiplicity m_j , and $|r_1| \leq |r_2| \leq \cdots \leq |r_k|$. Then

$$f(z) = R(z) + \sum_{j=1}^{k} \sum_{\ell=1}^{m_j} \frac{c_{j,\ell}}{\left(1 - \frac{z}{r_j}\right)^{\ell}},$$

where R(z) is a polynomial of degree at most deg(P) - deg(Q), and $c_{j,\ell}$ are constants.

In particular, for $\rho = |r_1| > 0$ and any $z \in \mathbb{N}_{<\rho}(0)$, we have $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where for every $n > \deg(R)$, we have

Let Ω be a domain, let $f: \Omega \to \mathbb{C}$ a function analytic on Ω , let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}^*_{<\varepsilon}(p) \subseteq \Omega$ for some $\varepsilon > 0$.

Singularities, poles, zeros

Definition

Let Ω be a domain, let $f: \Omega \to \mathbb{C}$ a function analytic on Ω , let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}^*_{<\varepsilon}(p) \subseteq \Omega$ for some $\varepsilon > 0$.

We distinguish three types of isolated singularities:

• p is a removable singularity, if f has an analytic continuation to $\Omega \cup \{p\}$. Example: $f(z) = \frac{\sin z}{z}$ on $\Omega = \mathbb{C} \setminus \{0\}$. $\begin{cases} (b) = 1 \\ \hline z \end{bmatrix} = \underbrace{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots}_{3!}$

Let Ω be a domain, let $f: \Omega \to \mathbb{C}$ a function analytic on Ω , let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}^*_{<\varepsilon}(p) \subseteq \Omega$ for some $\varepsilon > 0$.

We distinguish three types of isolated singularities:

- *p* is a removable singularity, if *f* has an analytic continuation to $\Omega \cup \{p\}$. Example: $f(z) = \frac{\sin z}{z}$ on $\Omega = \mathbb{C} \setminus \{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z) = f(z)(z-p)^d$ has an analytic continuation to $\mathbb{N}_{<\varepsilon}(p)$ for some $\varepsilon > 0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p) = 0 \neq P(p)$.

Let Ω be a domain, let $f: \Omega \to \mathbb{C}$ a function analytic on Ω , let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}^*_{<\varepsilon}(p) \subseteq \Omega$ for some $\varepsilon > 0$.

We distinguish three types of isolated singularities:

- *p* is a removable singularity, if *f* has an analytic continuation to $\Omega \cup \{p\}$. Example: $f(z) = \frac{\sin z}{z}$ on $\Omega = \mathbb{C} \setminus \{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z) = f(z)(z-p)^d$ has an analytic continuation to $\mathbb{N}_{<\varepsilon}(p)$ for some $\varepsilon > 0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p) = 0 \neq P(p)$.
- p is an essential singularity in any other case. Example: exp(1/z) and p = 0.

Let Ω be a domain, let $f: \Omega \to \mathbb{C}$ a function analytic on Ω , let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}^*_{<\varepsilon}(p) \subseteq \Omega$ for some $\varepsilon > 0$.

We distinguish three types of isolated singularities:

- *p* is a removable singularity, if *f* has an analytic continuation to $\Omega \cup \{p\}$. Example: $f(z) = \frac{\sin z}{z}$ on $\Omega = \mathbb{C} \setminus \{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z) = f(z)(z-p)^d$ has an analytic continuation to $\mathbb{N}_{<\varepsilon}(p)$ for some $\varepsilon > 0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p) = 0 \neq P(p)$.
- p is an essential singularity in any other case. Example: exp(1/z) and p = 0.

Let Ω be a domain, let $f: \Omega \to \mathbb{C}$ a function analytic on Ω , let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}^*_{<\varepsilon}(p) \subseteq \Omega$ for some $\varepsilon > 0$.

We distinguish three types of isolated singularities:

- p is a removable singularity, if f has an analytic continuation to $\Omega \cup \{p\}$. Example: $f(z) = \frac{\sin z}{z}$ on $\Omega = \mathbb{C} \setminus \{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z) = f(z)(z-p)^d$ has an analytic continuation to $\mathbb{N}_{<\varepsilon}(p)$ for some $\varepsilon > 0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p) = 0 \neq P(p)$.
- p is an essential singularity in any other case. Example: exp(1/z) and p = 0.

Fact

- ("Picard's theorem") If f has an essential singularity in p, then on every $\mathbb{N}^*_{<\varepsilon}(p)$ it attains all possible values from \mathbb{C} , except at most one.
- If f has a pole in p, then $\lim_{z\to p} |f(z)| = +\infty$.
- If f has a removable singularity in p, then $\lim_{z\to p} f(z) \in \mathbb{C}$.

Properties of poles

Proposition

A function f has a pole of degree d in p, iff it can be expressed, on some $\mathbb{N}^*_{<\varepsilon}(p)$, as

$$f(z) = \sum_{n=d}^{\infty} a_n (z-p)^n$$

= $\frac{a_{-d}}{(z-p)^d} + \frac{a_{-d+1}}{(z-p)^{d-1}} + \dots + \frac{a_{-1}}{z-p} + a_0 + a_1(z-p) + a_2(z-p)^2 + \dots$

with $a_{-d} \neq 0$.

Note: A series of the form
$$\sum_{n=-\infty}^{\infty} a_n(z-p)^n$$
 is known as Laurent series.
Pf: "=>" f hus pole of day d: $g(z) = f(z)(z-p)^d =$
= $\sum_{n=0}^{\infty} a_n (z-p)^n$, hence $f(z) = a_n \sum_{n=0}^{\infty} a_n (z-p)^{n-d}$
where $a_n = a_n -d$
 $f(z) = \sum_{n=-d}^{\infty} a_n (z-p)^n = f(z)(z-p)^d$ is an -
lybic in P. J

Poles and zeros

Definition

A function g analytic in a point p has a zero of order d (a.k.a. degree d, or multiplicity d) in p, if it can be expressed, on some $\mathcal{N}_{<\varepsilon}(p)$, as ∞

$$g(z)=\sum_{n=d}^\infty a_n(z-p)^n, \text{ and } a_d\neq 0.$$

Poles and zeros

Definition

A function g analytic in a point p has a zero of order d (a.k.a. degree d, or multiplicity d) in p, if it can be expressed, on some $N_{<\varepsilon}(p)$, as

$$g(z) = \sum_{n=d}^{\infty} a_n (z-p)^n$$
, and $a_d \neq 0$.

Proposition

A function g has a zero of degree d > 0 in p iff $\frac{1}{g}$ has a pole of degree d in p.

Pf: g has zero of deg.
$$d \iff g(z) = h(z) \cdot (z-p)^{\alpha}$$
,
where $h(p) \neq 0$ and and analytic in p
 $(z) = \frac{1}{g(z)} = \frac{1}{(z-p)!} \cdot \frac{1}{h(z)} \iff \frac{1}{g(z)} + \frac{1}{(z-p)!} = \frac{1}{h(z)} + \frac{1}{h(z)} = \frac{1}{g(z)} + \frac{1}{h(z)} + \frac{1}{h(z)} + \frac{1}{h(z)} = \frac{1}{g(z)} + \frac{1}{h(z)} + \frac{$

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω , f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω , with h not identically zero on Ω , such that

$$f(z) = \frac{g(z)}{h(z)}$$

for every $z \in \Omega \setminus \{z; h(z) = 0\}$.

Proposition

Let f be meromorphic on a domain Ω , and suppose it has only finitely many poles in Ω . Then there is a rational function R(z) such that the function g(z) = f(z) - R(z) has an analytic continuation to Ω .