Analytic combinatorics

Lecture 6

April 14, 2021

Recall:
Fact (Pringsheim, Vivanti; 1890's)
Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence $\rho \in(0,+\infty)$, and let us define $f: \mathcal{N}_{<\rho}(0) \rightarrow \mathbb{C}$ by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then there is at least one point w with $|w|=\rho$ such that f has no analytic continuation to any domain containing w. If we additionally assume that $a_{n} \geq 0$ for all n, then the conclusion holds for $w=\rho$.

Example: ordered set partitions

An ordered set partition of the set $[n]$ is an ordered sequence $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ of nonempty pairwise disjoint sets whose union is [n]. Let p_{n} be the number of ordered set partitions of [n].

$$
\begin{array}{ll}
p_{0}=1 \\
p_{1}=1 & (\{1\}) \\
p_{2}=3 & (\{1\},\{2\}),
\end{array} \quad(\{2\},\{1\}),(\{1,2\})
$$

Example: ordered set partitions

An ordered set partition of the set [n] is an ordered sequence $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ of nonempty pairwise disjoint sets whose union is $[n]$. Let p_{n} be the number of ordered set partitions of [n].

Goal: find an estimate of p_{n}.

$$
\begin{aligned}
& n-\text { th Bell number } \leq p_{n} \leq n! \\
& \text { estimate of }
\end{aligned}
$$

Example: ordered set partitions
An ordered set partition of the set $[n]$ is an ordered sequence $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ of nonempty pairwise disjoint sets whose union is [n]. Let p_{n} be the number of ordered set partitions of $[n]$. $\quad \operatorname{Pring}$ rheims $P(x)$ has radius of convert Goal: find an estimate of p_{n}. gence $\ln 2$ i.e. $\left(\frac{1}{\ln 2}-\varepsilon\right)^{n} \leqslant \frac{p_{n}}{n!} \leqslant\left(\frac{1}{\ln 2}+\varepsilon\right)^{n} x^{n}$ Approach:

(2) Apply Pringsheim's theorem

Partitions w. 1 block

$$
\begin{aligned}
B(x) & =1 \cdot \frac{x^{1}}{1!}+1 \cdot \frac{x^{2}}{2!}+\ldots+1 \cdot \frac{x^{n}}{n!} t \\
& =\exp (x)-1
\end{aligned}
$$

$B^{2}(x)$ is the EGF of ordered s.p. with 2 blocks $k \in \mathbb{N}: B^{k}(x) \ldots E G F$ of or.s.p. with k blocks

$$
P(x)=1+B(x)+B(x)+\ldots=\frac{1}{1-B(x)}=\frac{1}{2-\exp (x)}
$$

$$
\begin{aligned}
& P(x)=1+B(x)+B(x)+\ldots=\frac{1-B(x)}{2-\exp (x)} \\
& P(z)=\frac{1}{2-\exp (z)}: \Omega \rightarrow \mathbb{C}, \text { analytic on } \Omega:=\{z \in \mathbb{C}, \exp (z) \neq 2\} \\
& z:=\{z \in \mathbb{C}, \exp (z)=2\}
\end{aligned}
$$

Rational functions

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, i.e., $P(r)=Q(r)=0$, we could cancel $(z-r)$ from the fraction $\left.\frac{P(z)}{Q(z)}\right)$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, i.e., $P(r)=Q(r)=0$, we could cancel $(z-r)$ from the fraction $\left.\frac{P(z)}{Q(z)}\right)$.
- The function $f(z)=\frac{P(z)}{Q(z)}$ is analytic in any point z_{0} such that $Q\left(z_{0}\right) \neq 0$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, i.e., $P(r)=Q(r)=0$, we could cancel $(z-r)$ from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z)=\frac{P(z)}{Q(z)}$ is analytic in any point z_{0} such that $Q\left(z_{0}\right) \neq 0$.
- The function $f(z)=\frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if $Q(r)=0$, then f is unbounded on $\mathcal{N}_{<\varepsilon}^{*}(r)$ for any $\varepsilon>0$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, i.e., $P(r)=Q(r)=0$, we could cancel $(z-r)$ from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z)=\frac{P(z)}{Q(z)}$ is analytic in any point z_{0} such that $Q\left(z_{0}\right) \neq 0$.
- The function $f(z)=\frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if $Q(r)=0$, then f is unbounded on $\mathcal{N}_{<\varepsilon}^{*}(r)$ for any $\varepsilon>0$.
- Suppose Q has k distinct roots. Let r_{1}, \ldots, r_{k} be the distinct roots of Q, and let m_{i} be the multiplicity of the root r_{i}. Then $Q(z)$ can be written as $c \prod_{j=1}^{k}\left(z-r_{j}\right)^{m_{j}}$ for a constant $c \in \mathbb{C}$.

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, i.e., $P(r)=Q(r)=0$, we could cancel $(z-r)$ from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z)=\frac{P(z)}{Q(z)}$ is analytic in any point z_{0} such that $Q\left(z_{0}\right) \neq 0$.
- The function $f(z)=\frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if $Q(r)=0$, then f is unbounded on $\mathcal{N}_{<\varepsilon}^{*}(r)$ for any $\varepsilon>0$.
- Suppose Q has k distinct roots. Let r_{1}, \ldots, r_{k} be the distinct roots of Q, and let m_{i} be the multiplicity of the root r_{i}. Then $Q(z)$ can be written as $c \prod_{j=1}^{k}\left(z-r_{j}\right)^{m_{j}}$ for a constant $c \in \mathbb{C}$.
- Suppose f is analytic in 0 , and in particular $Q(0) \neq 0$. Then

$$
Q(z)=Q(0) \prod_{j=1}^{k}\left(1-\frac{z}{r_{j}}\right)^{m_{j}}
$$

Definition

A rational function is a function of the form $\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

Observe:

- We may assume that P and Q have no common root (if r were a common root, ie., $P(r)=Q(r)=0$, we could cancel $(z-r)$ from the fraction $\frac{P(z)}{Q(z)}$).
- The function $f(z)=\frac{P(z)}{Q(z)}$ is analytic in any point z_{0} such that $Q\left(z_{0}\right) \neq 0$.
- The function $f(z)=\frac{P(z)}{Q(z)}$ has no analytic continuation to any domain containing a root of Q, because if $Q(r)=0$, then f is unbounded on $\mathcal{N}_{<\varepsilon}^{*}(r)$ for any $\varepsilon>0$.
- Suppose Q has k distinct roots. Let r_{1}, \ldots, r_{k} be the distinct roots of Q, and let m_{i} be the multiplicity of the root r_{i}. Then $Q(z)$ can be written as $c \prod_{j=1}^{k}\left(z-r_{j}\right)^{m_{j}}$ for a constant $c \in \mathbb{C}$.
- Suppose f is analytic in 0 , and in particular $Q(0) \neq 0$. Then $\frac{1}{1-z}$
$\left(\frac{1}{1-z}\right)^{m}=\left(1+z+z^{2}+\cdots\right)^{m} \quad Q(z)=Q(0) \prod_{1}^{k}\left(1-\frac{z}{r_{j}}\right)^{m_{j}} \cdot\left(\frac{1}{1-z}\right)^{2}=\left(1+z+z^{2}+\ldots\right) \cdot$
$=\sum_{n=0}^{\infty} c_{n} z^{n}, C_{n}=\#$ of possibililijiji i es of writing $\quad Q(z)=Q(0) \prod_{i}^{k}\left(1-\frac{z}{r_{j}}\right)^{m_{j}} \cdot(1-z)^{2}=\left(1+z+z^{2}+\ldots\right)=$
- Note: n as a sum of m nonneg.ं. integer $A_{s}=\sum^{\infty}(n+1) z^{n}$

Fact (Partial fraction decomposition)

Suppose that $f(z)=\frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common roots, $Q(0) \neq 0, Q$ has k distinct roots r_{1}, \ldots, r_{k}, the root r_{j} has multiplicity m_{j}, and $\left|r_{1}\right| \leq\left|r_{2}\right| \leq \cdots \leq\left|r_{k}\right|$. Then

$$
f(z)=R(z)+\sum_{j=1}^{k} \sum_{\ell=1}^{m_{j}} \frac{c_{j, \ell}}{\left(1-\frac{z}{r_{j}}\right)^{\ell}},
$$

where $R(z)$ is a polynomial of degree at most $\operatorname{deg}(P)-\operatorname{deg}(Q)$, and $c_{j, \ell}$ are constants.

Fact (Partial fraction decomposition)

Suppose that $f(z)=\frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common roots, $Q(0) \neq 0, Q$ has k distinct roots r_{1}, \ldots, r_{k}, the root r_{j} has multiplicity m_{j}, and $\underbrace{\left|r_{1}\right|} \leq\left|r_{2}\right| \leq \cdots \leq\left|r_{k}\right|$. Then

$$
f(z)=R(z)+\sum_{j=1}^{k} \sum_{\ell=1}^{m_{j}} \frac{c_{j, \ell}}{\left(1-\frac{z}{r_{j}}\right)^{\ell}},
$$

where $R(z)$ is a polynomial of degree at most $\operatorname{deg}(P)-\operatorname{deg}(Q)$, and $c_{j, \ell}$ are constants. In particular, for $\rho=\left|r_{1}\right|>0$ and any $z \in \mathcal{N}_{<\rho}(0)$, we have $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where for every $n>\operatorname{deg}(R)$, we have

$$
\underbrace{a_{n}=\sum_{j=1}^{k} \frac{1}{r_{j}^{n}} \underbrace{\sum_{\ell=1}^{m_{j}} c_{j, \ell}\binom{n+\ell-1}{\ell-1}}_{\text {"some polynomial in } n} .}_{\uparrow}
$$

Fact (Partial fraction decomposition)

Suppose that $f(z)=\frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common roots, $Q(0) \neq 0, Q$ has k distinct roots r_{1}, \ldots, r_{k}, the root r_{j} has multiplicity m_{j}, and $\left|r_{1}\right| \leq\left|r_{2}\right| \leq \cdots \leq\left|r_{k}\right|$. Then

$$
f(z)=R(z)+\sum_{j=1}^{k} \sum_{\ell=1}^{m_{j}} \frac{c_{j, \ell}}{\left(1-\frac{z}{r_{j}}\right)^{\ell}},
$$

where $R(z)$ is a polynomial of degree at most $\operatorname{deg}(P)-\operatorname{deg}(Q)$, and $c_{j, \ell}$ are constants. In particular, for $\rho=\left|r_{1}\right|>0$ and any $z \in \mathcal{N}_{<\rho}(0)$, we have $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where for every $n>\operatorname{deg}(R)$, we have

$$
a_{n}=\sum_{j=1}^{k} \frac{1}{r_{j}^{n}} \sum_{\ell=1}^{m_{j}} c_{j, \ell}\binom{n+\ell-1}{\ell-1} .
$$

Consequently, if $\underbrace{\left|r_{1}\right|}_{1}<\left|r_{2}\right|$, then

$$
\left(\frac{1}{\rho}-\varepsilon\right)^{P_{r}}: n *\left|a_{h}\right| \leqslant\left(\frac{1}{\rho}+\varepsilon\right)^{n} \quad\left|a_{n}\right|=\frac{\Theta\left(n^{m_{1}-1}\right)}{\rho^{n}},
$$

Definition

Let Ω be a domain, let $f: \Omega \rightarrow \mathbb{C}$ a function analytic on Ω, let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}_{<\varepsilon}^{*}(p) \subseteq \Omega$ for some $\varepsilon>0$.

Definition

Let Ω be a domain, let $f: \Omega \rightarrow \mathbb{C}$ a function analytic on Ω, let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}_{<\varepsilon}^{*}(p) \subseteq \Omega$ for some $\varepsilon>0$.

We distinguish three types of isolated singularities:

- p is a removable singularity, if f has an analytic continuation to $\Omega \cup\{p\}_{z^{3}}$ Example: $f(z)=\frac{\sin z}{z}$ on $\Omega=\mathbb{C} \backslash\{0\}$.

$$
f(0)=1
$$

$$
\begin{aligned}
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots \\
& \frac{\sin z}{z}=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots
\end{aligned}
$$

Definition

Let Ω be a domain, let $f: \Omega \rightarrow \mathbb{C}$ a function analytic on Ω, let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}_{<\varepsilon}^{*}(p) \subseteq \Omega$ for some $\varepsilon>0$.

We distinguish three types of isolated singularities:

- p is a removable singularity, if f has an analytic continuation to $\Omega \cup\{p\}$. Example: $f(z)=\frac{\sin z}{z}$ on $\Omega=\mathbb{C} \backslash\{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z)=f(z)(z-p)^{d}$ has an analytic continuation to $\mathcal{N}_{<\varepsilon}(p)$ for some $\varepsilon>0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p)=0 \neq P(p)$.

Definition

Let Ω be a domain, let $f: \Omega \rightarrow \mathbb{C}$ a function analytic on Ω, let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}_{<\varepsilon}^{*}(p) \subseteq \Omega$ for some $\varepsilon>0$.

We distinguish three types of isolated singularities:

- p is a removable singularity, if f has an analytic continuation to $\Omega \cup\{p\}$. Example: $f(z)=\frac{\sin z}{z}$ on $\Omega=\mathbb{C} \backslash\{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z)=f(z)(z-p)^{d}$ has an analytic continuation to $\mathcal{N}_{<\varepsilon}(p)$ for some $\varepsilon>0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p)=0 \neq P(p)$.
- p is an essential singularity in any other case. Example: $\exp (1 / z)$ and $p=0$.

Definition

Let Ω be a domain, let $f: \Omega \rightarrow \mathbb{C}$ a function analytic on Ω, let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}_{<\varepsilon}^{*}(p) \subseteq \Omega$ for some $\varepsilon>0$.

We distinguish three types of isolated singularities:

- p is a removable singularity, if f has an analytic continuation to $\Omega \cup\{p\}$. Example: $f(z)=\frac{\sin z}{z}$ on $\Omega=\mathbb{C} \backslash\{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z)=f(z)(z-p)^{d}$ has an analytic continuation to $\mathcal{N}_{<\varepsilon}(p)$ for some $\varepsilon>0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p)=0 \neq P(p)$.
- p is an essential singularity in any other case. Example: $\exp (1 / z)$ and $p=0$.

Definition

Let Ω be a domain, let $f: \Omega \rightarrow \mathbb{C}$ a function analytic on Ω, let $p \in \mathbb{C}$ be a point in the complex plane. We say that p is an isolated singularity of f, if $\mathcal{N}_{<\varepsilon}^{*}(p) \subseteq \Omega$ for some $\varepsilon>0$.

We distinguish three types of isolated singularities:

- p is a removable singularity, if f has an analytic continuation to $\Omega \cup\{p\}$. Example: $f(z)=\frac{\sin z}{z}$ on $\Omega=\mathbb{C} \backslash\{0\}$.
- p is a pole of f, if there is a natural number d such that the function $g(z)=f(z)(z-p)^{d}$ has an analytic continuation to $\mathcal{N}_{<\varepsilon}(p)$ for some $\varepsilon>0$. The smallest such d is the order of p (a.k.a. the degree of p, or the multiplicity of p). Example: any rational function $\frac{P(z)}{Q(z)}$, with $Q(p)=0 \neq P(p) . \rightarrow \mathbb{C} \backslash\{0\}$
- p is an essential singularity in any other case. Example: $\exp (1 / z)$ and $p=0$.

Fact

- ("Picard's theorem") If f has an essential singularity in p, then on every $\mathcal{N}_{<\varepsilon}^{*}(p)$ it attains all possible values from \mathbb{C}, except at most one.
- If f has a pole in p, then $\lim _{z \rightarrow p}|f(z)|=+\infty$.
- If f has a removable singularity in p, then $\lim _{z \rightarrow p} f(z) \in \mathbb{C}$.)

Properties of poles

Proposition
A function f has a pole of degree d in p, iff it can be expressed, on some $\mathcal{N}_{<\varepsilon}^{*}(p)$, as

$$
\begin{aligned}
f(z) & \left.=\sum_{n=(-d)}^{\infty} a_{n}(z-p)^{n}\right) \\
& =\frac{a_{-d}}{(z-p)^{d}}+\frac{a_{-d+1}}{(z-p)^{d-1}}+\cdots+\frac{a_{-1}}{z-p}+a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+\cdots
\end{aligned}
$$

with $a_{-d} \neq 0$.
Note: A series of the form $\sum_{n=-\infty}^{\infty} a_{n}(z-p)^{n}$ is known as Laurent series.
Pf: ${ }_{11} \Rightarrow^{n} \delta$ has pole of dey d: $\quad \int_{\infty}(z)=f(z)(z-p)^{d}=$
$=\sum_{n=0}^{\infty} a_{n}^{*}(z-p)^{n}$, hence $f(z)=a_{n} \sum_{n=0}^{\infty} a_{n} a_{n}(z-p)^{n-d}$
where $a_{n}^{*}=a_{n-d}$ lydic in p.

Definition

A function g analytic in a point p has a zero of order d (a.k.a. degree d, or multiplicity d) in p, if it can be expressed, on some $\mathcal{N}_{<\varepsilon}(p)$, as

$$
g(z)=\sum_{n=d}^{\infty} a_{n}(z-p)^{n}, \text { and } a_{d} \neq 0
$$

Definition
A function g analytic in a point p has a zero of order d (a.k.a. degree d, or multiplicity d) in p, if it can be expressed, on some $\mathcal{N}_{<\varepsilon}(p)$, as

$$
g(z)=\sum_{n=d}^{\infty} a_{n}(z-p)^{n}, \text { and } a_{d} \neq 0
$$

Proposition
A function g has a zero of degree $d>0$ in p iff $\frac{1}{g}$ has a pole of degree d in p.
Pf: g his zero of deg. $d \Leftrightarrow g(z)=h(z) \cdot(z-p)^{d}$, where $h(z) \neq 0$ and ah analytic in p $\Leftrightarrow \frac{1}{g(z)}=\frac{1}{(z-p)} \cdot \underbrace{h(z)}_{\text {analytic }} \Leftrightarrow \frac{1}{g}$ has a pole of in P an nonzero in p

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash\{z ; h(z)=0\}$.

Definition

Let Ω be a domain. A function f is meromorphic on Ω if for every p of Ω, f is either analytic in p or has a pole in p.

Fact

A function f is meromorphic in a domain Ω iff there are two functions g and h analytic on Ω, with h not identically zero on Ω, such that

$$
f(z)=\frac{g(z)}{h(z)}
$$

for every $z \in \Omega \backslash\{z ; h(z)=0\}$.

Proposition

Let f be meromorphic on a domain Ω, and suppose it has only finitely many poles in Ω. Then there is a rational function $R(z)$ such that the function $g(z)=f(z)-R(z)$ has an analytic continuation to Ω.

