NMAI059 Probability and statistics 1 Class 7

Robert Šámal

Overview

Continuous random variables

Particular continuous distributions and their parameters

General and continuous random variable – what we have learned

- ▶ R.v. is a mapping $X : \Omega \to \mathbb{R}$, that for every $x \in \mathbb{R}$ satisfies $\{\omega \in \Omega : X(\omega) \leq x\} \in \mathcal{F}$.
- Discrete r.v. is a r.v.
- ▶ CDF of a r.v. X is a function $F_X(x) := P(X \le x)$.
- ▶ CDF F_X is nondecreasing right-continuous function with limits in ± 1 equal to 0/1.
- A continuous r.v. has a PDF $f_X \ge 0$ such that $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$.
- $P(a \le X \le b) = \int_a^b f_X(t)dt$ for every $a, b \in \mathbb{R}$.
- ▶ $P(X \in A) = \int_A \overline{f_X(t)dt}$ for a "reasonable set A".

Pasn

Expectation of a continuous r.y. $\int (\mathcal{L}) \cdot f_{\chi}(\mathcal{L}) = \mathcal{L} \cdot \chi$

Definice

Consider a continuous r.v. X with PDF f_X . Then its expectation (expected value, mean) is denoted by $\mathbb{E}(X)$ and defined by

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \, f_X(x) dx, \qquad \text{for discounts in } P(Y) = \sum_{x \in \mathcal{X}} p(Y) = \sum_{x \in \mathcal{X}} p(Y) = \sum_{x \in \mathcal{X}} p(X) = \sum_{x \in \mathcal{X}} p(X)$$

whenever the integral is defined; that is unless it is of type $\infty - \infty$.

- An analogy with computing a center of mass of a pole from a formula for its density
- ◆ Discretization.

Properties of expectation

The Villa (LOTUS)

PDF

Consider a continuous r.v. X with density f_X and a real function g. Then we have

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$

by def. we would have to compare

whenever the integral is defined.

(We skip the proof.)

5 g. f, b) df

There Věta (Linearity of expectation)

For X_1, \ldots, X_n discrete or continuous random variables we have

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$$

(Proof later.)

Variance of a continuous r.v.

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \; f_X(x) dx$$

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 \; f_X(x) dx$$
 Writing $\mu = \mathbb{E}(X)$, we have
$$var(X) := \mathbb{E}((X - \mu)^2) = \int_{-\infty}^{\infty} (x - \mu)^2 \; f_X(x) dx.$$

Vota Theorem

For continuous random variables we have the same formula as for discrete ones, $var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$. (Proof is the same as for discrete r.v.)

Variance of a sum

The Věta (Variance of a sum)

For X_1, \ldots, X_n independent discrete or continuous r.v. we have

$$var(X_1 + \dots + X_n) = var(X_1) + \dots + var(X_n).$$

(Prof later.)

1) indep is respected: X2 = -X, X, and for.

Xituat Xin Bour (p)

ind Xin Box (p)

Overview

Continuous random variables

Particular continuous distributions and their parameters

$$F_X(x) = \begin{cases} 0 & \text{for } x \le 0\\ 1 - e^{-\lambda x} & \text{for } x \ge 0 \end{cases}$$

Exponencial distribution
$$Exp(\lambda)$$
 with rate $F_X(x) = \begin{cases} 0 & \text{for } x \leq 0 \\ 1 - e^{-\lambda x} & \text{for } x \geq 0 \end{cases}$ for $f_X(x) = \begin{cases} 0 & \text{for } x \leq 0 \\ 1 - e^{-\lambda x} & \text{for } x \geq 0 \end{cases}$

X models time before next phone call in a call-center / web-server response / time till another lightning in a storm / . . .

Relating $Exp(\lambda)$ and Geom(p)

$$P(X > x) = e^{-\lambda x} \text{ for } x > 0$$

$$P(Y>n)=(1-p)^n \text{ for } n\in\mathbb{N}$$

EX, varX -> everise

Standard normal distribution

- $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$
- lacktriangleright $\Phi(x)$ antiderivative of φ doesn't have closed form, m

General normal distribution EX= &= G. F2 / ra(X): 0+ 6 on 2

- For $\mu, \sigma \in \mathbb{R}, \sigma > 0$ we put $X = \mu + \sigma \cdot Z$ where $Z \sim N(0, 1)$. FX= M. ras(X)= 6
- We write $X \sim N(\mu, \sigma^2)$ general normal distribution
- Normal distribution $N(\mu, \sigma^2)$ has density $\frac{1}{\sigma} \varphi(\frac{x-\mu}{\sigma})$.

Resistance to a sum

Suppose X_1, \ldots, X_k are independent r.v., where $X_i \sim N(\mu_i, \sigma_i^2)$. Then

where
$$\mu = E(X_1 + \dots + X_k) = E(X_1 + \dots + E(X_k))$$
 $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k)) = E(X_1 + \dots + E(X_k))$ $= E(X_1 + \dots + E(X_k))$

- 68–95–99.7 rule (3 σ rule)
- Central limit theorem

(Image on the left is from Wikipedia, author Melikamp.)

sample N(v. 63), draw bistograms

Cauchy distribution

- Cauchy distribution: PDF $f(x) = \frac{1}{\pi(1+x^2)}$
- does not have an expectation!

Gamma distribution

► $Gamma(w, \lambda)$, gamma distribution with parameters w > 0 and $\lambda > 0$ has PDF

$$f(x) = \begin{cases} 0 & \text{pro } x \leq 0 \\ \frac{1}{\Gamma(w)} \lambda^w x^{w-1} e^{-\lambda x} & \text{pro } x \geq 0 \end{cases}$$

where
$$\Gamma(w) = (w-1)! = \int_0^\infty x^{w-1} e^{-x} dx$$
.

- For w = 1 we get exponencial distribution again.
- If X_1, \ldots, X_n are i.i.d with distribution $Exp(\lambda)$, then $X_1 + \cdots + X_n \sim Gamma(n, \lambda)$.
- Models lifetime of an electronic component, total of rainfall in a year, web-server latency.

A many others

- ightharpoonup Beta(s,t) beta distribution
- χ^2 distribution with k degrees of freedom = chi-square (χ_k^2) is an alternative name for $Gamma(\frac{1}{2}k,\frac{1}{2})$. It is the distribution $Z_1^2+\cdots+Z_k^2$, where $Z_i\sim N(0,1)$ are i.i.d.
- Student t-distribution
- etc. etc.

Uniform distribution

▶ R.v. X has a uniform distribution on [a,b], we write $X \sim U(a,b)$, if $f_X(x) = 1/(b-a)$ for $x \in [a,b]$ and $f_X(x) = 0$ otherwise.

Universality of uniform

Věta

Let X be a r.v. with CDF $F_X = F$, let F be continuous and increasing. Then $F(X) \sim U(0,1)$.

Věta

Let F be a function "of CDF-type": nondecreasing right-continuous function with $\lim_{x\to -\infty} F(x)=0$ a $\lim_{x\to +\infty} F(x)=1$. Let Q be the corresponding quantile function.

Let $U \sim U(0,1)$ and X = Q(U). Then X has CDF F.