NMAI059 Probability and statistics 1 Class 7

Robert Šámal

Overview

Continuous random variables

Particular continuous distributions and their parameters

General and continuous random variable - what we have learned

- R.v. is a mapping $X: \Omega \rightarrow \mathbb{R}$, that for every $x \in \mathbb{R}$ satisfies $\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}$.
- Discrete r.v. is a r.v.
- CDF of a r.v. X is a function $F_{X}(x):=P(X \leq x)$.
- CDF F_{X} is nondecreasing right-continuous function with limits in ± 1 equal to 0/1.
- A continuous r.v. has a PDF $f_{X} \geq 0$ such that $F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t$.
- $P(a \leq X \leq b)=\int_{a}^{b} f_{X} \overline{(t) d t}$ for every $a, b \in \mathbb{R}$.
- $P(X \in A)=\int_{A} f_{X}(t) d t$ for a "reasonable set A ".

Expectation of a continuous riv. $=\int\left(\frac{L x}{4} / \delta\right) \cdot f_{x}(x) \doteq \mathbb{E} X$
Definice
Consider a continuous r.v. X with $P D F f_{X}$. Then its expectation (expected value, mean) is denoted by $\mathbb{E}(X)$ and defined by

$$
y=n \Delta
$$

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x,
$$

for discus te Rev. Y
whenever the integral is defined; that is unless it is of type
\qquad $\infty-\infty$.

- An analogy with computing a center of mass of a pole from $\triangle>0 \quad$ a formula for its density

$$
\begin{aligned}
& \Delta=0 \text { Discretization. }
\end{aligned}
$$

Properties of expectation

The (LOTUS)

Consider a continuous r.v. X with density f_{X} and a real function g. Then we have

$$
\mathbb{E}(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

whenever the integral is defined.
(We skip the proof.)
Therexe béa (Linearity of expectation)

For X_{1}, \ldots, X_{n} discrete or continuous random variables we have

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)
$$

(Proof later.).

Variance of a continuous r.v.

$$
\begin{aligned}
& \mathbb{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x
\end{aligned}
$$

Writing $\mu=\mathbb{E}(X)$, we have

$$
\operatorname{var}(X):=\mathbb{E}\left((X-\mu)^{2}\right)=\int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x
$$

vetareaicen
For continuous random variables we have the same formula as for discrete ones, $\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}$.
(Proof is the same as for discrete r.v.)

Variance of a sum
Then
Vǒ̌a (Variance of a sum)
For X_{1}, \ldots, X_{n} independent discrete or continuous r.v. we have

$$
\operatorname{var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{var}\left(X_{1}\right)+\cdots+\operatorname{var}\left(X_{n}\right) .
$$

KPrag lator.)
(1) indep. is rapartant: $X_{2}=-X_{1}, X_{1}$ aobito.

$$
\operatorname{var}\left(X_{1}+X_{2}\right)=0, \cos X_{2}=\text { ver } X_{1} \neq 0
$$

$$
\begin{aligned}
& \text { (2] } X_{\|} \sim \operatorname{Bin}(n, p) \quad \operatorname{var}(x)=\operatorname{vos} x_{1} \ldots x \cos x_{n} \\
& x_{1}+\ldots+x_{2} \quad=n \cos X_{1} \cdot \sin (P(P) \\
& \text { ind } \quad X_{i} \sim \operatorname{Ben}(p)
\end{aligned}
$$

Overview

Continuous random variables

Particular continuous distributions and their parameters

Uniform distribution $E(X)=\int_{d b}^{\infty} f_{x}(b)=\int_{0} x \cdot \frac{1}{s-a}=\left[\frac{x^{2}}{2} \frac{1}{s a}\right)^{6}$.
dg. $\mathcal{E} \mathbb{E} \leftarrow$

- R.v. X has a uniform distribution -rit $\{a, b]$, we write $\frac{b^{2}-e^{2}}{2 a+6}$ $X \sim U(a, b)$, if $f_{X}(x)=1 /(b-a)$ for $x \in[a, b]$ and $2(6-a) \quad 2$

Exponencial distribution $\operatorname{Exp}(\lambda)$ with rate $\lambda>0$

$$
F_{X}(x)= \begin{cases}0 & \text { for } x \leq 0 \\ 1-e^{-\lambda x} & \text { for } x \geq 0\end{cases}
$$

$$
f_{x}(x)=\left\{\begin{array}{l}
0 x=0 \\
0-e^{-\lambda x} \cdot(-\lambda)=\lambda e^{-x x} \\
\text { far } x>0
\end{array}\right.
$$

- X models time before next phone call in a call-center / web-server response / time till another lightning in a storm / ...

Relating $\underset{\sim}{\operatorname{Ex}} \operatorname{Exp}(\lambda)$ and $\underset{\sim}{\operatorname{G}} \operatorname{eom}(p)$

- $P(X>x)=\underline{e^{-\lambda x}}$ for $x>0$

$$
\Delta \doteq 0
$$

O.
$\mathbb{E} X$, vai $X \rightarrow$ erercise

$$
\begin{aligned}
& \text { wout } x \doteq \Delta . Y \\
& \begin{array}{ll}
e^{-70 . n} & P(y>n) \\
& (1-p)^{4}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P=ケ e^{-\lambda \Delta}=\lambda \Delta
\end{aligned}
$$

Standard normal distribution

$$
s^{\prime} e^{-x^{2} / c} \int_{-\infty}^{\infty} d(x)=1
$$

- $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad$ PDF
- $\Phi(x)-\stackrel{\sqrt{\text { antiderivative of } \varphi} \varphi \text {.... doesn't have closed form, un Error }}{ }$ function
- Standard normal distribution $N(0,1)$ has PDF φ and

\triangle If $Z \psi_{0} N(0,1)$, then $\mathbb{E}(Z)^{-\infty}=0, \overline{\operatorname{var}(Z)=1 . u^{-\infty}}+\int_{\sqrt{2 \pi}}^{\infty} \cdots e^{-\frac{t / 2}{2}}=\int \varphi(t)$
$\underline{E}(z)=\int_{-\infty}^{\infty} t \varphi(t)=\left.\int_{0}^{\infty} t q(t)\right|_{1} ^{n} \int_{-\infty}^{0} t c_{c}(t)_{i}=\sqrt{0} \quad \sigma_{z}=1$

General normal distribution $\mathbb{E} x=\mu+\sigma \mathbb{E} z \cdot \mu / \operatorname{ra}(x)=\theta \in \sigma_{\text {vo }}^{?} z$

- For $\mu, \sigma \in \mathbb{R}, \sigma>0$ we put $X=\mu+\sigma \cdot Z$ where $Z \sim N(0,1)$.

$$
\mathbb{E} X=\mu, \operatorname{ras}(X) \cdot \sigma^{2}
$$

- We write $X \sim N\left(\mu, \sigma^{2}\right)$ - general normal distribution
- Normal distribution $N\left(\mu, \sigma^{2}\right)$ has density $\frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)$.

$$
\Phi(z)=\underbrace{P(Z \leq z)}=\frac{P(X \leq \mu-\sigma z)}{1}=F_{x}(c+\sigma z)
$$

$$
\varphi(z) \cdot \phi^{\prime}(z)=\left[F_{x}(\mu+\sigma z)\right]^{\prime}=f_{x}\left(c_{x}+\sigma z\right) \cdot \sigma
$$

Resistance to a sum

- Suppose X_{1}, \ldots, X_{k} are independent rev., where $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$. Then

$$
\underline{X_{1}+\cdots+X_{k}} \sim N\left(\mu, \sigma^{2}\right),
$$

$$
\text { where } \mu=E\left(X_{1} \ldots+X_{k}\right)=E X_{1}, \ldots+E X_{k}=\mu_{1} \times \ldots+G_{k}
$$

$$
\begin{aligned}
\sigma^{2}=\operatorname{var}\left(X_{1}+\ldots+X_{t}\right) & =\operatorname{ros}\left(X_{1}\right)+\ldots+\cos \left(X_{6}\right) \\
& =\sigma_{1}^{2}+\ldots+\sigma_{6}^{2}
\end{aligned}
$$

Normal distribution - key properties $p(\mu-\sigma<x<\mu \sim \sigma)=\phi(1) \cdot \phi-(-)$

- 68-95-99.7 rule (3 σ rule)

$$
\doteq 0.68
$$

- Central limit theorem

(Image on the left is from Wikipedia, author Melikamp.)

$$
\varphi\left(\frac{x-c}{\sigma}\right) \frac{\uparrow}{\sigma}
$$

Cauchy distribution

- Cauchy distribution: PDF $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$
- does not have an expectation! $\int_{- \text {cana }}^{\infty} f(x)=\frac{1}{\pi} \int_{-a}^{\infty} \frac{1}{1+x^{2}}=\frac{1}{\pi}(\arctan x)_{-\infty}^{\infty}$

$$
\begin{align*}
\mathbb{E} X=\int_{-\infty}^{-\infty} x f(x) & =\int_{0}^{\infty} x f(x)+\int_{n}^{0} x f(x) \\
\Rightarrow & =-\infty \\
\frac{1}{\pi} \int_{0}^{\infty} \frac{x}{1 \theta x^{2}} & =\frac{1}{2 \pi}\left(\lg \left(1+x^{2}\right) \int_{0}^{\infty}=\infty\right. \\
& =\infty-\infty=-
\end{align*}
$$

we supple 1000 \# ait ρ Cord distr, to be aurouge

Gamma distribution

- Gamma (w, λ), gamma distribution with parameters $w>0$ and $\lambda>0$ has PDF

$$
f(x)= \begin{cases}0 & \text { pro } x \leq 0 \\ \frac{1}{\Gamma(w)} \lambda^{w} x^{w-1} e^{-\lambda x} & \text { pro } x \geq 0\end{cases}
$$

where $\Gamma(w)=(w-1)!=\int_{0}^{\infty} x^{w-1} e^{-x} d x$.

- For $w=1$ we get exponencial distribution again.
- If X_{1}, \ldots, X_{n} are i.i.d with distribution $\operatorname{Exp}(\lambda)$, then $X_{1}+\cdots+X_{n} \sim \operatorname{Gamma}(n, \lambda)$.
- Models lifetime of an electronic component, total of rainfall in a year, web-server latency.

A many others

- $\operatorname{Beta}(s, t)$ - beta distribution
- χ^{2} distribution with k degrees of freedom $=$ chi-square $\left(\chi_{k}^{2}\right)$ is an alternative name for $\operatorname{Gamma}\left(\frac{1}{2} k, \frac{1}{2}\right)$. It is the distribution $Z_{1}^{2}+\cdots+Z_{k}^{2}$, where $Z_{i} \sim N(0,1)$ are i.i.d.
- Student t-distribution
- etc. etc.

Uniform distribution

- R.v. X has a uniform distribution on $[a, b]$, we write $X \sim U(a, b)$, if $f_{X}(x)=1 /(b-a)$ for $x \in[a, b]$ and $f_{X}(x)=0$ otherwise.

Universality of uniform

Věta
Let X be a r.v. with CDF $F_{X}=F$, let F be continuous and increasing. Then $F(X) \sim U(0,1)$.

Věta
Let F be a function "of CDF-type": nondecreasing right-continuous function with $\lim _{x \rightarrow-\infty} F(x)=0$ a $\lim _{x \rightarrow+\infty} F(x)=1$. Let Q be the corresponding quantile function.
Let $U \sim U(0,1)$ and $X=Q(U)$. Then X has CDF F.

