NMFM402 – Mathematics of Non-Life Insurance 2

GLM 4 - variable reduction analysis Practical 5

To review the necessary theory for this practicals, you may check the lecture notes on Moodle, [1], Chapter 2.3.3 For further reading, see [2], Chapter 3.

Exercise 1:

Consider a GLM with normal distribution and $w_m = 1$. Calculate the following quantities and compare them with corresponding concepts within classical linear regression.

- (a) Deviance statistics (D);
- (b) F-statistics for sub-model testing;
- (c) Deviance residuals and Pearson's residuals;
- (d) Two estimators of the dispersion parameter $(\widehat{\varphi}_P, \widehat{\varphi}_D)$.

Exercise 2:

Consider a GLM with gamma distribution and $w_m = 1$. Calculate the following quantities:

- (a) Deviance statistics (D);
- (b) Deviance residuals and Pearson's residuals;

Exercise 3:

Recall Exercise 2 from Practical 4 : Consider the claim amounts $(S_{i,j})$ sorted into the table below according to the risk classes of the two risk factors (vehicle type and driver age).

	21-30y	31-40y	$41-50\mathrm{y}$	51-60y
passenger car	2000	1800	1500	1600
delivery van	2200	1600	1400	1400
truck	2500	2000	1700	1600

Assume (for simplicity) unit exposure, i.e. number of claims are $v_{i,j} = 1$. Consider the following three GLM

- Gamma error distribution and logarithmic link function.
- Normal error distribution and logarithmic link function.
- Inverse Gaussian error distribution and logarithmic link function.

With these models:

- (a) Choose the best one according to minimum AIC
- (b) For the chosen model, assess the possibility to reduce variables by performing backward stepwise variable selection (use AIC criterion).
- (c) Review the results of variable reduction analysis from (b) by performing F test for submodels.

Reference

- [1] L. Mazurová MathematicsofNon-life Insurance \mathcal{Z} lecturenotes. Version March 2021.Available onlineMoodle: at $https://dl1.cuni.cz/pluginfile.php/1162656/mod_resource/content/2/MNP2LectureNotes.pdf$
- E. Ohlsson, B. Johansson: Non-Life Insurance Pricing with Generalized Linear Models, 15 EAA Lecture Notes, DOI 10.1007/978-3-642-10791-7_2, Springer-Verlag Berlin Heidelberg, 2010