
Orthogonality and transversals

Quasigroups induced by a coordinatization of an affine plane. A finite
affine plane may be obtained from (Q,+, ·, 0, 1), where (Q,+, 0) is a group, (Q∗, ·, 1)
a loop, if 0a = a0 = 0 for all a ∈ Q and the equation ax + c = bx has a unique
solution whenever a, b ∈ Q and a 6= b. This is what will be assumed further on.
In infinite case the existence of the affine plane also needs the condition that the
equation xa+ c = xb has a unique solution whenever a, b ∈ Q and a 6= b.

For each c ∈ Q∗ define a binary operation ∗c on Q, c ∈ Q∗, by

a ∗c b = a+ cb for every a, b ∈ Q.

If x ∗c b = a, then x + cb = a and x = a − cb. If a ∗c y = b, then a + cy = b,
cy = −a+ b and y = c\(−a+ b) (c\0 is defined as 0). This shows that (Q, ∗c) is a
quasigroup for all c ∈ Q∗.

Suppose now that c, d ∈ Q∗ and c 6= d. Let us consider u, v ∈ Q and ask for
which (x, y) ∈ Q2

x ∗c y = u and x ∗d y = v.

Any such (x, y) fulfils x = u − cy and x = v − dy. Thus cy − u = −x = dy − v.
Therefore cy = dy − v + u. Since c 6= d there exists only one y ∈ Q that fulfils the
latter equality, and (u− cy, y) is the only solution to the equations above.

The latter fact may be expressed also by saying that the quasigroups (Q, ∗c) and
(Q, ∗d) are orthogonal, in the sense described below.

Orthogonality. Quasigroups (Q, ·) and (Q, ∗) are said to be orthogonal if for all
u, v ∈ Q there exists exactly one pair (x, y) ∈ Q × Q such that xy = u and
x ∗ y = v. Two latin squares of the same order (and the same set of symbols)
are said to be orthogonal if they may be interpreted as multiplication tables of
orthogonal quasigroups.

A set of quasigroups (Q, ∗1), . . . , (Q, ∗k) is said to be mutually orthogonal if
(Q, ∗i) and (Q, ∗j) are orthogonal whenever 1 ≤ i < j ≤ k. Similarly define
mutually orthogonal latin squares. The latter is often abbreviated as MOLS.

If (Q,+, ·, 0, 1) coordinatizes an affine plane and |Q| = n, then (Q, ∗c), c ∈ Q∗
is a set of n − 1 mutually orthogonal quasigroups. The affine plane induced by
(Q,+, ·, 0, 1) thus yields n− 1 mutually orthogonal latin squares of order n.

For each n ≥ 2 denote by N(n) the maximum size of MOLS of order n. We shall
explain why N(n) ≤ n− 1 and why a set of n− 1 MOLS describes an affine plane
of order n or, and thus also a a projective plane of order n. (The order of an affine
plane is the number of points upon a line. The order of an projective plane is the
number of points upon a line diminished by one.)

Transversal designs from orthogonal quasigroups. Suppose that (Q, ∗i), 1 ≤
i ≤ k, is a set of mutually orthogonal quasigroups, k ≥ 2. Put Ω = Q ×
{∞, 0, 1, . . . , k}. Construct a block design upon Ω with groups Q× {∞}, Q× {0},
Q × {1}, . . . , Q × {k} in such a way that {(a∞,∞), (a0, 0), (a1, 1), . . . , (ak, k)}
is a block if and only if there exist x, y ∈ Q such that (a∞, a0, a1, . . . , ak) =
(x, y, x ∗1 y, . . . , x ∗k y).

A block is thus fully determined by x = a∞ and y = a0. If 1 ≤ i ≤ k, then it
is also fully determined by x = a∞ and x ∗i y = ai, or by y = a0 and x ∗i y = ai.
If 1 ≤ i < j ≤ k then for any ai and aj there exist unique x, y ∈ Q such that
x ∗i y = ai and x ∗j y = aj . This means that there exists a unique block that
passes through (ai, i) and (aj , j). We have verified that the design is a transversal
(k + 2)-design of order n = |Q|.
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Orthogonal quasigroups from transversal designs. Let us have a transversal
(k+2)-design, k ≥ 2. Denote the groups by G∞, G0 and Gi, 1 ≤ i ≤ k. The groups
are of the same size. Let Q be a set for which there exist bijections γj : Q → Gj ,
j ∈ {∞, 0, 1, . . . , k}. Bijections γ∞, γ0 and γi, 1 ≤ i ≤ k, provide a quasigroup
(Q, ∗i) in which x ∗i y = z whenever there exists a block of the design that passes
through γ∞(x), γ0(y) and γi(z).

Suppose that 1 ≤ i < j ≤ k and consider u, v ∈ Q. There exists exactly one
block B of the design that passes through γi(u) and γj(v). Let x, y ∈ Q be such
that γ∞(x) ∈ B and γ0(y) ∈ B. Then x ∗i y = u and x ∗j y = v. The block B is
determined uniquely by (i, j, u, v). There thus exists a unique pair (x, y) ∈ Q ×Q
such that x ∗i y = u and x ∗j y = v. This means that quasigroups (Q, ∗1), . . . ,
(Q, ∗k) are mutually orthogonal.

Maximum number of orthogonal latin squares. A transversal (k+ 2)-design
of order n satisfies k+ 2 ≤ n+ 1, and the equality holds if and only if the design is
a dual of an affine plane.

Therefore k ≤ N(n) ≤ n − 1, and N(n) = n − 1 if and only if there exists a
projective plane of order n. If n is a power of a prime, then N(n) = n − 1. It is
widely believed that there are no other n > 1 with N(n) = n− 1. Lower estimates
of N(n) are a popular topic. For the upper estimates the following seem to be the
only results available:

• N(6) = 1 (a classical result belonging to Euler);
• N(10) ≤ 8 (one of the first big achievements of computer based combina-

torics);
• N(n) ≤ n− 2 if n ≡ 1, 2 mod 4 and n cannot be expressed as a sum of two

integer squares. (This is known as Bruck-Ryser Theorem.)

There are many constructions of two orthogonal latin squares. The construction
is more difficult if n = 4k + 2. A pair of orthogonal latin squares exists for each
n > 2, n 6= 6. Thus N(n) ≥ 2 if n > 2 and n 6= 6.

Definition of a transversal. Let L be a latin square. A set T of cells of L is
called a transversal if

(1) in each row there occurs exactly one cell of T ;
(2) in each column there occurs exactly one cell of T ; and
(3) every symbol occurs in exactly one cell of T .

It is easy to observe that isotopic transformations map a transerval upon a transver-
sal, and that a transformation of a latin square upon its parastrophe maps transver-
sals upon transversals. The number of transversals hence is an invariant of the main
class of a given latin square.

Transversals in order 5. Let L be a latin square. To find a transversal one may
start from a cell in the uppermost row, look for a cell in the next row which is
not in a conflict with the chosen cell (i.e., contains a different symbol and is in a
different row) and continue in the similar manner further on. This can lead to a
stalemate—at some row there is no way how to continue. Two examples of partial
transversals that cannot be completed are the two cases upon the left below. The
latin square in question is a representative of the (only) isotopy class of latin squares
of order 5 that are not isotopic to a latin square induced by addition modulo 5.
This square possesses exactly three transversals, all of them pass through the cell
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in the leftmost column that carries the symbol 2. One of them is upon the right.

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1
5 3 1 2 4

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1
5 3 1 2 4

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1

5 3 1 2 4

Transversals in order 4. The latin square upon the left is given by addition
modulo 4. As will proved later, this square possesses no transversal. Next to
it there is an isotopic square which was obtained by switching middle two rows
and columns. By flipping the intercalate in the bottom right corner there arises a
latin square that yields the multiplication table of a Klein group. The indicated
two transversals comprise all transversals that pass through the cell in the left top
corner. This latin square possesses eight transversals.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3
2 0 3 1
1 3 2 0
3 1 0 2

0 1 2 3

2 0 3 1

1 3 0 2

3 1 2 0

0 1 2 3

2 0 3 1

1 3 0 2

3 1 2 0

Transversals and complete mappings. Let Q be a quasigroup. A mapping
ϕ : Q→ Q is said to be complete if

• ϕ is a permutation of Q; and
• the mapping x 7→ xϕ(x) is also a permutation of Q.

If ϕ is a complete mapping of Q, then the cells (x, ϕ(x)) form a transversal in
the multiplication table of Q. On the other hand, for each transversal T of the
multiplication table there exists a permutation ϕ such that (x, ϕ(x)) are the cells
of T . This is because cells of T cover all rows and all columns. The fact that
each symbol occurs exactly once in a cell of T means that x 7→ xϕ(x) permutes Q.
Transversals and complete mappings thus describe the same phenomenon.

Transversals and orthogonal squares. Let (Q, ·) be a quasigroup. Let (Q, ∗)
be a quasigroup orthogonal to (Q, ·). Choose a ∈ Q. For each x ∈ Q there is
only one solution y to x ∗ y = a. Denote this solution by ϕa(x) (thus ϕa(x) gives
the result of division of a by x in (Q, ∗)). Since y is determined uniquely, ϕa is a
permutation of Q. For each b ∈ Q there exists exactly one pair (x, y) such that
xy = b and x ∗ y = a. Since y is equal to ϕa(x), by the definition of ϕa, the
existence and uniqueness of (x, y) may be rephrased by saying that for each b there
exists exactly one x ∈ Q such that xϕa(x) = b. In others words, x 7→ xϕa(x) is a
permutation of Q. The mapping ϕa is complete for each a ∈ Q.

If a 6= b, then ϕa(x) 6= ϕb(x) for each x ∈ Q. This means that the transversals
Ta = {(x, ϕa(x)); x ∈ Q} form a decomposition of the multiplication table of (Q, ·).

The process described above may be reversed in the sense that if L is a latin
square of order n that is partitioned by transversals T1, . . . , Tn, then this partition
yields an orthogonal latin square. To define such a square consider a bijection γ of
{1, . . . , n} upon the set of symbols, and put γ(k) into cell (i, j) if (i, j) belongs to
Tk.
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No transversals modulo 2n. Consider the addition modulo 2n, n ≥ 1. First
note that if α permutes Z2n , then∑

i∈Z2n

α(i) ≡
2n−1∑
i=0

i ≡ 2n−1 mod 2n

This is because i+ (2n − i) ≡ 0 mod 2n whenever 0 ≤ i < 2n−1.
Suppose now that ϕ is a complete mapping of (Z2n ,+). Since ϕ permutes Z2n ,

there has to be
∑
ϕ(x) = 2n−1. Since ψ : x → x + ϕ(x) also permutes Z2n , there

has to be
∑
ψ(x) = 2n−1. However∑
ψ(x) =

∑
(x+ ϕ(x)) =

∑
x+

∑
ϕ(x) = 2n−1 + 2n−1 = 0,

a contradiction. Thus the addition table modulo 2n possesses no transversal.

Groups of odd order. If G is a group of odd order then the main diagonal is a
transversal of the multiplication table of G. In other words x 7→ x2 permutes G.

To verify this it suffices to show that x2 = y2 implies x = y, for any x, y ∈ Q.
Choose m = 2k+ 1 such that the orders of both x and y divide m. Thus xm = 1 =
ym, and

x = xm+1 = x2(k+1) = (x2)k+1 = (y2)k+1 = ym+1 = y.

Complete mappings and groups. If ϕ is a complete mapping of a group G,
then Raϕ is also a complete mapping of G, for any a ∈ G. Indeed x 7→ xϕ(x) is a
permutation of G if and only x 7→ xϕ(x)a is a permutation of G.

Note that the latter observation may not be generalized to loops since the as-
sociativity of groups is involved. The observation has an important consequence:
Each complete mapping of a group induces a set of complete mappings all of which
together partition the multiplication table into transversals. A transversal of a
group multiplication table thus induces a latin square that is orthogonal to the
table.

Orthomorphisms. An orthomorphism of a group G is a permutation ψ of G such
that x 7→ x−1ψ(x) is a permutation of G.

If ψ is an orthomorphism, then ϕ : x 7→ x−1ψ(x) is a complete mapping since
ψ(x) = xϕ(x). If ϕ is a complete mapping of G, then x 7→ xϕ(x) is an ortho-
morphism. There is thus a 1–1 connection between orthomorphisms and complete
mappings.

Note that what is here called a complete mapping or an orthomorphism, might
be precised by calling it a left complete mapping or a left orthomorphism (the right
complete mapping would refer to ϕ(x)x and the right orthomorphism to ϕ(x)x−1).
Note also that the notion of orthomorphism may be generalized to quasigroups, by
writing x\ψ(x) in place of x−1ψ(x).

Orthomorphisms and automorphisms. An automorphism α of a group G is
said to be fixed point free if α(x) = x implies x = 1, for all x ∈ G. An auto-
morphism of a finite group is an orthomorphism if and only if it is fixed
point free. Indeed, x−1ϕ(x) = y−1ϕ(y) ⇔ yx−1 = ϕ(yx−1).

There are many groups which offer a plenty of fixed point free automorphisms.
If V is a vector space then an invertible linear mapping ϕ ∈ GL(V ) is fixed point
free if and only if 1 is not its eigenvalue. If V is an elementary abelian p group,
then V may be equipped with the structure of a finite field, say F . In such a
case the mapping x 7→ λx is a fixed point free automorphism of (F,+) whenever
λ ∈ F ∗, λ 6= 1. In fact, a complete set of mutually orthogonal latin squares may be
constructed in this way.
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Orthomorphisms and normal subgroups. Let N be a normal subgroup of a
finite group G, and let ν be an orthomorphism of N . Suppose that G/N is of order

k and that t1, . . . , tk are representatives of cosets modulo N . Suppose also that ψ̃
is an orthomorphism of G/N . Set ψ(nti) = ν(n)tj whenever ψ̃(tiN) = tjN , n ∈ N
and 1 ≤ i ≤ k. The claim is that ψ is an orthomorphism of G.

Proof. The fact that ψ permutes G follows immediately from the definition. Sup-
pose that x−1ψ(x) = y−1ψ(y). Assume that x = nti and y = mtj . Then

(tiN)−1ψ̃(tiN) = (tjN)−1ψ̃(tjN), which results in tiN = tjN and i = j. As-

sume that tkN = ψ̃(tiN), and put t = ti = tj and s = tk.
The assumption is that (nt)−1 · ν(n)s = (mt)−1 · ν(m)s. Cancelling t−1 on the

left and s on the right yields n−1ν(n) = m−1ν(m) and n = m. Hence x = y. �

The existence of a complete mapping in a finite group. As shown above,
the existence of a complete mapping in a group may be proved via factorization.
Normal subgroups of solvable groups are more easily accessible. Hence it is no
wonder that they were the first for which it was proved that

a group of even order possesses a complete mapping if and only if
its Sylow 2-group is not cyclic.

The complete proof of this fact depends upon the Classification of Finite Simple
Groups (CFSG).

Ryser’s conjecture states that in each latin square of odd order there exists a
transversal. The least order for which it is not known whether the conjecture holds
is equal to eleven.

In fact, Ryser originally conjectured that the order of a latin square has the same
parity as the number of transversals it possesses. This is true for even orders, as
proved by Balasubramanian. On the other hand, there exist latin squares of odd
order with even number of transversals.

Filling a latin square row by row. A latin rectangle is a k × n table such that
each of the k rows contains each of the n-element symbols, and no symbol appears
twice in the same column. Latin squares thus are the n× n latin rectangles.

Using a result that is known as Hall’s matching theorem it is not difficult to
show that each latin rectangle may be completed to a latin square.

Smetaniuk proved that an n× n array that is filled in at most n− 1 cells may be
completed to a latin squares if there are no two cells in the same row or column
that would be filled by the same symbol.

Exercise. Let G be a group. Describe all subsquares of the multiplication table
of G.


