Analytic combinatorics Lecture 4

March 31, 2021

Notation: For a complex number z = x + iy with $x, y \in \mathbb{R}$:

• $\Re(z) = x$ is the real part of z

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z
- $\bar{z} = x iy$ is the complex conjugate.

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z
- $\bar{z} = x iy$ is the complex conjugate.

Notation: For a complex number z = x + iy with $x, y \in \mathbb{R}$:

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z
- $\bar{z} = x iy$ is the complex conjugate.

Definition

Let $\rho \in [0, +\infty)$ and $z \in \mathbb{C}$.

• The open neighborhood of z with radius ρ , denoted $\mathbb{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C}; |w - z| < \rho\}$.

Notation: For a complex number z = x + iy with $x, y \in \mathbb{R}$:

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z
- $\overline{z} = x iy$ is the complex conjugate.

Definition

Let $\rho \in [0, +\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ , denoted $\mathbb{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C}; |w z| < \rho\}$.
- The closed neighborhood of z with radius ρ , denoted $\mathbb{N}_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C}; |w z| \leq \rho\}$.

Notation: For a complex number z = x + iy with $x, y \in \mathbb{R}$:

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z
- $\bar{z} = x iy$ is the complex conjugate.

Definition

Let $\rho \in [0, +\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ , denoted $\mathbb{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C}; |w z| < \rho\}$.
- The closed neighborhood of z with radius ρ , denoted $\mathbb{N}_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C}; |w z| \leq \rho\}$.
- The punctured open neighborhood of z with radius ρ , denoted $\mathcal{N}^*_{<\rho}(z)$, is the set $\{w \in \mathbb{C}; \ 0 < |w z| < \rho\}$. $\Rightarrow \mathcal{N}_{\varsigma}(z) \setminus \{z\}$

Notation: For a complex number z = x + iy with $x, y \in \mathbb{R}$:

- $\Re(z) = x$ is the real part of z
- $\Im(z) = y$ is the imaginary part of z
- $|z| = \sqrt{x^2 + y^2}$ is the absolute value (or modulus) of z
- $\overline{z} = x iy$ is the complex conjugate.

Definition

Let $\rho \in [0, +\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ , denoted $\mathbb{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C}; |w z| < \rho\}$.
- The closed neighborhood of z with radius ρ , denoted $\mathbb{N}_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C}; |w z| \leq \rho\}$.
- The punctured open neighborhood of z with radius ρ , denoted $\mathbb{N}^*_{<\rho}(z)$, is the set $\{w \in \mathbb{C}; \ 0 < |w z| < \rho\}.$
- The punctured closed neighborhood of z with radius ρ , denoted $\mathbb{N}^*_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C}; \ 0 < |w z| \le \rho\}$.

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_n$ converges to a sum S if $\lim_{k\to\infty} \sum_{n=0}^{k} s_n = S$.

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_n$ converges to a sum *S* if $\lim_{k\to\infty} \sum_{n=0}^{k} s_n = S$. Our focus: Series of the form $\sum_{n=0}^{\infty} a_n z_n^n$, with $(a_n) \subseteq \mathbb{C}$ and $z \in \mathbb{C}$.

Definition

For a complex f.p.s. $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$, the exponential growth rate of A(x), denoted $\eta(A)$, is defined as

$$\eta(A) := \limsup_{n \to \infty} \sqrt[n]{|a_n|} \in [0, +\infty].$$

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_n$ converges to a sum S if $\lim_{k\to\infty} \sum_{n=0}^{k} s_n = S$.

Our focus: Series of the form $\sum_{n=0}^{\infty} a_n z^n$, with $(a_n) \subseteq \mathbb{C}$ and $z \in \mathbb{C}$.

Definition

For a complex f.p.s. $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$, the exponential growth rate of A(x), denoted $\eta(A)$, is defined as

$$\eta(A) := \limsup_{n \to \infty} \sqrt[n]{|a_n|} \in [0, +\infty].$$

Remark: For $G \in (0, +\infty)$, $\eta(A) = G$ means that for every $\varepsilon > 0$, there are only finitely many values of *n* such that $|a_n| > (G + \varepsilon)^n$, but there are infinitely many values of *n* such that $|a_n| > (G - \varepsilon)^n$.

"an grows roughly like G"

$$A(x) = 1 + \chi + \chi^{2} + \chi^{3} + \dots + \chi^{(A)} = 1$$

 $B(x) = 1 + \chi^{2} + \chi^{4} + \chi^{4} + \dots + \chi^{(B)} = 1$

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_n$ converges to a sum *S* if $\lim_{k\to\infty} \sum_{n=0}^{k} s_n = S$.

Our focus: Series of the form $\sum_{n=0}^{\infty} a_n z^n$, with $(a_n) \subseteq \mathbb{C}$ and $z \in \mathbb{C}$.

Definition

For a complex f.p.s. $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$, the exponential growth rate of A(x), denoted $\eta(A)$, is defined as

$$\eta(A) := \limsup_{n \to \infty} \sqrt[n]{|a_n|} \in [0, +\infty].$$

Remark: For $G \in (0, +\infty)$, $\eta(A) = G$ means that for every $\varepsilon > 0$, there are only finitely many values of *n* such that $|a_n| > (G + \varepsilon)^n$, but there are infinitely many values of *n* such that $|a_n| > (G - \varepsilon)^n$.

Definition

The radius of convergence of $A(x) \in \mathbb{C}[[x]]$, denoted $\rho(A)$, is defined as

$$ho({\mathcal A}):=rac{1}{\eta({\mathcal A})}\in [0,+\infty], ext{ with the convention } rac{1}{0}=+\infty.$$

The f.p.s. is said to be convergent if $\rho(A) > 0$ (or equivalently $\eta(A) < +\infty$).

Let $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ . Then

Let $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ . Then

• If $\rho = +\infty$, then for every $z \in \mathbb{C}$, the series $A(z) = \sum_{n=0}^{\infty} a_n z^n$ converges.

Let $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ . Then

- If $\rho = +\infty$, then for every $z \in \mathbb{C}$, the series $A(z) = \sum_{n=0}^{\infty} a_n z^n$ converges.
- If $\rho = 0$, then for any $z \neq 0$, the series A(z) does not converge.

Let $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ . Then

- If $\rho = +\infty$, then for every $z \in \mathbb{C}$, the series $A(z) = \sum_{n=0}^{\infty} a_n z^n$ converges.
- If $\rho = 0$, then for any $z \neq 0$, the series A(z) does not converge.
- If ρ ∈ (0, +∞), then A(z) converges for all z with |z| < ρ (absolutely, locally uniformly on N_k_ρ(0)), and does not converge for any z with |z| > ρ.

Analytic functions

Definition

Let $z_0 \in \mathbb{C}$, let f be a complex-valued function defined on an open set $\Omega \subseteq \mathbb{C}$ containing z_0 . We say that f is analytic in z_0 if there is an $\varepsilon > 0$ and a power series $A(x) = \sum_{n=0}^{\infty} a_n x^n$ with $\rho(A) \ge \varepsilon$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$ we have

$$\underline{f(z)} = \sum_{n=0}^{\infty} a_n (z-z_0)^n.$$

The expression $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is then the (power) series expansion of f around the center z_0 .

Analytic functions

Definition

Let $z_0 \in \mathbb{C}$, let f be a complex-valued function defined on an open set $\Omega \subseteq \mathbb{C}$ containing z_0 . We say that f is analytic in z_0 if there is an $\varepsilon > 0$ and a power series $A(x) = \sum_{n=0}^{\infty} a_n x^n$ with $\rho(A) \ge \varepsilon$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$ we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n.$$

The expression $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is then the (power) series expansion of f around the center z_0 .

Observation

Let $z_0 \in \mathbb{C}$, let $f, g: \mathbb{C} \to \mathbb{C}$ be two functions satisfying $f(z) = g(z + z_0)$ for all $z \in \mathbb{C}$. Then f is analytic in 0 with series expansion $\sum_{n=0}^{\infty} a_n z^n$ if and only if g is analytic in z_0 with series expansion $\sum_{n=0}^{\infty} a_n (z - z_0)^n$.

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then

• f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then • f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z), • f(z)g(z) is analytic in 0, with series expansion A(z)B(z), • f(z)g(z) is analytic in 0, with series expansion A(z)B(z),

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then

- f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),
- f(z)g(z) is analytic in 0, with series expansion A(z)B(z),
- if $f(0) \neq 0$ (equivalently, $a_0 \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0, with series expansion $\frac{1}{A(z)}$,

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then

- f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),
- f(z)g(z) is analytic in 0, with series expansion A(z)B(z),
- if $f(0) \neq 0$ (equivalently, $a_0 \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0, with series expansion $\frac{1}{A(z)}$,

• if g(0) = 0 (equivalently, $b_0 = 0$), then f(g(z)) is analytic in 0, with series expansion A(B(z)). B composable Composition in CVI

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then

- f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),
- f(z)g(z) is analytic in 0, with series expansion A(z)B(z),
- if $f(0) \neq 0$ (equivalently, $a_0 \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0, with series expansion $\frac{1}{A(z)}$,
- if g(0) = 0 (equivalently, $b_0 = 0$), then f(g(z)) is analytic in 0, with series expansion A(B(z)).

Let f be analytic in 0 with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$, let g be analytic in 0 with series expansion $B(z) = \sum_{n=0}^{\infty} b_n z^n$. Then

- f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),
- f(z)g(z) is analytic in 0, with series expansion A(z)B(z),
- if $f(0) \neq 0$ (equivalently, $a_0 \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0, with series expansion $\frac{1}{A(z)}$,
- if g(0) = 0 (equivalently, b₀ = 0), then f(g(z)) is analytic in 0, with series expansion A(B(z)).

Consequence: convergent series form a subring of $\mathbb{C}[[x]]$.

S(A)>0

Definition

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set $\Omega \subseteq \mathcal{L}$ containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Limit: Suppose $(X_1 d_X)$ and $(Y_1 d_Y)$
are metric spaces, $g: X \to Y_1 \quad d \in X_1 \quad \beta \in Y$
 $\lim_{x \to \alpha} f(x) = \int_{x}^{y} means$
 $\forall z > 0 \quad \exists J > 0 : \quad \forall x \in X : \quad \exists x z_1 \\ \downarrow \\ \forall z = \int_{x}^{y} d_Y \quad \exists y \in X : \quad \exists x z_1 \\ \downarrow \\ \forall z = \int_{x}^{y} d_Y \quad \exists y \in X : \quad \exists x z_1 \\ \downarrow \\ \forall z = \int_{x}^{y} d_Y \quad d_Y \quad \exists y \in X : \quad \exists x z_1 \\ \downarrow \\ \forall z = \int_{x}^{y} d_Y \quad d_Y$

Definition

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 .

Definition

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 . Let f be analytic in 0, with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$. Then

Definition

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 . Let f be analytic in 0, with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$. Then

• f' is defined on a neighborhood of 0, is analytic in 0, with series expansion $\frac{d}{dz}A(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$.

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 . Let f be analytic in 0, with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$. Then

ih O

- f' is defined on a neighborhood of 0, is analytic in 0, with series expansion $\frac{d}{dz}A(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$.
- Consequently, f is continuous and has continuous derivatives of all orders,

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 .

Let f be analytic in 0, with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$. Then

- f' is defined on a neighborhood of 0, is analytic in 0, with series expansion $\frac{d}{dz}A(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$. $\leftarrow = a_1 + 2a_2 + 3a_3 + 2a_4 + 3a_3 + 2a_4 + 3a_4 + 3$
- Consequently, f is continuous and has continuous derivatives of all orders,
- $f(0) = a_0$, $f'(0) = a_1$, $f''(0) = 2a_2$, and in general $f^{(n)}(0) = n!a_n$, where $f^{(n)}$ is the derivative of f of order n.

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 .

Let f be analytic in 0, with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$. Then

- f' is defined on a neighborhood of 0, is analytic in 0, with series expansion $\frac{d}{dz}A(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$.
- Consequently, f is continuous and has continuous derivatives of all orders,
- $f(0) = a_0$, $f'(0) = a_1$, $f''(0) = 2a_2$, and in general $f^{(n)}(0) = n!a_n$, where $f^{(n)}$ is the derivative of f of order n.
- In particular, the series expansion of an analytic function is unique.

Let $z_0 \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_0 . The derivative of f in z_0 , denoted $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark: If f has a derivative $f'(z_0) \in \mathbb{C}$, then f is continuous in z_0 .

Let f be analytic in 0, with series expansion $A(z) = \sum_{n=0}^{\infty} a_n z^n$. Then

- f' is defined on a neighborhood of 0, is analytic in 0, with series expansion $\frac{d}{dz}A(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$.
- Consequently, f is continuous and has continuous derivatives of all orders,
- $f(0) = a_0$, $f'(0) = a_1$, $f''(0) = 2a_2$, and in general $f^{(n)}(0) = n!a_n$, where $f^{(n)}$ is the derivative of f of order n.
- In particular, the series expansion of an analytic function is unique.

Suppose f(0) = 0 and f'(0) ≠ 0 (equivalently, a₀ = 0 and a₁ ≠ 0). Then there is ε > 0 such that f maps N_{<ε}(0) bijectively to an open set Ω ⊆ C containing 0, and the inverse function f⁽⁻¹⁾: Ω → N_{<ε}(0) is analytic in 0 with series expansion A⁽⁻¹⁾(z).

Local analytic uniqueness

Proposition

Let f be analytic in z_0 . Then one of the following possibilities holds:

- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$, $f(z) = f(z_0)$.
- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}^*_{<\varepsilon}(z_0)$, $f(z) \neq f(z_0)$.

take 2,=0 15. for ze Mag(0). Distinguish an=0 for all n=1: f(2)=a, tze M25 2) Inz1: an = 0. Choose smallest + Qut ic, continuous,

Proposition

Let f be analytic in z_0 . Then one of the following possibilities holds:

- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$, $f(z) = f(z_0)$.
- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}^*_{<\varepsilon}(z_0)$, $f(z) \neq f(z_0)$.

Corollary

Let f and g be functions analytic in z_0 , with $f(z_0) = g(z_0)$. Then one of the following possibilities holds:

- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$, f(z) = g(z).
- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}^*_{<\varepsilon}(z_0)$, $f(z) \neq g(z)$.

Proposition

Let f be analytic in z_0 . Then one of the following possibilities holds:

- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$, $f(z) = f(z_0)$.
- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}^*_{<\varepsilon}(z_0)$, $f(z) \neq f(z_0)$.

Corollary

Let f and g be functions analytic in z_0 , with $f(z_0) = g(z_0)$. Then one of the following possibilities holds:

- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$, f(z) = g(z).
- There is an $\varepsilon > 0$ such that for every $z \in \mathbb{N}^*_{<\varepsilon}(z_0)$, $f(z) \neq g(z)$.

Corollary

Let f and g be functions analytic in z_0 , such that for every $\delta > 0$ there is a $z \in \mathbb{N}^*_{<\delta}(z_0)$ such that f(z) = g(z). Then, for some $\varepsilon > 0$, we have f(z) = g(z) for every $z \in \mathbb{N}_{<\varepsilon}(z_0)$.

Examples of analytic functions

> constant : analytic as in any 7. Et -> polynomial: $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$ analytic in Z,EC: $\frac{1}{1-p_{1}} = a_{0} + a_{1} (X-z_{0}+z_{0}) + a_{2} (X-z_{0}+z_{0})^{2}$ $\frac{1}{p(x)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{q_0 + q_1} (x - z_0) + a_1 z_0 + a_2 (x - z_0) + a_1 z_0 + a_2 (x - z_0) + a_1 z_0 + a_2 (x - z_0) + a_2 + a_2 ($ p polynomial $(x-z_0)^2 + 2(x-z_0)-z_0 + z_0^2)$ $= (a_{0} + a_{1}z_{0} + a_{2}z_{0}^{2}) + (a_{1} + 2a_{2}), (x - z_{0})^{+}$ f analytic. s.t. p(20) = 0. (1 2 (x-20)) in any ZoEl

Examples of non-analytic functions

The functions $f_1(z) = \Re(z)$, $f_2(z) = \Im(z)$, $f_3(z) = |z|$ and $f_4(z) = \overline{z}$ are not analytic in any point.

Global properties of analytic functions

Let $\Omega \subseteq \mathbb{C}$ be an open set. We say that f is analytic on Ω , if f is analytic in every point of Ω .

Proposition

Let $A(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with radius of convergence $\rho > 0$. Define a function $f: \mathbb{N}_{<\rho}(0) \to \mathbb{C}$ by $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Then f is analytic on $\mathbb{N}_{<\rho}(0)$. Moreover, for $z_0 \in \mathbb{N}_{<\rho}(0)$, the series expansion of f with center z_0 has radius of convergence at least $\rho - |z_0|$.