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Complex numbers

Notation: For a complex number z = x + iy with x , y ∈ R:
<(z) = x is the real part of z

=(z) = y is the imaginary part of z

|z| =
√

x2 + y2 is the absolute value (or modulus) of z

z̄ = x − iy is the complex conjugate.

Definition

Let ρ ∈ [0,+∞) and z ∈ C.
The open neighborhood of z with radius ρ, denoted N<ρ(z), is the set
{w ∈ C; |w − z| < ρ}.
The closed neighborhood of z with radius ρ, denoted N≤ρ(z), is the set
{w ∈ C; |w − z| ≤ ρ}.
The punctured open neighborhood of z with radius ρ, denoted N∗<ρ(z), is the set
{w ∈ C; 0 < |w − z| < ρ}.
The punctured closed neighborhood of z with radius ρ, denoted N∗≤ρ(z), is the
set {w ∈ C; 0 < |w − z| ≤ ρ}.
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Complex series

Recall: An infinite series of (real or complex) numbers
∑∞

n=0 sn converges to a sum S

if limk→∞
∑k

n=0 sn = S.

Our focus: Series of the form
∑∞

n=0 anzn, with (an) ⊆ C and z ∈ C.

Definition

For a complex f.p.s. A(x) =
∑∞

n=0 anxn ∈ C[[x]], the exponential growth rate of A(x),
denoted η(A), is defined as

η(A) := lim sup
n→∞

n
√
|an| ∈ [0,+∞].

Remark: For G ∈ (0,+∞), η(A) = G means that for every ε > 0, there are only
finitely many values of n such that |an| > (G + ε)n, but there are infinitely many
values of n such that |an| > (G − ε)n.

Definition

The radius of convergence of A(x) ∈ C[[x]], denoted ρ(A), is defined as

ρ(A) :=
1

η(A)
∈ [0,+∞], with the convention

1
0

= +∞.

The f.p.s. is said to be convergent if ρ(A) > 0 (or equivalently η(A) < +∞).



Complex series

Recall: An infinite series of (real or complex) numbers
∑∞

n=0 sn converges to a sum S

if limk→∞
∑k

n=0 sn = S.

Our focus: Series of the form
∑∞

n=0 anzn, with (an) ⊆ C and z ∈ C.

Definition

For a complex f.p.s. A(x) =
∑∞

n=0 anxn ∈ C[[x]], the exponential growth rate of A(x),
denoted η(A), is defined as

η(A) := lim sup
n→∞

n
√
|an| ∈ [0,+∞].

Remark: For G ∈ (0,+∞), η(A) = G means that for every ε > 0, there are only
finitely many values of n such that |an| > (G + ε)n, but there are infinitely many
values of n such that |an| > (G − ε)n.

Definition

The radius of convergence of A(x) ∈ C[[x]], denoted ρ(A), is defined as

ρ(A) :=
1

η(A)
∈ [0,+∞], with the convention

1
0

= +∞.

The f.p.s. is said to be convergent if ρ(A) > 0 (or equivalently η(A) < +∞).

Guest
FreeHand

Guest
FreeHand



Complex series

Recall: An infinite series of (real or complex) numbers
∑∞

n=0 sn converges to a sum S

if limk→∞
∑k

n=0 sn = S.

Our focus: Series of the form
∑∞

n=0 anzn, with (an) ⊆ C and z ∈ C.

Definition

For a complex f.p.s. A(x) =
∑∞

n=0 anxn ∈ C[[x]], the exponential growth rate of A(x),
denoted η(A), is defined as

η(A) := lim sup
n→∞

n
√
|an| ∈ [0,+∞].

Remark: For G ∈ (0,+∞), η(A) = G means that for every ε > 0, there are only
finitely many values of n such that |an| > (G + ε)n, but there are infinitely many
values of n such that |an| > (G − ε)n.

Definition

The radius of convergence of A(x) ∈ C[[x]], denoted ρ(A), is defined as

ρ(A) :=
1

η(A)
∈ [0,+∞], with the convention

1
0

= +∞.

The f.p.s. is said to be convergent if ρ(A) > 0 (or equivalently η(A) < +∞).

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand



Complex series

Recall: An infinite series of (real or complex) numbers
∑∞

n=0 sn converges to a sum S

if limk→∞
∑k

n=0 sn = S.

Our focus: Series of the form
∑∞

n=0 anzn, with (an) ⊆ C and z ∈ C.

Definition

For a complex f.p.s. A(x) =
∑∞

n=0 anxn ∈ C[[x]], the exponential growth rate of A(x),
denoted η(A), is defined as

η(A) := lim sup
n→∞

n
√
|an| ∈ [0,+∞].

Remark: For G ∈ (0,+∞), η(A) = G means that for every ε > 0, there are only
finitely many values of n such that |an| > (G + ε)n, but there are infinitely many
values of n such that |an| > (G − ε)n.

Definition

The radius of convergence of A(x) ∈ C[[x]], denoted ρ(A), is defined as

ρ(A) :=
1

η(A)
∈ [0,+∞], with the convention

1
0

= +∞.

The f.p.s. is said to be convergent if ρ(A) > 0 (or equivalently η(A) < +∞).

Guest
FreeHand



Radius of convergence

Fact

Let A(x) =
∑∞

n=0 anxn ∈ C[[x]] be a series with radius of convergence ρ. Then

If ρ = +∞, then for every z ∈ C, the series A(z) =
∑∞

n=0 anzn converges.

If ρ = 0, then for any z 6= 0, the series A(z) does not converge.

If ρ ∈ (0,+∞), then A(z) converges for all z with |z| < ρ (absolutely, locally
uniformly on N≤ρ(0)), and does not converge for any z with |z| > ρ.
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Analytic functions

Definition

Let z0 ∈ C, let f be a complex-valued function defined on an open set Ω ⊆ C
containing z0. We say that f is analytic in z0 if there is an ε > 0 and a power series
A(x) =

∑∞
n=0 anxn with ρ(A) ≥ ε such that for every z ∈ N<ε(z0) we have

f (z) =
∞∑

n=0

an(z − z0)n.

The expression
∑∞

n=0 an(z − z0)n is then the (power) series expansion of f around the
center z0.

Observation

Let z0 ∈ C, let f , g : C→ C be two functions satisfying f (z) = g(z + z0) for all z ∈ C.
Then f is analytic in 0 with series expansion

∑∞
n=0 anzn if and only if g is analytic in

z0 with series expansion
∑∞

n=0 an(z − z0)n.
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Properties of analytic functions

Let f be analytic in 0 with series expansion A(z) =
∑∞

n=0 anzn, let g be analytic in 0
with series expansion B(z) =

∑∞
n=0 bnzn. Then

f (z) + g(z) is analytic in 0, with series expansion A(z) + B(z),

f (z)g(z) is analytic in 0, with series expansion A(z)B(z),

if f (0) 6= 0 (equivalently, a0 6= 0), then 1
f (z)

is analytic in 0, with series expansion
1

A(z)
,

if g(0) = 0 (equivalently, b0 = 0), then f (g(z)) is analytic in 0, with series
expansion A(B(z)).

Consequence: convergent series form a subring of C[[x]].
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Derivative

Definition

Let z0 ∈ C, and let f be a complex-valued function defined on an open set Ω
containing z0. The derivative of f in z0, denoted f ′(z0), is defined by

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0
.

Remark: If f has a derivative f ′(z0) ∈ C, then f is continuous in z0.
Let f be analytic in 0, with series expansion A(z) =

∑∞
n=0 anzn. Then

f ′ is defined on a neighborhood of 0, is analytic in 0, with series expansion
d
dz

A(z) =
∑∞

n=0(n + 1)an+1zn.

Consequently, f is continuous and has continuous derivatives of all orders,

f (0) = a0, f ′(0) = a1, f ′′(0) = 2a2, and in general f (n)(0) = n!an, where f (n) is
the derivative of f of order n.

In particular, the series expansion of an analytic function is unique.

Suppose f (0) = 0 and f ′(0) 6= 0 (equivalently, a0 = 0 and a1 6= 0). Then there is
ε > 0 such that f maps N<ε(0) bijectively to an open set Ω ⊆ C containing 0,
and the inverse function f 〈−1〉 : Ω→ N<ε(0) is analytic in 0 with series
expansion A〈−1〉(z).
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Local analytic uniqueness

Proposition

Let f be analytic in z0. Then one of the following possibilities holds:

There is an ε > 0 such that for every z ∈ N<ε(z0), f (z) = f (z0).

There is an ε > 0 such that for every z ∈ N∗<ε(z0), f (z) 6= f (z0).

Corollary

Let f and g be functions analytic in z0, with f (z0) = g(z0). Then one of the following
possibilities holds:

There is an ε > 0 such that for every z ∈ N<ε(z0), f (z) = g(z).

There is an ε > 0 such that for every z ∈ N∗<ε(z0), f (z) 6= g(z).

Corollary

Let f and g be functions analytic in z0, such that for every δ > 0 there is a
z ∈ N∗<δ(z0) such that f (z) = g(z). Then, for some ε > 0, we have f (z) = g(z) for
every z ∈ N<ε(z0).
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Examples of analytic functions
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Examples of non-analytic functions

The functions f1(z) = <(z), f2(z) = =(z), f3(z) = |z| and f4(z) = z̄ are not analytic
in any point.
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Global properties of analytic functions

Let Ω ⊆ C be an open set. We say that f is analytic on Ω, if f is analytic in every
point of Ω.

Proposition

Let A(z) =
∑∞

n=0 anzn be a power series with radius of convergence ρ > 0. Define a
function f : N<ρ(0)→ C by f (z) =

∑∞
n=0 anzn. Then f is analytic on N<ρ(0).

Moreover, for z0 ∈ N<ρ(0), the series expansion of f with center z0 has radius of
convergence at least ρ− |z0|.




