Analytic combinatorics
 Lecture 4

March 31, 2021

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\underbrace{\Re(z)}=x$ is the real part of z

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z
- $\bar{z}=x-i y$ is the complex conjugate.

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z
- $\bar{z}=x-i y$ is the complex conjugate.

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z
- $\bar{z}=x-i y$ is the complex conjugate.

Definition

Let $\rho \in[0,+\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ, denoted $\mathcal{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z|<\rho\}$.

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z
- $\bar{z}=x-i y$ is the complex conjugate.

Definition

Let $\rho \in[0,+\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ, denoted $\mathcal{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z|<\rho\}$.
- The closed neighborhood of z with radius ρ, denoted $\mathcal{N}_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z| \leq \rho\}$.

Complex numbers

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z
- $\bar{z}=x-i y$ is the complex conjugate.

Definition

Let $\rho \in[0,+\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ, denoted $\mathcal{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z|<\rho\}$.
- The closed neighborhood of z with radius ρ, denoted $\mathcal{N}_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z| \leq \rho\}$.
- The punctured open neighborhood of z with radius ρ, denoted $\mathcal{N}_{<\rho}^{*}(z)$, is the set $\{w \in \mathbb{C} ; 0<|w-z|<\rho\} .=\mathcal{M}_{<\rho}(z) \backslash\{z\}$

Notation: For a complex number $z=x+i y$ with $x, y \in \mathbb{R}$:

- $\Re(z)=x$ is the real part of z
- $\Im(z)=y$ is the imaginary part of z
- $|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus) of z
- $\bar{z}=x-i y$ is the complex conjugate.

Definition

Let $\rho \in[0,+\infty)$ and $z \in \mathbb{C}$.

- The open neighborhood of z with radius ρ, denoted $\mathcal{N}_{<\rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z|<\rho\}$.
- The closed neighborhood of z with radius ρ, denoted $\mathcal{N}_{\leq \rho}(z)$, is the set $\{w \in \mathbb{C} ;|w-z| \leq \rho\}$.
- The punctured open neighborhood of z with radius ρ, denoted $\mathcal{N}_{<\rho}^{*}(z)$, is the set $\{w \in \mathbb{C} ; 0<|w-z|<\rho\}$.
- The punctured closed neighborhood of z with radius ρ, denoted $\mathcal{N}_{\leq \rho}^{*}(z)$, is the set $\{w \in \mathbb{C} ; 0<|w-z| \leq \rho\}$.

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_{n}$ converges to a sum S if $\lim _{k \rightarrow \infty} \sum_{n=0}^{k} s_{n}=S$.

Complex series

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_{n}$ converges to a sum S if $\lim _{k \rightarrow \infty} \sum_{n=0}^{k} s_{n}=S$.
Our focus: Series of the form $\sum_{n=0}^{\infty} \underset{a_{n} z^{n}}{\downarrow}$; with $\left(a_{n}\right) \subseteq \mathbb{C}$ and $z \in \mathbb{C}$.

Definition

For a complex f.p.s. $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$, the exponential growth rate of $A(x)$, denoted $\eta(A)$, is defined as

$$
\eta(A):=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \in[0,+\infty]
$$

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_{n}$ converges to a sum S if $\lim _{k \rightarrow \infty} \sum_{n=0}^{k} s_{n}=S$.
Our focus: Series of the form $\sum_{n=0}^{\infty} a_{n} z^{n}$, with $\left(a_{n}\right) \subseteq \mathbb{C}$ and $z \in \mathbb{C}$.

Definition

For a complex f.p.s. $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$, the exponential growth rate of $A(x)$, denoted $\eta(A)$, is defined as

$$
\eta(A):=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \in[0,+\infty]
$$

Remark: For $G \in(0,+\infty), \eta(A)=G$ means that for every $\varepsilon>0$, there are only finitely many values of n such that $\left|a_{n}\right|>(G+\varepsilon)^{n}$, but there are infinitely many values of n such that $\left|a_{n}\right|>(G-\varepsilon)^{n}$.

$$
\begin{aligned}
& \text { "an grows roughly like } G^{n} " \\
& A(x)=1+x+x^{2}+x^{3}+\cdots \quad \eta(A)=1 \\
& B(x)=1+x^{2}+x^{4}+x^{6}+\ldots \quad \eta(B)=1
\end{aligned}
$$

Recall: An infinite series of (real or complex) numbers $\sum_{n=0}^{\infty} s_{n}$ converges to a sum S if $\lim _{k \rightarrow \infty} \sum_{n=0}^{k} s_{n}=S$.
Our focus: Series of the form $\sum_{n=0}^{\infty} a_{n} z^{n}$, with $\left(a_{n}\right) \subseteq \mathbb{C}$ and $z \in \mathbb{C}$.

Definition

For a complex f.p.s. $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$, the exponential growth rate of $A(x)$, denoted $\eta(A)$, is defined as

$$
\eta(A):=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \in[0,+\infty]
$$

Remark: For $G \in(0,+\infty), \eta(A)=G$ means that for every $\varepsilon>0$, there are only finitely many values of n such that $\left|a_{n}\right|>(G+\varepsilon)^{n}$, but there are infinitely many values of n such that $\left|a_{n}\right|>(G-\varepsilon)^{n}$.

Definition

The radius of convergence of $A(x) \in \mathbb{C}[[x]]$, denoted $\rho(A)$, is defined as

$$
\rho(A):=\frac{1}{\eta(A)} \in[0,+\infty], \text { with the convention } \frac{1}{0}=+\infty
$$

The f.p.s. is said to be convergent if $\rho(A)>0$ (or equivalently $\eta(A)<+\infty$).

Fact

Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ. Then

Fact

Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ. Then

- If $\rho=+\infty$, then for every $z \in \mathbb{C}$, the series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ converges.

Fact

Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ. Then

- If $\rho=+\infty$, then for every $z \in \mathbb{C}$, the series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ converges.
- If $\rho=0$, then for any $z \neq 0$, the series $A(z)$ does not converge.

Radius of convergence

Fact
Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{C}[[x]]$ be a series with radius of convergence ρ. Then

- If $\rho=+\infty$, then for every $z \in \mathbb{C}$, the series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ converges.
- If $\rho=0$, then for any $z \neq 0$, the series $A(z)$ does not converge.
- If $\rho \in(0,+\infty)$, then $A(z)$ converges for all z with $|z|<\rho$ (absolutely, locally uniformly on $\mathcal{N}_{\ddagger \rho}(0)$), and does not converge for any z with $|z|>\rho$.

$$
A(z)=1+z+z^{2}+z^{3}+\ldots
$$

$$
\rho=1
$$

Definition

Let $z_{0} \in \mathbb{C}$, let f be a complex-valued function defined on an open set $\Omega \subseteq \mathbb{C}$ containing z_{0}. We say that f is analytic in z_{0} if there is an $\varepsilon>0$ and a power series $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with $\rho(A) \geq \varepsilon$ such that for every $z \in \underbrace{\mathcal{N}}<\varepsilon\left(z_{0}\right)$ we have

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The expression $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is then (hewer) series expansion of f around the center z_{0}.

Definition

Let $z_{0} \in \mathbb{C}$, let f be a complex-valued function defined on an open set $\Omega \subseteq \mathbb{C}$ containing z_{0}. We say that f is analytic in z_{0} if there is an $\varepsilon>0$ and a power series $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with $\rho(A) \geq \varepsilon$ such that for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right)$ we have

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The expression $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is then the (power) series expansion of f around the center z_{0}.

Observation

Let $z_{0} \in \mathbb{C}$, let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ be two functions satisfying $f(z)=g\left(z+z_{0}\right)$ for all $z \in \mathbb{C}$. Then f is analytic in 0 with series expansion $\sum_{n=0}^{\infty} a_{n} z^{n}$ if and only if g is analytic in z_{0} with series expansion $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$.

Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

- $f(z)+g(z)$ is analytic in 0 , with series expansion $A(z)+B(z)$,

Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

- $f(z)+g(z)$ is analytic in 0 , with series expansion $A(z)+B(z)$, operations
- $f(z) g(z)$ is analytic in 0 , with series expansion $A(z) B(z)$, , $\}$ in $\mathbb{C}[K]$

Properties of analytic functions
Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

- $f(z)+g(z)$ is analytic in 0 , with series expansion $A(z)+B(z)$,
- $f(z) g(z)$ is analytic in 0 , with series expansion $A(z) B(z)$,
- if $f(0) \neq 0$ (equivalently, $a_{0} \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0 , with series expansion $\frac{1}{A(z)}$,

$$
\bar{F}_{\sin } \mathbb{C}[x]
$$

$$
\text { in } \mathbb{C}
$$

Properties of analytic functions

Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

- $f(z)+g(z)$ is analytic in 0 , with series expansion $A(z)+B(z)$,
- $f(z) g(z)$ is analytic in 0 , with series expansion $A(z) B(z)$,
- if $f(0) \neq 0$ (equivalently, $a_{0} \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0 , with series expansion $\frac{1}{A(z)}$,
- if $g(0)=0$ (equivalently, $\underbrace{b_{0}=0}$), then $f(g(z))$ is analytic in 0 , with series expansion $A(B(z))$.

Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

- $f(z)+g(z)$ is analytic in 0 , with series expansion $A(z)+B(z)$,
- $f(z) g(z)$ is analytic in 0 , with series expansion $A(z) B(z)$,
- if $f(0) \neq 0$ (equivalently, $a_{0} \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0 , with series expansion $\frac{1}{A(z)}$,
- if $g(0)=0$ (equivalently, $b_{0}=0$), then $f(g(z))$ is analytic in 0 , with series expansion $A(B(z))$.

Let f be analytic in 0 with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let g be analytic in 0 with series expansion $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

- $f(z)+g(z)$ is analytic in 0 , with series expansion $A(z)+B(z)$,
- $f(z) g(z)$ is analytic in 0 , with series expansion $A(z) B(z)$,
- if $f(0) \neq 0$ (equivalently, $a_{0} \neq 0$), then $\frac{1}{f(z)}$ is analytic in 0 , with series expansion $\frac{1}{A(z)}$,
- if $g(0)=0$ (equivalently, $b_{0}=0$), then $f(g(z))$ is analytic in 0 , with series expansion $A(B(z))$.
Consequence: convergent series form a subring of $\mathbb{C}[[x]]$.
$\rho(A)>0$

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set $\Omega \subseteq \mathbb{C}$ containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

Limit: Suppose $\left(X, d_{x}\right)$ and $\left(y, d_{y}\right)$ are metric spaces, $g: X \rightarrow Y, \alpha \in X, \beta \in Y$

$$
\begin{aligned}
& " \lim _{x \rightarrow \alpha} f(x)=\beta \text { " means } \\
& \forall \varepsilon>0 \text { Z } \quad \text { >0: } \forall x \in X: \quad 0<d_{\beta=1}(x, \alpha)<g \\
& x \underbrace{\forall \varepsilon>0 \quad d \delta>0: ~}_{\text {metric on } \mathbb{C}:|x-y|}
\end{aligned}
$$

Derivative

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}.

Derivative

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}. Let f be analytic in 0 , with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

Derivative

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}. Let f be analytic in 0 , with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

- f^{\prime} is defined on a neighborhood of 0 , is analytic in 0 , with series expansion $\frac{\mathrm{d}}{\mathrm{d} z} A(z)=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}$.

Derivative

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}. Let f be analytic in 0 , with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

- f^{\prime} is defined on a neighborhood of 0 , is analytic in 0 , with series expansion $\frac{\mathrm{d}}{\mathrm{d} z} A(z)=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}$.
- Consequently, f is continuous and has continuous derivatives of all orders,

Derivative

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}. Let f be analytic in 0 , with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

- f^{\prime} is defined on a neighborhood of 0 , is analytic in 0 , with series expansion $\frac{\mathrm{d}}{\mathrm{d} z} A(z)=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n} . \lessdot=a_{1}+2 a_{2} z+3 a_{3} z^{2}+\ldots$
- Consequently, f is continuous and has continuous derivatives of all orders,
- $f(0)=a_{0}, f^{\prime}(0)=a_{1}, f^{\prime \prime}(0)=2 a_{2}$, and in general $f^{(n)}(0)=n!a_{n}$, where $f^{(n)}$ is the derivative of f of order n.

Derivative

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}. Let f be analytic in 0 , with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$; Then

- f^{\prime} is defined on a neighborhood of 0 , is analytic in 0 , with series expansion $\frac{\mathrm{d}}{\mathrm{d} z} A(z)=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}$.
- Consequently, f is continuous and has continuous derivatives of all orders,
- $f(0)=a_{0}, f^{\prime}(0)=a_{1}, f^{\prime \prime}(0)=2 a_{2}$, and in general $f^{(n)}(0)=n!a_{n}$, where $f^{(n)}$ is the derivative of f of order n.
- In particular, the series expansion of an analytic function is unique.

Definition

Let $z_{0} \in \mathbb{C}$, and let f be a complex-valued function defined on an open set Ω containing z_{0}. The derivative of f in z_{0}, denoted $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Remark: If f has a derivative $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$, then f is continuous in z_{0}. Let f be analytic in 0 , with series expansion $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

- f^{\prime} is defined on a neighborhood of 0 , is analytic in 0 , with series expansion $\frac{\mathrm{d}}{\mathrm{d} z} A(z)=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}$.
- Consequently, f is continuous and has continuous derivatives of all orders,
- $f(0)=a_{0}, f^{\prime}(0)=a_{1}, f^{\prime \prime}(0)=2 a_{2}$, and in general $f^{(n)}(0)=n!a_{n}$, where $f^{(n)}$ is the derivative of f of order n.
- In particular, the series expansion of an analytic function is unique.
- Suppose $f(0)=0$ and $f^{\prime}(0) \neq 0$ (equivalently, $a_{0}=0$ and $a_{1} \neq 0$). Then there is $\varepsilon>0$ such that f maps $\mathcal{N}_{\langle\varepsilon}(0)$ biiectively to an open set $\Omega \subseteq \mathbb{C}$ containing 0 , and the inverse function $f^{\langle-1\rangle}: \Omega \rightarrow \mathcal{N}_{<\varepsilon}(0)$ is analytic in 0 with series expansion $A^{\langle-1\rangle}(z)$.

Proposition
Let f be analytic in z_{0}. Then one of the following possibilities holds:

- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right), f(z)=f\left(z_{0}\right)$. \longleftarrow
- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}^{*}\left(z_{0}\right), f(z) \neq f\left(z_{0}\right) . \leftarrow$

$P f: \operatorname{take} z_{0}=0$

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

for $z \in \eta_{<\delta}(0)$. Distinguish 2 cases:

1) $a_{n}=0$ for all $n \geq 1: f(z)=a_{0} \quad \forall z \in M_{<, \delta}(0)$
2) $\exists n \geqslant 1: a_{n} \neq 0$. Choose smullusk such n :

$$
\begin{aligned}
& f(z)=a_{0}+a_{n} z^{n}+a_{n+1} z^{n+1} t \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { for some } \varepsilon>0
\end{aligned}
$$

Local analytic uniqueness

Proposition
Let f be analytic in z_{0}. Then one of the following possibilities holds:

- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right), f(z)=f\left(z_{0}\right)$.]
- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}^{*}\left(z_{0}\right), f(z) \neq f\left(z_{0}\right)$.

Corollary
Let f and g be functions analytic in z_{0}, with $f\left(z_{0}\right)=g\left(z_{0}\right)$. Then one of the following possibilities holds:

- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right), f(z)=g(z)$.
- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}^{*}\left(z_{0}\right), f(z) \neq g(z)$.

Pf: Apply Proposition to $h(z):=f(z)-g(z)$

$$
h\left(z_{0}\right)=0
$$

Proposition

Let f be analytic in z_{0}. Then one of the following possibilities holds:

- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right), f(z)=f\left(z_{0}\right)$.
- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}^{*}\left(z_{0}\right), f(z) \neq f\left(z_{0}\right)$.

Corollary

Let f and g be functions analytic in z_{0}, with $f\left(z_{0}\right)=g\left(z_{0}\right)$. Then one of the following possibilities holds:

- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right), f(z)=g(z)$.
- There is an $\varepsilon>0$ such that for every $z \in \mathcal{N}_{<\varepsilon}^{*}\left(z_{0}\right), f(z) \neq g(z)$.

Corollary

Let f and g be functions analytic in z_{0}, such that for every $\delta>0$ there is a $z \in \mathcal{N}_{<\delta}^{*}\left(z_{0}\right)$ such that $f(z)=g(z)$. Then, for some $\varepsilon>0$, we have $f(z)=g(z)$ for every $z \in \mathcal{N}_{<\varepsilon}\left(z_{0}\right)$.
Pf: fig analytic $\Rightarrow f i g$ continuous $\Rightarrow f\left(z_{0}\right)=g\left(z_{0}\right)$,
\rightarrow constant: analytic in any $z_{0} \in \mathbb{C}$
\rightarrow polynomial: 11

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}
$$

$$
\begin{aligned}
& \text { anal tic in } z_{0} \in \mathbb{C} \text { : } \\
& 1 \quad p(x)=a_{0}+a_{1}\left(x-z_{0}+z_{0}\right)+a_{2}\left(x-z_{0}+z_{0}\right)^{2} \\
& P \text { polynomial } \\
& \text { of araljzic } \\
& \text { in any } z_{0} \in \mathbb{C} \\
& =a_{0}+a_{1}\left(x-z_{0}\right)+a_{1} z_{0}+a_{2} C
\end{aligned}
$$

Examples of non-analytic functions

The functions $f_{1}(z)=\Re(z), f_{2}(z)=\Im(z), f_{3}(z)=|z|$ and $f_{4}(z)=\bar{z}$ are not analytic
in any point.
$f_{1}(z)$ is not analytic in any point

$$
z_{0}=x_{0}+i y_{0}, x_{01} y_{0} \in \mathbb{R}
$$

contrackicts Proposition "Local uni queness"

Let $\Omega \subseteq \mathbb{C}$ be an open set. We say that f is analytic on Ω, if f is analytic in every point of Ω.

Proposition

Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $\rho>0$. Define a function $f: \mathcal{N}_{<\rho}(0) \rightarrow \mathbb{C}$ by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then f is analytic on $\mathcal{N}_{<\rho}(0)$. Moreover, for $z_{0} \in \mathcal{N}_{<\rho}(0)$, the series expansion of f with center z_{0} has radius of convergence at least $\rho-\left|z_{0}\right|$.

