NMAI059 Probability and statistics 1 Class 5

Robert Šámal

Overview

Random vectors

Conditional distribution

Continuous random variables

Basic description of random vectors

- ▶ X, Y random variables on the same probability space (Ω, \mathcal{F}, P) .
- ▶ We wish to treat (X, Y) as one object a random vector.
- How to do that?
- Example: we roll twice a 4-sided dice, X = first outcome, Y = second one.

Joint distribution

Definition

For a discrete r.v. X, Y on a probability space (Ω, \mathcal{F}, P) we define their joint PMF $p_{X,Y} : \mathbb{R}^2 \to [0,1]$ by a formula

$$p_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) = x \& Y(\omega) = y\}).$$

For this we need that for each $x,y\in\mathbb{R}$ we have $\{\omega\in\Omega:X(\omega)=x\&Y(\omega)=y\}\in\mathcal{F}$, otherwise we do not consider (X,Y) as a random vector.

• We can define it also for more than two r.v.'s $p_{X_1,...,X_n}(x_1,...,x_n)$.

Marginal distribution

▶ Given $p_{X,Y}$, how to find the distribution of each of the coordinates, that is p_X and p_Y ?

Independence of r.v.'s

Definition

Discrete r.v.'s X, Y are independent if for every $x,y\in\mathbb{R}$ the events $\{X=x\}$ a $\{Y=y\}$ are independent. That happens if and only if

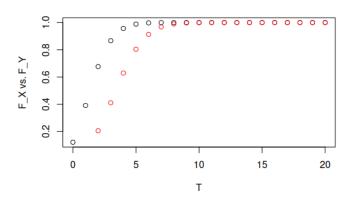
$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Example: Multinomial distribution

▶ On a die we roll i with probability p_i for $i=1,\ldots,6$. We roll the die n-times and let X_i be the number of rolls when i came up.

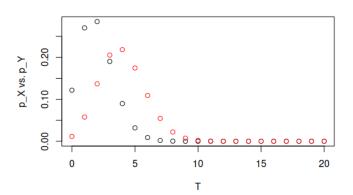
Coupling - nontrivial use of joint distributions

- $ightharpoonup X \sim Bin(n,p) \ ext{and} \ Y \sim Bin(n,q) \ ext{for} \ p < q$
- ▶ What can be said about F_X and F_Y ?
- $\sum_{i=0}^k \binom{n}{i} p^i (1-p)^{n-i}$ is an increasing function of p but why?



Coupling – nontrivial use of joint distributions

- $ightharpoonup X \sim Bin(n,p)$ and $Y \sim Bin(n,q)$ for p < q
- ▶ What can be said about F_X and F_Y ?
- $\sum_{i=0}^k \binom{n}{i} p^i (1-p)^{n-i}$ is an increasing function of p but why?



Coupling

- $X = \sum_{i=1}^{n} X_i$, where X_1, \ldots, X_n are independent
- $Y = \sum_{i=1}^{n} Y_i$, where Y_1, \ldots, Y_n are independent
- Joint distribution of X and Y is not determined, it can be arbitrary.
- ▶ We make it so that X and Y are not independent, more so, always $X \leq Y$.
- ightharpoonup It suffices to define $Y_i =$

Product of independent r.v.'s

Theorem

For independent discrete r.v.'s X, Y we have

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

Function of a random vector

Theorem

Suppose X, Y are discrete r.v.'s on (Ω, \mathcal{F}, P) , let $g : \mathbb{R}^2 \to \mathbb{R}$ be a function.

- ▶ Then Z = g(X, Y) is a r.v. on (Ω, \mathcal{F}, P)
- and it satisfies

$$\mathbb{E}(g(X,Y)) = \sum_{x \in ImX} \sum_{y \in ImY} g(x,y) P(X=x,Y=y),$$

whenever the sum is defined.

Theorem (Linearity of expectation)

For X, Y r.v.'s (independence is not needed!) and $a,b\in\mathbb{R}$ we have

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$$

Sum of independent r.v.'s

• Given $p_{X,Y}$, how to find the distribution of the sum, Z = X + Y?

Sum of r.v.'s - convolution

Theorem (Convolution formula)

Let X, Y be discrete random variables. Then their sum Z = X + Y has PMF given by

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x, Y = z - x).$$

If we further assume that X, Y are independent, then

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x)P(Y = z - x).$$

Example of a convolution

Overview

Random vectors

Conditional distribution

Continuous random variables

Conditional PMF

X, Y – discrete random variables on (Ω, \mathcal{F}, P) , $A \in \mathcal{F}$

- $p_{X|A}(x) := P(X = x \mid A)$ example: X is outcome of a roll of a die, A = we got an even number
- $p_{X|Y}(x|y) = P(X = x \mid Y = y)$ example: X, Z is an outcome of two independent die rolls, Y = X + Z.

$$p_{X|Y}(6|10) =$$

 $ightharpoonup p_{X|Y}$ from $p_{X,Y}$:

Joint vs. conditional PMF

$p_{X,Y}$	 10	11	12
1			
2			
3			
4			
5			
6			

$p_{X Y}$	 10	11	12
1			
2			
3			
4			
5			
6			

Overview

Random vectors

Conditional distribution

Continuous random variables

General random variable

Definition

Random variable on (Ω, \mathcal{F}, P) is a mapping $X : \Omega \to \mathbb{R}$, such that for each $x \in \mathbb{R}$

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$$

discrete r.v. is a r.v.

CDF

Definition

Cumulative distribution function, CDF of a r.v. X is a function

$$F_X(x) := P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x).$$

- $ightharpoonup F_X$ is a nondecreasing function

- $ightharpoonup F_X$ is right-continuous

CDF examples

Quantile function

For a r.v. X we define its *quantile function* $Q_X : [0,1] \to \mathbb{R}$ by

$$Q_X(p) := \min \left\{ x \in \mathbb{R} : p \le F_X(x) \right\}$$

- ▶ If F_X is continuous, then $Q_X = F_X^{-1}$.
- ▶ $Q_X(1/2)$ = median (watch out if F_X is not strictly increasing!)
- $Q_X(10/100)$ = tenth percentile, etc.

Continuous random variable

Definition

R.v. X is called continuous, if there is nonnegative real function f_X such that

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt.$$

(Sometimes such X is said to be absolutely continuous.) Function f_X is called the probability density function, pdf of X.

Using density

Theorem

Let X be a continuous r.v. with density f_X . Then

- 1. P(X = x) = 0 for every $x \in \mathbb{R}$.
- 2. $P(a \le X \le b) = \int_a^b f_X(t) dt$ for every $a, b \in \mathbb{R}$.

Uniform distribution

▶ R.v. X has a uniform distribution on [a,b], we write $X \sim U(a,b)$, if $f_X(x) = 1/(b-a)$ for $x \in [a,b]$ and $f_X(x) = 0$ otherwise.

Universality of a uniform distribution

Theorem

Let F be a function "of CDF-type": nondecreasing right-continuous function with $\lim_{x\to -\infty} F(x)=0$ a $\lim_{x\to +\infty} F(x)=1$. Let Q be the corresponding quantile function.

- 1. Let $U \sim U(0,1)$ and X = Q(U). Then X has CDF F.
- 2. Let X be a r.v. with CDF $F_X = F$, suppose F is increasing. Then $F(X) \sim U(0,1)$.