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M. Montgomery curves

Consider the Weierstraß equation in its general form (A.1). For simplicity let
us write y in place of x2 and x in place of x1. Suppose that char(K) 6= 2. Then
y2+a1xy+a3y = (y+(a1x+a3)/2)2−(a1x+a3)2/4. Two Weierstraß equations are
called K-equivalent if one can be obtained from the other by a linear substitution
over K. The equation y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 is thus K-equivalent
to the equation y2 = x3 + (a2 + a21/4)x2 + (a4 + a1a3/2)x+ (a6 + a23/4), provided
char(K) 6= 2. Indeed, the latter equation can be turned into the equation (A.1) by
y 7→ y + (a1x+ a3)/2 and x 7→ x. (By a linear substitution over K we understand
here any reversible substitution xi 7→ λ1ix1 + λ2ix2 +µi, i ∈ {1, 2}, where λij , µi ∈
K. Such a substitution is reversible if and only if det(λij) 6= 0.)

If char(K) > 3, then x3 + a2x
2 + a4x + a6 = (x + a2/3)3 + (a4 − a22/3)(x +

a2/3) + (a6 − a4a2/3 + 2a32/27). Hence each Weierstraß equation is K-equivalent
to a Weierstraß equation of the form y2 = x3 + ax+ b, provided char(K) > 3.

A linear substitution may turn an equation u(x, y) = v(x, y) into an equation
λũ(x, y) = λṽ(x, y), where λ ∈ K∗. The curve determined by the latter equation
is the same as the curve determined by ũ(x, y) = ṽ(x, y). Hence we say that
ũ(x, y) = ṽ(x, y) is K-equivalent to u(x, y) = v(x, y) also in this case.

If λ ∈ K∗, then the curve defined by the equation y2 = x3+ax+b coincides with
the curve given by (λ3y)2 = (λ2x)3+aλ4(λ2x)+bλ6. The equation y2 = x3+ax+b
is hence K-equivalent to the equation y2 = x3 + λ4ax+ λ6b. This is the only way
how Weierstraß equations y2 = x3+ax+b and y2 = x3+ãx+b̃ may be K-equivalent.
They are K-equivalent if and only if

there exists λ ∈ K∗ such that ã = λ4a and b̃ = λ6b. (M.1)

Curves given by equations By2 = x3+Ax2+x, char(K) 6= 2, are also important.
A curve of this form is called a Montgomery curve. We will also speak about a
Montgomery equation. Elements A and B belong to K, and B 6= 0. Capital letters
are used to avoid a confusion with a and b in the normal form of a Weierstraß
equation.

When both sides of By2 = x3 +Ax2 + x are multiplied by B3 we get

(B2y)2 = (Bx)3 +AB(Bx)2 +B2(Bx).

A Montgomery equation is thus K-equivalent to a Weierstraß equation y2 = x3 +
ABx2 + B2x. Weierstraß equations of the form y2 = f(x), f ∈ K[x] cubic monic,
char(K) 6= 2, are smooth if and only if f is separable, i.e. it contains no multiple
root. The polynomial x(x2 +ABx+B2) has a multiple root if and only if (AB)2−
4B2 = B2(A−2)(A+ 2) is equal to zero. Hence if A 6= ±2, then the curve given by
y2 = x3 +ABx2 +B2x is smooth—and this is also, not surprisingly, the condition
for the Montgomery curve to be smooth.

Assume A 6= ±2. Denote the Montgomery curve by M and the Weierstraß
curve of y2 = x3 + ABx2 + B2x by C. Note that σ : (α1, α2) 7→ (Bα1, B

2α2) is
a bijection M → C. Extend this bijection by ∞ 7→ ∞. The group structure of
C(K) may be transferred upon M in such a way that σ(α) ⊕ σ(β) = σ(α⊕̃β) for
all α, β ∈ M ∪ {∞}. This may be also written as α⊕̃β = σ−1(σ(α)⊕ σ(β)) for all
α, β ∈M ∪ {∞}.

Suppose that α = (α1, α2). Then

	̃α = σ−1(	(Bα1, B
2α2)) = σ−1(Bα1,−B2α2) = (α1,−α2).

The formula for opposite elements thus does not change, and so we can write 	 in
place of 	̃ when the unary minus is being used.
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The value of λ for (Bα1, B
2α2)⊕ (Bβ1, B

2β2) comes from (A.3) as

3B2α2
1 + 2AB2α1 +B2

2B2α2
=

3α2
1 + 2Aα1 + 1

2α2
if α = β, and B

β2 − α2

β1 − α1
if α 6= β.

Assume that α 6= 	β, and set γ = α⊕̃β, γ = (γ1, γ2). By (A.4),

(γ1, γ2) = (−α1 − β1 +B−1λ2 −A,B−1λ(α1 − γ1)− α2).

Let us express the latter formula using λ̃ = B−1λ. Note that λ̃ expresses the slope
of the line connecting α and β, if α 6= β. Indeed,

λ̃ =
3α2

1 + 2Aα1 + 1

2Bα2
if α = β, λ̃ =

β2 − α2

β1 − α1
if α 6= β, and (M.2)

(γ1, γ2) = (−α1 − β1 +Bλ̃2 −A, λ̃(α1 − γ1)− α2). (M.3)

Assume α1 6= β1 and use the fact that α	̃β = α⊕̃(β1,−β2). Let α	̃β = δ = (δ1, δ2).
By (M.3),

(δ1, δ2) = (−α1 − β1 +B
˜̃
λ2 −A, ˜̃λ(α1 − δ1)− α2), where

˜̃
λ =

α2 + β2
α1 − β1

. (M.4)

Proposition M.1. Let ⊕̃ be the group operation upon a Montgomery curve M
given over K by By2 = x3 + Ax2 + x. Let α = (α1, α2) and β = (β1, β2) be K-
rational points of M , α1 6= β1. Put γ = α⊕̃β = (γ1, γ2) and δ = α	̃β = (δ1, δ2).
Then

γ1δ1(α1 − β1)2 = (α1β1 − 1)2. (M.5)

Proof. Start with (M.3) and express Bα2
2 and Bβ2

2 by means of the Montgomery
equation to get

γ1(α1 − β1)2 = B(α2 − β2)2 − (A+ α1 + β1)(α1 − β1)2

= −2Bα2β2 + (α3
1 +Aα2

1 + α1) + (β3
1 +Aβ2

1 + β1)

− α3
1 − β3

1 + α2
1β1 + α1β

2
1 −Aα2

1 −Aβ2
1 + 2Aα1β1

= −2Bα2β2 + α1β1(α1 + β1 + 2A) + α1 + β1.

Therefore

γ1(α1 − β1)2α1β1 = −2Bα2β2α1β1 + β2
1(α3

1 +Aα2
1 + α1) + α2

1(β3
1 +Aβ2

1 + β1)

= −2Bα1β1α2β2 +Bβ2
1α

2
2 +Bα2

1β
2
2 = B(β1α2 − β2α1)2.

The right hand side of (M.4) is obtained from the right hand side of (M.3) by
replacing β2 with −β2. Hence we have

γ1(α1 − β1)2α1β1 = B(β1α2 − β2α1)2 and

δ1(α1 − β1)2α1β1 = B(β1α2 + β2α1)2.
(M.6)

By multiplying, γ1δ1(α1 − β1)4α2
1β

2
1 = B2(β2

1α
2
2‘− β2

2α
2
1)2. Now,

B(β2
1α

2
2 − β2

2α
2
1) = β2

1(α3
1 +Aα2

1 + α1)− α2
1(β2

1 +Aβ2
1 + β1)

= (α1β1)2(α1 − β1) + α1β1(β1 − α1) = (α1 − β1)α1β1(α1β1 − 1).

Hence γ1δ1(α− β1)4(α1β1)2 = (α1β1)2(α− β1)2(α1β1 − 1)2, and so

γ1δ1(α1 − β1)2 = (α1β1 − 1)2.

This yields (M.5) if α1β1 6= 0. If β1 = 0, then β2 = 0, γ1 = δ1 = −α1 +Bα2
2α
−2
1 −A

and α2
1γ1 = −α3

1 + Bα2
2 − Aα2

1 = α1. Thus α1γ1 = α1δ1 = 1, and both sides of
(M.5) are equal to 1.

If α1 = 0, then α2 = 0, γ1 = −β1 + Bβ2
2β
−2
1 − A = δ1 and γ1β

2
1 = −β3

1 +
Bβ2

2 − Aβ2
1 = β1. Hence γ1β1 = δ1β1 = 1, and both sides of (M.5) are equal to 1

again. �
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There exists a natural technique how to compute [n]P by means of a sequence
1 = n1, . . . , nk of integers such that in the ith round both [ni]P and [ni+1]P
are known. This is known as Montgomery’s ladder and is discussed below. If
β = [ni]P and α = [ni + 1]P , then α	̃β = P . Hence (M.5) may be used to obtain
γ = α⊕̃β = [2ni + 1]P . The practicality of such a procedure follows from the fact
that we may work only in the first coordinate. For all [ni]P and [ni + 1]P only the
first coordinate is being computed, and the second coordinate of [n]P is retrieved
from the last two elements of the sequence, cf. Lemma M.2.

Since Montgomery’s ladder needs also doubling, we have to verify that doubling
can be performed in the first coordinate only too:

Let (γ1, γ2) = [2]α, where α = (α1, α2) and α2 6= 0. By (M.2) and (M.3), γ1 is
equal to −2α1 −A+B(3α2

1 + 2Aα1 + 1)2(2Bα2)−2. Thus

4Bγ1α
2
2 = −8α1(Bα2

2) + (3α2
1 + 2Aα1 + 1)2 − 4A(Bα2

2)

= −(8α1 + 4A)(α3
1 +Aα2

1 + α1) + 9α4
1 + 12Aα3

1 + (6 + 4A2)α2
1 + 4Aα1 + 1

= α4
1 − 2α2

1 + 1.

Hence

γ1 =
(α2

1 − 1)2

4Bα2
2

=
(α2

1 − 1)2

4(α3
1 +Aα2

1 + α1)
. (M.7)

In the context of Montgomery’s ladder the points occurring in the following
statement have this meaning: γ = [n + 1]P , α = [n]P and β = P 6= (0, 0). The
goal is to determine α2 from knowledge of α1, γ1, β1 and β2.

Lemma M.2. Let α = (α1, α2), β = (β1, β2) and γ = (γ1, γ2) be points of a
Montgomery curve over K given by By2 = x3 + Ax2 + x. Suppose that α1 6= β1,
β 6= (0, 0) and that γ = α⊕̃β, where ⊕̃ is the group operation upon M ∪{∞}. Then

α2 =
α1β1(α1 + β1 + 2A) + α1 + β1 − γ1(α1 − β1)2

2Bβ2

Proof. The first equation in the proof of Proposition M.1 is

γ1(α1 − β1)2 = −2Bα2β2 + α1β1(α1 + β1 + 2A) + α1 + β1.

It remains to express α2 using this equation. �

M.1. Montgomery’s ladder. Let us start by an example. The binary expansion
of, say, n = 49 is 110001 since 49 = 32 + 16 + 1. The decimal expression of binary
integers 1, 11, 110, 1100, 11000 and 110001 is 1, 3, 6, 12, 24 and 49. Put n1 = 1,
n2 = 3, n3 = 6, n4 = 12, n5 = 24 and n6 = 49, and set n′i = ni + 1, 1 ≤ i ≤ 6.
Note that (3, 4) = (1 + 2, 2 + 2), (6, 7) = (3 + 3, 3 + 4), (12, 13) = (6 + 6, 6 + 7),
(24, 25) = (12 + 12, 12 + 13) and (49, 50) = (24 + 25, 25 + 25). Obviously there are
two patterns. Either (ni+1, n

′
i+1) = (2ni, ni + n′i), or (ni+1, n

′
i+1) = (ni + n′i, 2n

′
i).

The former equality holds if the rightmost bit of ni+1 is equal to 0, while the latter
equality holds if the rightmost bit of ni+1 is equal to 1. This will be proved below.

Now suppose that our goal is to compute [n]P , P 6= (0, 0) a point of a Mont-
gomery curve M . Let xi, yi, x

′
i, y
′
i ∈ K be such that [ni]P = (xi, yi) and [n′i]P =

(x′i, y
′
i). The sequence n1, n2, . . . , nk is defined so that nk = n. Thus [n]P =

(xk, yk).
The recommended procedure is to compute xi and x′i by means of (M.5) and

(M.7), and then use Lemma M.2 to retrieve yk from knowledge of xk, x′k, and
P = (x1, y1).

Let us be more concrete. Suppose first that (ni+1, n
′
i+1) = (2ni, ni + n′i). Then

xi+1 =
(x2i − 1)2

4(x3i +Ax2i + xi)
, and x′i+1 =

(xix
′
i − 1)2

x1(x′i − xi)2
. (M.8)
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If (ni+1, n
′
i+1) = (ni + n′i, 2n

′
i), then

xi+1 =
(xix

′
i − 1)2

x1(x′i − xi)2
, and x′i+1 =

(x′
2
i − 1)2

4(x′3i +Ax′2i + x′i)
. (M.9)

Finally, by Lemma M.2,

yk =
x1xk(x1 + xk + 2A) + x1 + xk − x′k(xk − x1)2

2By1
.

Of course, the scheme assumes that the order of P is greater than n + 1. Thus
[m]P 6=∞ for any m, 1 ≤ m ≤ n+ 1.

When implementing the arithmetic of Montgomery curves the effeciency may be
enhanced by using projective coordinates.

Let us formalize observations deduced from the initial example. Note that if
n =

∑
0≤i<k ai2

i is a binary expansion of n (thus ai ∈ {0, 1} and ak−1 = 1),
then the sequence n1, n2, . . . , nk constructed above can be expressed as n1 = 1,
n2 = 2 + ak−2 = 2ak−1 + ak−2, n3 = 4ak−1 + 2ak−2 + ak−3, etc. Thus nj =∑

1≤i≤j ak−i2
j−i.

Lemma M.3. Let n ≥ 1 be an integer, and let
∑

0≤i<k ai2
i be its binary expansion,

ak−1 = 1. For j ∈ {1, . . . , k} define nj as
∑

1≤i≤j ak−i2
j−i, and put n′j = nj + 1.

Then n1 = 1, nk = n, and for every j, 1 ≤ j < k the following holds:

• If ak−j−1 = 0, then nj+1 = 2nj and n′j+1 = nj + n′j.
• If ak−j−1 = 1, then nj+1 = nj + n′j and n′j+1 = 2n′j.

Proof. Put ε = ak−j−1. By the definition, nj+1 = 2nj + ε. If ε = 0, then nj+1 =
2nj . If ε = 1, then nj+1 + 1 = 2(nj + 1). �

M.2. Turning Weierstraß into Montgomery. Recall that by multiplying the
equation By2 = x3 +Ax2 +x by B3 we obtain a K-equivalent Weierstraß equation
y2 = x3 +ABx2 +B2x. Hence we may immediately claim the following fact:

Lemma M.4. A Weierstraß equation y2 = f(x), where f(x) = x3+a2x
2+a4x+a6,

is K-equivalent to a Montgomery equation if and only if it is K-equivalent to a
Weierstraß equation y2 = x3 + ã2x

2 + ã4x in which ã4 is in K a nonzero square.

Assume char(K) > 3. Expressing x3 +ABx2 +B2x as a polynomial in x+AB/3
shows that By2 = x3 +Ax2 + x is K-equivalent to

y2 = x3 +B2

(
1− A2

3

)
x− AB3

3
+

2(AB)3

27
. (M.10)

If y2 = x3 + ax + b, then it may not be easy to decide whether there exist A and
B such that a = B2(1 − A2/3) and b = −(AB3)/3 + 2(AB)3/27. The following
structural description may be then useful.

Proposition M.5. A Weierstraß equation y2 = f(x) is K-equivalent to a Mont-
gomery equation if and only if there exists ζ ∈ K such that f(ζ) = 0 and f ′(ζ) is
in K a nonzero square.

Proof. If f(x) = x3 + ABx2 +B2x, then f ′(x) = 3x2 + 2ABx+B2, f(0) = 0 and
f ′(0) = B2. For the converse direction suppose that y2 = f(x), f ′(ζ) = B2 and

f(ζ) = 0. Put f̃(x) = f(x+ζ). Then f̃(x) = x3 + ã2x
2 + ã4x+ ã6, and ã6 = f̃(0) =

f(ζ) = 0. Furthermore, ã4 = f̃ ′(0) = f ′(ζ) is assumed to be square. The equation

y2 = f̃(x) is thus equivalent to a Montgomery equation, by Lemma M.4.

To finish the proof we have to show that if y2 = f(x) and y2 = f̃(x) are K-
equivalent Weierstraß equations, then from the existence of ζ with f(ζ) = 0 and

f ′(ζ) ∈ (K∗)2 there follows the existence of ζ̃ with the same properties. (This part
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of the proof is necessary since without it there would remain open a possibility that
a Montgomery equation is K-equivalent to a Weierstraß equation that does not
have the required property.) If f̃(x) = f(x+ µ), set ζ̃ = ζ − µ. If f̃(x) is obtained
from f(λ1x), λ1 ∈ K∗, then λ1 must be a square (cf. the discussion before (M.1)).
Suppose that f(x) = x3 + a2x

2 + a4x + a6. Then λ6y2 = (λ2x)3 + a2λ
2(λ2x)2 +

a4λ
4(λ2x) + a6λ

6. Thus f̃(x) = x3 + a2λ
2x2a+ a4λ

4x+ a6λ
6. Put ζ̃ = λ2ζ. Then

f̃(ζ̃) = λ6f(ζ) = 0, and f̃ ′(ζ̃) = 3ζ̃2 + 2a2λ
2ζ̃ + a4λ

4 = λ4(3ζ2 + 2a2ζ + a4) =
λ4(f ′(ζ)) is a square. �

Corollary M.6. Let p ≡ 1 mod 4 be a prime, and let f ∈ Zp[x] be a cubic monic
separable polynomial that splits over Zp (i.e. all roots of f are in Zp). If f(0) 6= 0,
then the Weierstraß equation y2 = f(x) is K-equivalent to a Montgomery equation.

Proof. By the assumptions, f(x) = (x − ζ1)(x − ζ2)(x − ζ3), where ζi ∈ Zp. We
have

−
∏

f ′(ζi) =
∏
i<j

(ζi − ζj)2.

This is because both sides of the equality express the discriminant of f . (This
equality can be also verified directly, which is an option for those who are not
familiar with discriminants.) Because −1 is modulo p a square,

∏
f ′(ζi) is also a

square. Therefore at least one of f ′(ζi) has to be a square too. �

It is not difficult to solve completely the question when two Montgomery equa-
tions are K-equivalent. Here we shall restrict our attention only to the fact that
By2 = x3 +Ax2 +x holds if and only if −By2 = (−x)3−A(−x)2 + (−x). A Mont-
gomery equation with parameters (A,B) is hence K-equivalent to a Montgomery
equation with parameters (−A,−B).


