
Introducing quasifields

Incidence geometries. To understand the concept of dualization in line systems
it seems useful to start with an abstract notion of incidence geometry. The main
idea is that the relation ‘point p is upon a line `’ is read as ‘point p is incident to
line `’, where the incidence is now expressed by a relation ε ⊆ P ×L, with P being
the set of points and L the set of lines. This is an abstract approach in the sense
that no other interaction between P and L is assumed but via the relation ε. Such
systems are called (abstract) incidence geometries.

A definition of a 3-net in this context may be as follows: Let ‖ be an equivalence
upon L, with classes L1, L2 and L3. The incidence geometry (P,L) is called a 3-net
if

∀x ∈ L ∀p ∈ P ∃! y ∈ L such that x ‖ y and p ε y; and (A1)

∀x, y ∈ L : x ∦ y ⇒ ∃! p ∈ P such that p ε x and p ε y. (A2)

The definition of a 3-net as done before can be obtained from the definition above
by replacing y ∈ L with the set `y = {p ∈ P ; p ε y}, and the relation pεy by p ∈ `y.
Note that the definition of a 3-net requires that the classes of ‖ are linearly ordered
(i.e., (L1, L2, L3).)

Nets and affine planes. The definition of a 3-net may be generalized to a defi-
nition of a k-net, k ≥ 3, by requiring that the number of classes of ‖ is equal to k.
Again, the set of parallel classes—which often are called pencils—is supposed to be
linearly ordered.

Let us now drop the requirement of the linear ordering of classes of ‖ and consider
an incidence geometry defined by (A1), (A2) and

∀p, q ∈ P : p 6= q ⇒ ∃! y ∈ L such that pεy and qεy. (A3)

This may be interpreted by saying that any two points are connected by a unique
line. (The requirement of uniqueness may be dropped since by (A1) and (A2) there
cannot exist two distinct lines that would connect the points p and q, p 6= q.)

A system fulfilling (A1), (A2) and (A3) is said to be an affine plane if the
equivalence ‖ contains has at least three classes. (Axiomatizations of affine planes
usually achieve the latter requirement by stipulating that there exist three points
that are not collinear.)

For the sake of completeness let it be remarked that the usual way how an
affine plane is defined is to take as axioms (A1), (A3) and the existence of three
noncollinear points, under the assumption that x ‖ y if and only if either x = y, or
there exists no p ∈ P with pεx and pεy (i.e., x ∩ y = ∅). With such a definition it
is straightforward to prove first that ‖ is an equivalence on L, and then to derive
(A2) from (A3).

Collineations. A collineation of an incidence geometry (P,L, ε) is a pair (α, β)
such that α permutes P , β permutes L and

p ε x ⇔ α(p) ε β(x), for all (p, x) ∈ P × L.

To see how to connect this notion of collineation with a standard definition of
collineation of a line system (i.e., a system in which lines are considered as sets of
points) let us first discuss a certain property of incidence geometries that is usually
assumed to be true, and that will be assumed to be true from here on when an
incidence geometry will be discussed.

For each y ∈ L put `y = {p ∈ P ; p ε y}. For each p ∈ P put cp = {y ∈ L; p ε y}
(the letter c refers to lines concurrent to p. The property mentioned above states
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that

∀x, y ∈ L (x = y ⇔ `x = `y) and ∀p, q ∈ P (p = q ⇔ cp = cq).

In other words a line is determined completely by points incident to the line, and
a point is determined completely by lines passing through the point. With this
condition fufilled an incidence geometry may be turned into a system of lines L =
{`y; y ∈ L}, where pεx ⇔ p ∈ `y.

It seems natural to define a collineation of a system of lines as a permutation
of points such that a line is mapped upon a line. With an additional condition
(like finiteness of the set, or the existence and uniqueness of a line passing through
two points) this condition implies that the preimage of a line is a line. However,
in general the latter property has to be considered as a part of definition. A
collineation γ of a system of lines thus is a permutation of points such that γ(`)
and γ−1(`) is a line whenever ` is a line.

To see that both definitions of collineation coincide let us show that if (α, β) is a
collineation of (P,L), then α is collineation of the system of lines {`y; y ∈ L}, and
that if γ is a collineation of such a system of lines, then there exists β such that
(γ, β) is a collineation of (P,L).

Proof. The first step is to prove that if (α, β) is a collineation, then α(`y) = `β(y).
This is true since α(p) ∈ α(`y) ⇔ p ∈ `y ⇔ pεy ⇔ α(p)εβ(y) ⇔ α(p) ∈ `β(y), for
all (p, y) ∈ (P,L). For the converse direction assume that (P,L) is an incidence
geometry and γ is a collineation of the line system {`y; y ∈ L}. A line `y determines
the element y ∈ L completely. Hence there exists a permutation β of L such that
γ(`y) = `β(y). Now, pεy ⇔ p ∈ `y ⇔ γ(p) ∈ γ(`y)⇔ γ(p) ∈ `β(y) ⇔ γ(p)εβ(y). �

The notion of collineation need not be used only for permutations of P × L. A
collineation (P,L, ε)→ (P ′, L′, ε′) is a pair (α, β) such that α is a bijection P → P ′,
β is a bijection L → L′ and pεx ⇔ α(p)ε′β(x). In terms of systems of lines γ is a
bijection of points that both γ and γ−1 map lines upon lines.

Dual geometries and transversal designs. The dual geometry of (P,L, ε) is
the geometry (L,P, ε′), where pεx ⇔ xε′p. Let us consider axioms (A1) and (A2)
after dualization:

∀p ∈ P ∀x ∈ L ∃! q ∈ P such that p ‖ q and q ε x; and (A1’)

∀p, q ∈ P : p ∦ q ⇒ ∃!x ∈ L such that p ε x and q ε x. (A2’)

Consider a system fulfilling (A1’) and (A2’). The equivalence ‖ is now an equiv-
alence of points. Classes of ‖ are called groups (no connection to the algebraic
notion of a group). Lines will be called blocks.

(A1’) states that each block passes through exactly one point of a group and (A2’)
states that two points from distinct groups belong to exactly one block. A system of
lines fulfilling these axioms is called a transversal design, provided that the number
of groups is at least 3. If this number is equal to k, then the system is called a
transversal k-design.

Groups of a transversal k-design are of the same size and this size is equal to
the number of blocks passing through a point. Furthermore, each block is of size k.
This is easy to prove. However, the proof may be omitted since the statement is a
consequence of the fact that transversal k-designs dualize k-nets (with the exception
that groups are not required to be linearly ordered).

The order of a transversal design is the number of points in a group. Transversal
k-designs of order n are sometimes denoted as TD(k, n).



3

Counting and affine planes. Let us have a k-net of a finite order n. (The order
is the number of points upon a line, and this is equal to the number of lines in a
pencil.)

The number of 2-elements sets {a, b} such that a and b are points of the net and
there exists a line ` (which is unique) that passes through both a and b is equal to

‘# pencils’ · ‘# lines in a pencil’ · ’# of pairs upon a line’ = kn

(
n

2

)
=
kn2(n−1)

2
.

Number of all pairs of points in the net is(
n2

2

)
=

(n+1)n2(n−1)

2
≥ kn2(n−1)

2
.

Hence n ≥ k−1. The equality takes place if and only if through each point there
passes a line, i.e., when the k-net is an affine plane. We have proved:

• If n is the order of a k-net, then n+1 ≥ k. The equality takes place if and
only if the k-net is an affine plane.
• If n the order of a transversal k-design, then n+1 ≥ k. The equality takes

place if and only if the design is the dual of an affine plane.

Projective planes. A projective plane is a system of lines such that there exist
four noncollinear points, each two lines intersect in a single point, and each two
points are connected by a single line.

The notion of projective plane is self-dual. A removal of a line from a projective
plane yields an affine plane. An affine plane may be completed to a projective plane
by adding a new point for each pencil of lines. The lines of the pencil meet in this
added point (which is called a point ‘at infinity’). All points at infinity form a ‘line
at infinity’.

Building an affine plane. Let (Q,+, ·, 0, 1) be an algebra such that (Q,+, 0) is
a group, (Q∗, ·) is a quasigroup, Q∗ = Q \ {0}, and x0 = 0x = 0 for each x ∈ Q.
For a, b ∈ Q put `a,b = {(α, β) ∈ Q ×Q; β = aα + b} and `∞,b = {(b, β); β ∈ Q}.
Set Q∞ = Q ∪ {∞} and put L = {`a,b; (a, b) ∈ Q∞ × Q}. Elements of L will be
called lines. The question when the line systems L is an affine plane is addressed
below. Collineations of L will be discussed first.

Collineations in the first coordinate. Let us verify that for each d ∈ Q the
mapping (α, β)→ (α, β + d) is a collineation. This boils down to verifying

`a,b → `a,b+d and `∞,b → `∞,b.

However, that is obvious since β = aα+ b if and only if β + d = aα+ (b+ d).

Collineations in the second coordinate. The mapping (α, β)→ (α+ c, β) is a
collineation for each c ∈ Q if and only if

x(y + z) = xy + xz for all x, y, z ∈ Q.

Proof. A line `∞,b is mapped upon `∞,b+c. A line `0,b is mapped upon itself. Let
(a, b) ∈ Q∗ ×Q. The case c = 0 is trivial, let us have c ∈ Q∗. If (α, β)→ (α+ c, β)
is a collineation, then there has to exist (a′, b′) ∈ Q∗ ×Q such that

β = aα+ b ⇔ β = a′(α+ c) + b′.

Setting α = 0 yields β = b and b = a′c+ b′. Hence b′ = −a′c+ b = a′(−c) + b.
Put now α = −c. Then a(−c) + b = b′ = a′(−c) + b. Therefore a = a′, and

aα = a(α+ c)−ac for all α ∈ Q. The latter equality yields the left distributive law
since a and c are assumed to run through Q∗. �
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Under which conditions does L induce an affine plane? Fix a ∈ Q∞ and
put La = {`a,b; b ∈ Q}. Claim: Each point (α, β) belongs to exactly one ` ∈ La.
This is clear if a = ∞. Suppose that a ∈ Q, and observe that there exists exactly
one b ∈ Q such that β = aα+ b.

Lines of La thus partition the point set Q ×Q. This means that pencils of the
purported affine plane have to coincide with sets La.

Let ` and `′ be lines from different pencils. If ` ∈ L∞ or ` ∈ L0, then one of the
coordinates is fixed, and that makes ` to intersect `′ in exactly one point.

Let us have ` = `a,b and `′ = `a′,b′ , where a, a′ ∈ Q∗ and b, b′ ∈ Q, a 6= a′. The
lines ` and `′ intersect in exactly one point if and only if the equation ax + b =
a′x + b′ has exactly one solution x ∈ Q. Since the equation may be written as
a′x = ax+ (b− b′), axiom (A2) holds if and only if

∀a, b, c ∈ Q : a 6= b ⇒ ∃!x ∈ Q such that ax+ c = bx. (AF2)

The axiom (A3) holds if any two distinct points (α, β) and (α′, β′) are contained in
exactly one line `. If α = α′, then ` = `∞,α. Assume α 6= α′. The task is to solve
equations xα + β = y = xα′ + β′. The solution (x, y) is determined by the value
of x uniquely. The equation may be written as xα + (β − β′) = xα′. Hence (A3)
holds if and only if

∀a, b, c ∈ Q : a 6= b ⇒ ∃!x ∈ Q such that xa+ c = xb. (AF3)

Quasifield defined. Results above bring us to the following definition. A quasi-
field is an algebra (Q,+, ·, 0, 1) such that

• (Q,+, 0) is a group;
• (Q∗, ·, 1) is a loop;
• x(y + z) = xy + xz for all x, y, z ∈ Q; and
• for all a, b, c ∈ Q, a 6= b there exists unique x ∈ Q such that ax = bx+ c.

The definition above is the definition of a left quasifield. The right quasifield is
obtained by using mirror conditions. In the following a quasifield means the left
quasifield. For the sake of completeness recall that Q∗ = Q \ {0}.

Proposition. Let Q be a quasifield. Then a0 = 0a = 0 for every a ∈ Q. Further-
more, a(−b) = −ab and a+ b = b+ a, for any a, b ∈ Q.

Proof. To prove that a0 = 0 write a0 as a(0 + 0) = a0 + a0. To prove the mirror
equality assume that 0b 6= 0. Then b 6= 0 and there exists a ∈ Q∗ such that ab = 0b.
The equation ax = 0x hence possesses two different solutions x = b and x = 0.
That is a contradiction.

Note that 0 = a0 = a(b + (−b)) = ab + a(−b) implies a(−b) = −ab, for any
a, b ∈ Q.

Suppose now that a, b ∈ Q are such that a + b 6= b+ a. This implies a 6= 0 and
b 6= 0. Put t = b+ a− b. The assumption is that t 6= a. We have t 6= 0. There thus
exists s 6= 1 such that sa = t. Let x be the only solution to x = sx+ b. Then

x+ a− b = sx+ b+ a− b = sx+ t = sx+ sa = s(x+ a).

The equation y − b = sy thus possesses solutions y = x and y = x + a. Hence
x = x+ a, and a = 0, a contradiction. �

Prequasifields. The definition of a prequasifield differs from that of a quasifield
by relaxing the assumption of (Q∗, ·) being a loop to (Q∗, ·) being a quasigroup.
Everything above that is true for quasifields remains to be true for prequasifields.
This is also the case of the preceding proof since the equation x = sx + b may be
replaced by an equation ux = sx + b, where u ∈ Q∗ is chosen in such a way that
ua = a.
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Prequasifields yield affine planes. Systems (Q,+, 0, ·) describe an affine plane
with lines `a,b, (a, b) ∈ Q∞ ×Q, if (Q,+, 0) is a group and both (AF2) and (AF3)
hold. This has been proved above. (Conditions (AF2) and (AF3) imply that (Q∗, ·)
is a quasigroup, as may be verified easily.) To see that a prequasifield can be used to
construct an affine plane note that (AF2) is one of its axioms, while (AF3) follows
from the left distributivity since xa = xb+ c may be written as x(a− b) = c.

Left division and the left distributive law. Suppose that (Q,+, 0) is a group
and that · is a binary operation upon Q such that (Q∗, ·) a quasigroup. If · and
+ are connected by the left distributive law, then the equation a(0 + 0) = a0 + a0
implies a0 = 0 like above. Set a\0 = 0, for each a ∈ Q.

The equality a(b+c) = ab+ac holds for all b, c ∈ Q if and only if La ∈ End(Q,+).
If a ∈ Q∗, then in fact this is the same as La ∈ Aut(Q,+), and thus also the same
as L−1a ∈ Aut(Q,+). Since L−1a (b) = a\b we can state that

(∀x, y, z ∈ Q x(y + z) = xy + xz) ⇒ (∀x, y, z ∈ Q x\(y + z) = x\y + x\z).

Principal loop isotopes of a prequasifield. Let e and f be nonzero elements of
a prequasifield (Q,+, ·, 0). If x∗y = (x/f)(e\y) for all x, y ∈ Q, then (Q,+, ∗, 0, ef)
is a quasifield.

Proof. If a, b, c ∈ Q, then

a∗(b+c) = a/f ·e\(b+c) = a/f ·(e\b+e\c) = (a/f)(e\b)+(a/f)(e\c) = a∗b+a∗c.
A solution to a ∗ x = b ∗ x + c, a 6= b, has to fulfil a/f · e\x = b/f · e\x + c. This
determines x uniquely since e\x = d, where d is the only solution to a/f · y =
b/f · y + c. �

Collineation induced by isotopy. The mapping (α, β) 7→ (eα, β) yields a colli-
neation of the affine plane induced by a prequasifield (Q,+, ·, 0) on the affine plane
induced by the quasifield (Q,+, ∗, 0, ef), where e, f ∈ Q∗ and x ∗ y = x/f · e\y for
all x, y ∈ Q.

Proof. Lines `a,b are given by solutions to y = ax + b. Lines `∗a,b are given by

solutions to y = a ∗ x+ b. We have (α, β) ∈ `a,b if and only if β = (af) ∗ (eα) + b,
i.e., if and only if (eα, β) ∈ `∗af,b.

Furthermore, the line `∞,b is mapped upon `∗∞,eb since α = b if and only if
eα = eb. �

Finite quasifields. Let (Q,+, 0) be a group and (Q∗, ∗) a quasigroup that are
connected by the left distributive law. Then a0 = 0 and a(−b) = −ab, for all
a, b ∈ Q. However there is no way how to prove 0a = 0. To see this suppose that
the latter holds and change it to 0a = ϕ(a), where ϕ ∈ End(Q,+). That does not
change the assumptions on + and ·.

However, if 0a = 0 for all a ∈ Q, then there exists at most one x ∈ Q such that
ax = bx+c, whenever a, b, c ∈ Q and a 6= b. To see this assume that ax = bx+c and
ay = by+ c. Then −bx+ax = −by+ay, ax−ay = bx− by and a(x−y) = b(x−y).
This is not possible if x− y 6= 0.

By the same token there cannot be −bx+ax−c = −by+ay−c if a, b, c, x, y ∈ Q,
a 6= b and x 6= y. The mapping x 7→ −bx + ax − c is hence an injective mapping
Q→ Q whenever a, b, c ∈ Q and a 6= b. If Q is finite, then there exists x ∈ Q such
that −bx + ax − c = 0, which means ax = bx + c. This shows that in the finite
case a prequasifield may be defined by assuming that (Q,+, 0) is a group, (Q∗, ·) a
quasigroup, 0a = 0 for all a ∈ Q, and a(b+ c) = ab+ ac for all a, b, c ∈ Q.

Furthermore, verifying that (Q∗, ·) is a quasigroup may be simplified if

ab = 0 ⇔ a = 0 or b = 0, for all a, b ∈ Q. (Z)
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If the latter holds, then each La, a ∈ Q∗, has to be injective (and thus bijective in
the finite case) since ax = ay if and only if a(x− y) = 0.

Semifields. A semifield (S,+, ·, 0, 1) is an algebra such that (S,+, 0) is a group,
(S∗, ·, 1) is a loop, and both distributive laws hold (thus a(b + c) = ab + ac and
(b+ c)a = ba+ ca for all a, b, c ∈ S.) A presemifield does not require the existence
of the unit element.

By standard arguments, a0 = 0 = 0a and a(−b) = −ab = (−a)b, for all a, b ∈ S.
Each semifield is a quasifield since if ax = bx + c and a 6= b, then −bx + ax =
(−b + a)x = c, and that determines x uniquely. For the finite (pre)semifield the
quasigroup property of · may be replaced by (Z).

Note that the definition of a semifield differs from the definition of a division
ring (a skewfield) by dropping the associativity of the multiplication.

Nearfields. A nearfield (N,+, ·, 0, 1) is an algebra such that both (N,+, 0) and
(N∗, ·, 1) are groups, and the left distributive law holds.

By standard arguments, a0 = 0 and a(−b) = −ab for all a, b ∈ N . If 0b 6= 0,
then a(0b) = (a0)b = 0b for all a ∈ N . That cannot be true if N∗ is nontrivial,
i.e. if |N | ≥ 3. On two elements the definition above allows for the multiplication
given by xy = y. This is an exceptional case that is not regarded to be a nearfield.
To avoid it, the axioms may be extended by stating explicitly that 0x = 0 for all
x ∈ N .

A finite nearfield fulfils the conditions of finite quasifield. An infinite nearfield
need not be a quasifield. However, it may be proved that every nearfield N fulfils
a+ b = b+ a and (−a)b = −ab, for all a, b ∈ N . A nearfield which is a quasifield is
called planar as it determines an affine plane (and thus also a projective plane).

Note that the definition of a nearfield differs from the definition of a division
ring (a skewfield) by dropping the right distributive law. In fact, our definition is
that of the left nearfield. The right nearfield assumes the right distributive law.

Connections to projective planes. If a is a point and ` a line of a projective
plane then there may exist a collineation called perspectivity that is determined
uniquely by (a, `) (a is called the center and ` the axis). Projective planes deter-
mined by division rings contain a perspectivity for each pair (a, `). In fact this a
way how to characterize them. Assumptions of the form that a perspectivity exists
for certain pairs (a, `) gives rise to notions of quasifield, semifield, nearfield in the
sense that if the respective assumptions are fulfilled, then the projective plane in-
duces an affine plane that may be coordinatized by a quasifield or a semifield or a
nearfield.

Remarks on coordinatization and isotopy. Note that above we have proved
that affine planes coordinatized by isotopic prequasifields are isomorphic. From the
geometric standpoint isotopic quasifields are nothing else but different coordinati-
zations of the same geometric structure.

Note that a principal isotope x/f · e\y of a semifield is again a semifield, and
that the same is true for nearfields. Two semifields (or nearfields) are said to be
isotopic, if one of them is isomorphic to the principal isotope of the other. It is
easy to adapt Albert’s theorem to nearfields, showing thus that isotopic nearfields
are isomorphic.


