Analytic combinatorics Lecture 3

March 24, 2021

Definition

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha) = X$.
- For every two finite sets X, Y ⊆ N of the same size, the number of objects in A with vertex set X is the same as the number of those with vertex set Y.

Examples, graphs, permutations,

Definition

A labelled combinatorial class is a set \mathcal{A} in which every object $\alpha \in \mathcal{A}$ has a vertex set (or ground set or set of labels), denoted $V(\alpha)$, which is a finite subset of \mathbb{N} , satisfying the following conditions:

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha) = X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.

• For $\alpha \in \mathcal{A}$, the size of α , denoted $|\alpha|$, is the size of $V(\alpha)$.

Definition

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha) = X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α , denoted $|\alpha|$, is the size of $V(\alpha)$.
- An element $\alpha \in A$ is normalized if $V(\alpha) = [n]$ for some $n \in \mathbb{N}$ (where $[n] = \{1, 2, 3, \dots, n\}$).

Definition

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha) = X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α , denoted $|\alpha|$, is the size of $V(\alpha)$.
- An element $\alpha \in A$ is normalized if $V(\alpha) = [n]$ for some $n \in \mathbb{N}$ (where $[n] = \{1, 2, 3, \dots, n\}$).
- Let A_n be the set $\{\alpha \in A; V(\alpha) = [n]\}$, i.e., the set of normalized elements of size n.

Definition

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha) = X$.
- For every two finite sets X, Y ⊆ N of the same size, the number of objects in A with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α , denoted $|\alpha|$, is the size of $V(\alpha)$.
- An element $\alpha \in A$ is normalized if $V(\alpha) = [n]$ for some $n \in \mathbb{N}$ (where $[n] = \{1, 2, 3, \dots, n\}$).
- Let A_n be the set $\{\alpha \in A; V(\alpha) = [n]\}$, i.e., the set of normalized elements of size n.
- \mathcal{A}_* denotes the set $\bigcup_{n=0}^{\infty} \mathcal{A}_n$ of all the normalized elements of \mathcal{A} .

Exponential generating functions

Definition

Let \mathcal{A} be a labelled combinatorial class, let $a_n = |\mathcal{A}_n|$. The exponential generating function of \mathcal{A} , denoted EGF(\mathcal{A}) is the f.p.s.

 x^n

Exponential generating functions

Definition

Let \mathcal{A} be a labelled combinatorial class, let $a_n = |\mathcal{A}_n|$. The exponential generating function of \mathcal{A} , denoted EGF(\mathcal{A}) is the f.p.s.

$$\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}.$$

Remark: We may also write

$$\mathsf{EGF}(\mathcal{A}) = \sum_{\alpha \in \mathcal{A}_*} \frac{x^{|\alpha|}}{|\alpha|!}.$$

If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\mathsf{EGF}(\mathcal{A} \cup \mathcal{B}) = \mathsf{EGF}(\mathcal{A}) + \mathsf{EGF}(\mathcal{B})$.

If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\mathsf{EGF}(\mathcal{A} \cup \mathcal{B}) = \mathsf{EGF}(\mathcal{A}) + \mathsf{EGF}(\mathcal{B})$.

Definition

Let $\mathcal A$ and $\mathcal B$ be labelled comb. classes. Their labelled product, denoted $\mathcal A\otimes \mathcal B$, is the labelled comb. class

$$\{(\alpha,\beta); \ \alpha \in \mathcal{A} \& \beta \in \mathcal{B} \& V(\alpha) \cap V(\beta) = \emptyset\}$$

with $V((\alpha, \beta)) = V(\alpha) \cup V(\beta)$.

If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\mathsf{EGF}(\mathcal{A} \cup \mathcal{B}) = \mathsf{EGF}(\mathcal{A}) + \mathsf{EGF}(\mathcal{B})$.

Definition

Let A and B be labelled comb. classes. Their labelled product, denoted $A \otimes B$, is the labelled comb. class

$$\{(\alpha,\beta); \ \alpha \in \mathcal{A} \& \beta \in \mathcal{B} \& V(\alpha) \cap V(\beta) = \emptyset\},\$$

with $V((\alpha, \beta)) = V(\alpha) \cup V(\beta)$.

Lemma

 $\mathsf{EGF}(\mathcal{A} \otimes \mathcal{B}) = \mathsf{EGF}(\mathcal{A}) \mathsf{EGF}(\mathcal{B}).$

If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\mathsf{EGF}(\mathcal{A} \cup \mathcal{B}) = \mathsf{EGF}(\mathcal{A}) + \mathsf{EGF}(\mathcal{B})$.

Definition

Let $\mathcal A$ and $\mathcal B$ be labelled comb. classes. Their labelled product, denoted $\mathcal A\otimes \mathcal B$, is the labelled comb. class

$$\{(\alpha, \beta); \ \alpha \in \mathcal{A} \& \beta \in \mathcal{B} \& V(\alpha) \cap V(\beta) = \emptyset\},\$$

with $V((\alpha, \beta)) = V(\alpha) \cup V(\beta)$.

• $\mathcal{A}^{\otimes 2} = \mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A} . Its EGF is $\mathcal{A}(x)^2$.

- $\mathcal{A}^{\otimes 2} = \mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A} . Its EGF is $\mathcal{A}(x)^2$.
- $\mathcal{A}^{\otimes k} = \underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text{ copies}}$ is the class of ordered *k*-tuples of vertex-disjoint objects

from A. Its EGF is $A(x)^k$.

- $\mathcal{A}^{\otimes 2} = \mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A} . Its EGF is $\mathcal{A}(x)^2$.
- $\mathcal{A}^{\otimes k} = \underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text{ copies}}$ is the class of ordered *k*-tuples of vertex-disjoint objects

from A. Its EGF is $A(x)^k$.

Assume A₀ = Ø. Then {Ø} ∪ A ∪ A^{⊗2} ∪ A^{⊗3} ∪ · · · is the class of ordered sequences of vertex-disjoint objects from A. Its EGF is

$$1 + A(x) + A(x)^2 + \cdots = \frac{1}{1 - A(x)}$$

- $\mathcal{A}^{\otimes 2} = \mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A} . Its EGF is $\mathcal{A}(x)^2$.
- $\mathcal{A}^{\otimes k} = \underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text{ copies}}$ is the class of ordered *k*-tuples of vertex-disjoint objects

from A. Its EGF is $A(x)^k$.

Assume A₀ = Ø. Then {Ø} ∪ A ∪ A^{⊗2} ∪ A^{⊗3} ∪ · · · is the class of ordered sequences of vertex-disjoint objects from A. Its EGF is

$$1 + A(x) + A(x)^2 + \cdots = \frac{1}{1 - A(x)}$$

• $\mathcal{A}^{\otimes 2} = \mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A} . Its EGF is $\mathcal{A}(x)^2$.

, (*Q*, *Q*

aøa

• $\mathcal{A}^{\otimes k} = \underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text{ copies}}$ is the class of ordered k-tuples of vertex-disjoint objects

from A. Its EGF is $A(x)^k$.

Assume A₀ = Ø. Then {Ø} ∪ A ∪ A^{⊗2} ∪ A^{⊗3} ∪ · · · is the class of ordered sequences of vertex-disjoint objects from A. Its EGF is

$$1 + A(x) + A(x)^2 + \cdots = \frac{1}{1 - A(x)}$$

• Assume $A_0 = \emptyset$, and fix $k \in \mathbb{N}_0$. Let $Set_k(A)$ be the labelled comb. class of all the *k*-element sets $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ where the α_i are vertex-disjoint objects from A, and $V(\{\alpha_1, \alpha_2, \ldots, \alpha_k\}) = V(\alpha_1) \cup V(\alpha_2) \cup \cdots \cup V(\alpha_k)$.

$$\mathsf{EGF}(\mathsf{Set}_k(\mathcal{A})) = \frac{1}{k!} \mathsf{EGF}(\mathcal{A}^{\otimes k}) = \frac{1}{k!} \mathsf{A}(x)^k.$$

• Assume $\mathcal{A}_0 = \emptyset$. Define $\mathsf{Set}(\mathcal{A}) = \bigcup_{k=0}^{\infty} \mathsf{Set}_k(\mathcal{A})$. Then

$$\mathsf{EGF}(\underbrace{\mathsf{Set}(\mathcal{A})}_{l}) = 1 + A(x) + \frac{A(x)^2}{2!} + \frac{A(x)^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{A(x)^k}{k!} = \frac{\mathsf{exp}(A(x))}{k!},$$

where exp(x) (or e^x) denotes the f.p.s. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

•
$$g_n \dots$$
 number of graphs on the vertex set $[n]$ (so $g_n = 2^{\binom{n}{2}}$)

- g_n ... number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- $c_n \dots$ number of connected graphs on the vertex set [n] (define $c_0 = 0$) $\mathcal{G} \dots$ labelled class of all graphs, $\mathcal{G}(x) = \text{EGF}(\mathcal{G}) = \sum_{i=1}^{n} \mathcal{G}_{i}^{i}$

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- (c_n) ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- 9 ... labelled class of all graphs, G(x) = EGF(9)• C ... labelled class of connected graphs, $C(x) = EGF(C) = \sum_{n=1}^{\infty} C_n \frac{x^n}{n!}$

- g_n ... number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Notation:

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Questions:

- What is the relationship between G(x) and C(x)?
- How can we compute c_n efficiently?

Notation:

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Questions:

- **(**) What is the relationship between G(x) and C(x)?
- **a** How can we compute c_n efficiently?

Answer 1:
$$g \stackrel{\text{\tiny P}}{=} \text{Set}(\mathcal{C})$$
, hence $G(x) = \exp(C(x))$?
 $\frac{1}{k!} C^{k}(x) = EGF(\text{graphs with } k \text{ comp.})$

Notation:

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Questions:

- **(**) What is the relationship between G(x) and C(x)?
- **a** How can we compute c_n efficiently?

Answer 1:
$$\mathcal{G} = \text{Set}(\mathcal{C})$$
, hence $G(x) = \exp(C(x))$.

Answer 2:

• We saw that $G(x) = \exp(C(x))$, or equivalently $G(x) - 1 = \exp(C(x)) - 1$

Notation:

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Questions:

- **(**) What is the relationship between G(x) and C(x)?
- **a** How can we compute c_n efficiently?

Answer 1:
$$\mathcal{G} = \text{Set}(\mathcal{C})$$
, hence $G(x) = \exp(C(x))$.

Answer 2:

- We saw that $G(x) = \exp(C(x))$, or equivalently $G(x) 1 = \exp(C(x)) 1$
- The series $\exp(x) 1$ has a composition inverse $L(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ (Taylor series of $\ln(x + 1)$).

Notation:

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Questions:

- **(**) What is the relationship between G(x) and C(x)?
- \bigcirc How can we compute c_n efficiently?

Answer 1: $\mathcal{G} = \text{Set}(\mathcal{C})$, hence $G(x) = \exp(C(x))$.

Answer 2:

- We saw that $G(x) = \exp(C(x))$, or equivalently $G(x) 1 = \exp(C(x)) 1$
- The series $\exp(x) 1$ has a composition inverse $L(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ (Taylor series of $\ln(x + 1)$).

• Hence
$$C(x) = L(G(x) - 1)$$
.

Notation:

- $g_n \dots$ number of graphs on the vertex set [n] (so $g_n = 2^{\binom{n}{2}}$)
- c_n ... number of connected graphs on the vertex set [n] (define $c_0 = 0$)
- \mathcal{G} ... labelled class of all graphs, $G(x) = EGF(\mathcal{G})$
- \mathcal{C} ... labelled class of connected graphs, $C(x) = \mathsf{EGF}(\mathcal{C})$

Questions:

- **(**) What is the relationship between G(x) and C(x)?
- \bigcirc How can we compute c_n efficiently?

Answer 1:
$$\mathcal{G} = \text{Set}(\mathcal{C})$$
, hence $G(x) = \exp(C(x))$.

Answer 2:

- We saw that $G(x) = \exp(C(x))$, or equivalently $G(x) 1 = \exp(C(x)) 1$
- The series $\exp(x) 1$ has a composition inverse $L(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ (Taylor series of $\ln(x + 1)$).
- Hence C(x) = L(G(x) 1).
- So $c_n = n![x^n]L(G(x) 1)$, which can be evaluated in time polynomial in n.

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\{B_1, \ldots, B_k\}$, called blocks, such that $V = B_1 \cup B_2 \cup \cdots \cup B_k$. Let p_n be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

set partitions of {1,2,3}: $\{ \{1, 2, 3\}, \{1, 2\}, \{2, 3\}, \{2, 3\}, \{2, 3\}, \{1, 3\}, \{3, 5\}, \{4, 5\},$

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\{B_1, \ldots, B_k\}$, called blocks, such that $V = B_1 \cup B_2 \cup \cdots \cup B_k$. Let p_n be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $(p_n)_{n=0}^{\infty} = 1, 1, 2, 5, 15, 52, 203, ...$ are known as the **Bell numbers**. There is no easy formula for them.

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\{B_1, \ldots, B_k\}$, called blocks, such that $V = B_1 \cup B_2 \cup \cdots \cup B_k$. Let p_n be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $(p_n)_{n=0}^{\infty} = 1, 1, 2, 5, 15, 52, 203, ...$ are known as the **Bell numbers**. There is no easy formula for them.

Goal: Formula for EGF(\mathcal{P}) = $\sum_{n=0}^{\infty} p_n \frac{x^n}{n!}$.

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\{B_1, \ldots, B_k\}$, called blocks, such that $V = B_1 \cup B_2 \cup \cdots \cup B_k$. Let p_n be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $(p_n)_{n=0}^{\infty} = 1, 1, 2, 5, 15, 52, 203, ...$ are known as the **Bell numbers**. There is no easy formula for them.

Goal: Formula for EGF(\mathcal{P}) = $\sum_{n=0}^{\infty} p_n \frac{x^n}{n!}$.

• Define \mathcal{B} as the class of partitions with a single block. Clearly $EGF(\mathcal{B}) = \sum_{n=1}^{\infty} \frac{x^n}{n!} = \exp(x) - 1.$

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\{B_1, \ldots, B_k\}$, called blocks, such that $V = B_1 \cup B_2 \cup \cdots \cup B_k$. Let p_n be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $(p_n)_{n=0}^{\infty} = 1, 1, 2, 5, 15, 52, 203, \ldots$ are known as the **Bell numbers**. There is no easy formula for them.

Goal: Formula for EGF(\mathcal{P}) = $\sum_{n=0}^{\infty} p_n \frac{x^n}{n!}$.

• Define \mathcal{B} as the class of partitions with a single block. Clearly $EGF(\mathcal{B}) = \sum_{n=1}^{\infty} \frac{x^n}{n!} = \exp(x) - 1.$

• $\operatorname{Set}_k(\mathcal{B}) \cong \operatorname{class}$ of partitions with k blocks. $\operatorname{EGF}(\operatorname{Set}_k(\mathcal{B})) = \frac{(\exp(x)-1)^k}{k!}$.

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\{B_1, \ldots, B_k\}$, called blocks, such that $V = B_1 \cup B_2 \cup \cdots \cup B_k$. Let p_n be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $(p_n)_{n=0}^{\infty} = 1, 1, 2, 5, 15, 52, 203, \ldots$ are known as the **Bell numbers**. There is no easy formula for them.

Goal: Formula for EGF(\mathcal{P}) = $\sum_{n=0}^{\infty} p_n \frac{x^n}{n!}$.

• Define B as the class of partitions with a single block. Clearly $EGF(B) = \sum_{n=1}^{\infty} \frac{x^n}{n!} = exp(x) - 1.$

• Set_k(\mathfrak{B}) \cong class of partitions with k blocks. EGF(Set_k(\mathfrak{B})) = $\frac{(\exp(x)-1)^k}{k!}$. • $\mathfrak{P} \cong$ Set(\mathfrak{B}), hence

$$\mathsf{EGF}(\mathcal{P}) = \sum_{k=0}^{\infty} \frac{(\mathsf{exp}(x) - 1)^k}{k!} = \underbrace{\mathsf{exp}}_{k}(\mathsf{exp}(x) - 1).$$

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \to K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set Xand objects on vertex set Y.

Weighted classes

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \to K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set Xand objects on vertex set Y.

We then define

$$\mathsf{EGF}(\mathcal{A}, w) = \sum_{n=0}^{\infty} \left(\sum_{\alpha \in \mathcal{A}_n} w(\alpha) \right) \frac{x^n}{n!} = \sum_{\alpha \in \mathcal{A}_*} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}$$

Weighted classes

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \to K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set Xand objects on vertex set Y.

We then define

$$\mathsf{EGF}(\mathcal{A},w) = \sum_{n=0}^{\infty} \left(\sum_{\alpha \in \mathcal{A}_n} w(\alpha) \right) \frac{x^n}{n!} = \sum_{\alpha \in \mathcal{A}_*} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}$$

• Union of two disjoint weighted labelled classes is defined as in the unlabelled case.

Weighted classes

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \to K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set Xand objects on vertex set Y.

We then define

$$\mathsf{EGF}(\mathcal{A}, w) = \sum_{n=0}^{\infty} \left(\sum_{\alpha \in \mathcal{A}_n} w(\alpha) \right) \frac{x^n}{n!} = \sum_{\alpha \in \mathcal{A}_*} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}$$

- Union of two disjoint weighted labelled classes is defined as in the unlabelled case.
- Labelled product of weighted labelled comb. classes (A, w_A) ⊗ (B, w_B) is the weighted labelled class (A ⊗ B, w_⊗), where w_⊗((α, β)) = w_A(α)w_B(β).

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \to K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set Xand objects on vertex set Y.

We then define

$$\mathsf{EGF}(\mathcal{A},w) = \sum_{n=0}^{\infty} \left(\sum_{\alpha \in \mathcal{A}_n} w(\alpha) \right) \frac{x^n}{n!} = \sum_{\alpha \in \mathcal{A}_*} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}$$

- Union of two disjoint weighted labelled classes is defined as in the unlabelled case.
- Labelled product of weighted labelled comb. classes (A, w_A) ⊗ (B, w_B) is the weighted labelled class (A ⊗ B, w_⊗), where w_⊗((α, β)) = w_A(α)w_B(β).
- $\mathsf{EGF}((\mathcal{A}, w_{\mathcal{A}}) \otimes (\mathcal{B}, w_{\mathcal{B}})) = \mathsf{EGF}(\mathcal{A}, w_{\mathcal{A}}) \mathsf{EGF}(\mathcal{B}, w_{\mathcal{B}}).$

Question: What is the expected number of cycles in a random permutation of [n]?

1→1 L→5 -> 3 っこ 54

Question: What is the expected number of cycles in a random permutation of [n]? Notation:

• $p_{n,k}$... number of permutations of [n] with exactly k cycles

Question: What is the expected number of cycles in a random permutation of [n]? Notation:

• $p_{n,k}$... number of permutations of [n] with exactly k cycles

•
$$\mathfrak{P}$$
...class of permutations. Clearly $|\mathfrak{P}_n| = n!$, hence $\mathsf{EGF}(\mathfrak{P}) = \sum_{n=0}^{\infty} n! \frac{x^n}{n!} = \frac{1}{1-x}$.

Question: What is the expected number of cycles in a random permutation of [n]? Notation:

- $p_{n,k}$... number of permutations of [n] with exactly k cycles \leftarrow
- \mathcal{P} ...class of permutations. Clearly $|\mathcal{P}_n| = n!$, hence EGF(\mathcal{P}) = $\sum_{n=0}^{\infty} n! \frac{x^n}{n!} = \frac{1}{1-x}$.
- \mathfrak{C} ... class of permutations having 1 cycle. Define

$$C(x) := \mathsf{EGF}(\mathcal{C}) = \sum_{n=0}^{\infty} p_{n,1} \frac{x^n}{n!}.$$

Question: What is the expected number of cycles in a random permutation of [n]? Notation:

- $p_{n,k}$... number of permutations of [n] with exactly k cycles
- \mathcal{P} ...class of permutations. Clearly $|\mathcal{P}_n| = n!$, hence $\mathsf{EGF}(\mathcal{P}) = \sum_{n=0}^{\infty} n! \frac{x^n}{n!} = \frac{1}{1-x}$.
- $\bullet \ {\mathfrak C} \ \ldots$ class of permutations having 1 cycle. Define

$$C(x) := \mathsf{EGF}(\mathcal{C}) = \sum_{n=0}^{\infty} p_{n,1} \frac{x^n}{n!}.$$

• Note:
$$p_{n,1} = (n-1)!$$
, hence

$$C(x) = \sum_{n=0}^{\infty} \frac{x^n}{n} = -\ln(1 + (-x)) = "\ln\left(\frac{1}{1-x}\right)".$$

Question: What is the expected number of cycles in a random permutation of [n]? Notation:

- $p_{n,k}$... number of permutations of [n] with exactly k cycles
- \mathcal{P} ... class of permutations. Clearly $|\mathcal{P}_n| = n!$, hence

 $EGF(\mathcal{P}) = \sum_{n=0}^{\infty} n! \frac{x^n}{n!} - \frac{1}{1-x}$

• \mathfrak{C} ... class of permutations having 1 cycle. Define

$$C(x) := \mathsf{EGF}(\mathcal{C}) = \sum_{n=0}^{\infty} p_{n,1} \frac{x^n}{n!}$$

• Note:
$$p_{n,1} = (n-1)!$$
, hence

$$C(x) = \sum_{n=0}^{\infty} \frac{x^n}{n} = -\ln(1 + (-x)) = \left(\ln\left(\frac{1}{1-x}\right) \right)$$

• Note also, that permutations with exactly k cycles correspond to $\operatorname{Set}_k(\mathcal{C})$ and have $\operatorname{EGF}\left(\frac{1}{k!}C(x)^k\right)$, while \mathcal{P} corresponds to $\operatorname{Set}(\mathcal{C})$ and hence $\operatorname{EGF}(\mathcal{P}) = \exp(C(x)) = \frac{1}{1-x}.$

Example continued

Question: What is the expected number of cycles in a random permutation of [n]?

To answer the question, follow these steps:

• To a permutation $\pi \in \mathcal{P}$ assign the weight $w(\pi) = y^{c(\pi)}$, where $c(\pi)$ is the number of cycles of π and y is a new formal variable.

Example continued

Question: What is the expected number of cycles in a random permutation of [n]?

To answer the question, follow these steps:

- To a permutation $\pi \in \mathcal{P}$ assign the weight $w(\pi) = y^{c(\pi)}$, where $c(\pi)$ is the number of cycles of π and y is a new formal variable.
- e Find formula for

→
$$P(x, y) := \text{EGF}(\mathcal{P}, w) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n,k} y^k \frac{x^n}{n!} = \sum_{\pi \in \mathcal{P}_*} y^{c(\pi)} \frac{x^{|\pi|}}{|\pi|!}$$

Example continued

 \rightarrow Question: What is the expected number of cycles in a random permutation of [n]?

To answer the question, follow these steps:

- **9** To a permutation $\pi \in \mathcal{P}$ assign the weight $w(\pi) = y^{c(\pi)}$, where $c(\pi)$ is the number of cycles of π and y is a new formal variable.
- 2 Find formula for $P(x, y) := \mathsf{EGF}(\mathcal{P}, w) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n,k} y^k \frac{x^n}{n!} = \sum_{\pi \in \mathcal{P}_*} y^{c(\pi)} \frac{x^{|\pi|}}{|\pi|!}$ Calculate $D(x,y) = \frac{\mathrm{d}}{\mathrm{d}y} P(x,y) = \sum_{n,k} p_{n,k} k y^{k-1} \frac{x^n}{n!}$ $D(x,1) = \sum_{n,k} p_{n,k} k \frac{x^n}{n!}$ $= \sum (\text{total number of cycles in permutations of } [n])_{n!}^{x^{-1}}$ $[x^n]D(x,1) = {\text{total number of cycles in permutations of } [n]}$ n!= expected number of cycles in a random permutation

Question: What is the expected number of cycles in a random permutation of [n]?