Analytic combinatorics
 Lecture 3

March 24, 2021

Definition
A labelled combinatorial class is a set \mathcal{A} in which every object $\alpha \in \mathcal{A}$ has a vertex set (or ground set or set of labels), denoted $V(\alpha)$, which is a finite subset of \mathbb{N}, satisfying the following conditions:

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha)=X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.

Examples: graphs, permulations,

Labelled classes

Definition

A labelled combinatorial class is a set \mathcal{A} in which every object $\alpha \in \mathcal{A}$ has a vertex set (or ground set or set of labels), denoted $V(\alpha)$, which is a finite subset of \mathbb{N}, satisfying the following conditions:

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha)=X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α, denoted $|\alpha|$, is the size of $V(\alpha)$.

Labelled classes

Definition

A labelled combinatorial class is a set \mathcal{A} in which every object $\alpha \in \mathcal{A}$ has a vertex set (or ground set or set of labels), denoted $V(\alpha)$, which is a finite subset of \mathbb{N}, satisfying the following conditions:

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha)=X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α, denoted $|\alpha|$, is the size of $V(\alpha)$.
- An element $\alpha \in \mathcal{A}$ is normalized if $V(\alpha)=[n]$ for some $n \in \mathbb{N}$ (where $[n]=\{1,2,3, \ldots, n\}$).

Definition

A labelled combinatorial class is a set \mathcal{A} in which every object $\alpha \in \mathcal{A}$ has a vertex set (or ground set or set of labels), denoted $V(\alpha)$, which is a finite subset of \mathbb{N}, satisfying the following conditions:

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha)=X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α, denoted $|\alpha|$, is the size of $V(\alpha)$.
- An element $\alpha \in \mathcal{A}$ is normalized if $V(\alpha)=[n]$ for some $n \in \mathbb{N}$ (where $[n]=\{1,2,3, \ldots, n\}$).
- $\operatorname{Let}_{\text {size }} \mathcal{A}_{n}$. be the set $\{\alpha \in \mathcal{A} ; V(\alpha)=[n]\}$, i.e., the set of normalized elements of

Definition

A labelled combinatorial class is a set \mathcal{A} in which every object $\alpha \in \mathcal{A}$ has a vertex set (or ground set or set of labels), denoted $V(\alpha)$, which is a finite subset of \mathbb{N}, satisfying the following conditions:

- For every finite set $X \subseteq \mathbb{N}$, there are only finitely many objects $\alpha \in \mathcal{A}$ with $V(\alpha)=X$.
- For every two finite sets $X, Y \subseteq \mathbb{N}$ of the same size, the number of objects in \mathcal{A} with vertex set X is the same as the number of those with vertex set Y.
- For $\alpha \in \mathcal{A}$, the size of α, denoted $|\alpha|$, is the size of $V(\alpha)$.
- An element $\alpha \in \mathcal{A}$ is normalized if $V(\alpha)=[n]$ for some $n \in \mathbb{N}$ (where $[n]=\{1,2,3, \ldots, n\}$).
- Let \mathcal{A}_{n} be the set $\{\alpha \in \mathcal{A} ; V(\alpha)=[n]\}$, i.e., the set of normalized elements of size n.
- \mathcal{A}_{*} denotes the set $\bigcup_{n=0}^{\infty} \mathcal{A}_{n}$ of all the normalized elements of \mathcal{A}.

Definition

Let \mathcal{A} be a labelled combinatorial class, let $a_{n}=\left|\mathcal{A}_{n}\right|$. The exponential generating function of \mathcal{A}, denoted $\operatorname{EGF}(\mathcal{A})$ is the f.p.s.

$$
\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!} ; \sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
$$

Definition

Let \mathcal{A} be a labelled combinatorial class, let $a_{n}=\left|\mathcal{A}_{n}\right|$. The exponential generating function of \mathcal{A}, denoted $\operatorname{EGF}(\mathcal{A})$ is the f.p.s.

$$
\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}
$$

Remark: We may also write

$$
\operatorname{EGF}(\mathcal{A})=\sum_{\alpha \in \mathcal{A}_{*}} \frac{x^{|\alpha|}}{|\alpha|!} .
$$

Operations with labelled classes and EGFs

Observation
If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\operatorname{EGF}(\mathcal{A} \cup \mathcal{B})=\operatorname{EGF}(\mathcal{A})+\operatorname{EGF}(\mathcal{B})$.

Operations with labelled classes and EGFs

Observation
If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\operatorname{EGF}(\mathcal{A} \cup \mathcal{B})=\operatorname{EGF}(\mathcal{A})+\operatorname{EGF}(\mathcal{B})$.
Definition
Let \mathcal{A} and \mathcal{B} be labelled comb. classes. Their labelled product, denoted $\mathcal{A} \otimes \mathcal{B}$, is the labelled comb. class

$$
\{(\alpha, \beta) ; \alpha \in \mathcal{A} \& \beta \in \mathcal{B} \& V(\alpha) \cap V(\beta)=\emptyset\}
$$

with $V((\alpha, \beta))=V(\alpha) \cup V(\beta)$.

$$
\begin{aligned}
& \text { Ext } \left.\sim_{*}=\left\{\begin{array}{ll}
0 \\
1 & 2
\end{array}\right\} \quad E G F=\frac{x^{2}}{2!}\right\} \\
& \left.S_{*}^{*}=\left\{\operatorname{cic}_{2}^{3}\right\} \text { EfF: } \frac{x^{3}}{3!}\right)
\end{aligned}
$$

Observation

If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\operatorname{EGF}(\mathcal{A} \cup \mathcal{B})=\operatorname{EGF}(\mathcal{A})+\operatorname{EGF}(\mathcal{B})$.

Definition

Let \mathcal{A} and \mathcal{B} be labelled comb. classes. Their labelled product, denoted $\mathcal{A} \otimes \mathcal{B}$, is the labelled comb. class

$$
\{(\alpha, \beta) ; \alpha \in \mathcal{A} \& \beta \in \mathcal{B} \& V(\alpha) \cap V(\beta)=\emptyset\}
$$

with $V((\alpha, \beta))=V(\alpha) \cup V(\beta)$.

Lemma

$\operatorname{EGF}(\mathcal{A} \otimes \mathcal{B})=\operatorname{EGF}(\mathcal{A}) \operatorname{EGF}(\mathcal{B})$.

Observation

If \mathcal{A} and \mathcal{B} are disjoint labelled comb. classes, then $\operatorname{EGF}(\mathcal{A} \cup \mathcal{B})=\operatorname{EGF}(\mathcal{A})+\operatorname{EGF}(\mathcal{B})$.

Definition

Let \mathcal{A} and \mathcal{B} be labelled comb. classes. Their labelled product, denoted $\mathcal{A} \otimes \mathcal{B}$, is the labelled comb. class

$$
\{(\alpha, \beta) ; \alpha \in \mathcal{A} \& \beta \in \mathcal{B} \& V(\alpha) \cap V(\beta)=\emptyset\}
$$

with $V((\alpha, \beta))=V(\alpha) \cup V(\beta)$.

Lemma

$\operatorname{EGF}(\mathcal{A} \otimes \mathcal{B})=\operatorname{EGF}(\mathcal{A}) \operatorname{EGF}(\mathcal{B})$.

Proof.

$$
\begin{aligned}
{\left[x^{n}\right] \operatorname{EGF}(\mathcal{A} \otimes \mathcal{B}) } & =\frac{\left|(\mathcal{A} \otimes \mathcal{B})_{n}\right|}{n!}=\frac{1}{n!} \sum_{k=0}^{n} \underbrace{\binom{n}{k}\left|\mathcal{A}_{k}\right| \cdot\left|\mathcal{B}_{n-k}\right|}=\sum_{k=0}^{n} \frac{\left|\mathcal{A}_{k}\right|}{k!} \cdot \frac{\left|\mathcal{B}_{n-k}\right|}{(n-k)!} \\
& =\sum_{k=0}^{n}\left(\left[x^{k}\right] \operatorname{EGF}(\mathcal{A})\right) \cdot\left(\left[x^{n-k}\right] \operatorname{EGF}(\mathcal{B})\right)=\left[x^{n}\right] \operatorname{EGF}(\mathcal{A}) \operatorname{EGF}(\mathcal{B}) .
\end{aligned}
$$

Let \mathcal{A} be a labelled comb. class, let $A(x)$ be its EGF.

- $\mathcal{A}^{\otimes 2}=\mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{2}$.

Let \mathcal{A} be a labelled comb. class, let $A(x)$ be its EGF.

- $\mathcal{A}^{\otimes 2}=\mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{2}$.
- $\mathcal{A}^{\otimes k}=\underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text { copies }}$ is the class of ordered k-tuples of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{k}$.

Let \mathcal{A} be a labelled comb. class, let $A(x)$ be its EGF.

- $\mathcal{A}^{\otimes 2}=\mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{2}$.
- $\mathcal{A}^{\otimes k}=\underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text { copies }}$ is the class of ordered k-tuples of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{k}$.
- Assume $\mathcal{A}_{0}=\emptyset$. Then $\{\emptyset\} \cup \mathcal{A} \cup \mathcal{A}^{\otimes 2} \cup \mathcal{A}^{\otimes 3} \cup \cdots$ is the class of ordered sequences of vertex-disjoint objects from \mathcal{A}. Its EGF is

$$
1+A(x)+A(x)^{2}+\cdots=\frac{1}{1-A(x)}
$$

Let \mathcal{A} be a labelled comb. class, let $A(x)$ be its EGF.

- $\mathcal{A}^{\otimes 2}=\mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{2}$.
- $\mathcal{A}^{\otimes k}=\underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text { copies }}$ is the class of ordered k-tuples of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{k}$.
- Assume $\mathcal{A}_{0}=\emptyset$. Then $\{\emptyset\} \cup \mathcal{A} \cup \mathcal{A}^{\otimes 2} \cup \mathcal{A}^{\otimes 3} \cup \cdots$ is the class of ordered sequences of vertex-disjoint objects from \mathcal{A}. Its EGF is

$$
1+A(x)+A(x)^{2}+\cdots=\frac{1}{1-A(x)}
$$

- Assume $\mathcal{A}_{0}=\emptyset$, and fix $k \in \mathbb{N}_{0}$. Let $\operatorname{Set}_{k}(\mathcal{A})$ be the labelled comb. class of all the k-element sets $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ where the α_{i} are vertex-disjoint objects from \mathcal{A}, and $V\left(\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}\right)=V\left(\alpha_{1}\right) \cup V\left(\alpha_{2}\right) \cup \cdots \cup V\left(\alpha_{k}\right)$.

$$
\begin{array}{l|l}
\left.\left., \ldots, \alpha_{k}\right\}\right)=V\left(\alpha_{1}\right) \cup V\left(\alpha_{2}\right) \cup \cdots \cup V\left(\alpha_{k}\right) \\
\operatorname{EGF}\left(\operatorname{Set}_{k}(\mathcal{A})\right)=\frac{1}{k!} \operatorname{EGF}\left(\mathcal{A}^{\otimes k}\right)=\frac{1}{k!} A(x)^{k} ; & \operatorname{Set}_{Z}(\mathbb{Q})= \\
0, \cap
\end{array}
$$

$$
a_{*}=\left\{\begin{array}{lll}
0 & & \text { EGF(} \operatorname{Set}_{k}(\mathcal{l} \\
1 & , & \wedge
\end{array}\right\}
$$

$$
\left(\Omega \otimes Q_{0}=\left\{\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 2 & 1 & 2
\end{array}\right.\right.
$$

Let \mathcal{A} be a labelled comb. class, let $A(x)$ be its EGF.

- $\mathcal{A}^{\otimes 2}=\mathcal{A} \otimes \mathcal{A}$ is the class of ordered pairs of vertex-disjoint objects from \mathcal{A}. Its EGF is $A(x)^{2}$.
- $\mathcal{A}^{\otimes k}=\underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{k \text { copies }}$ is the class of $\underbrace{\text { ordered } k \text {-tuples of vertex-disjoint objects, }}{ }_{\text {from } \mathcal{A} \text {. Its EGF is } A(x)^{k} \text {. }}=1$
- Assume $\mathcal{A}_{0}=\emptyset$. Then $\{\emptyset\} \cup \mathcal{A} \cup \mathcal{A}^{\otimes 2} \cup \mathcal{A}^{\otimes 3} \cup \ldots$ is the class of ordered sequences of vertex-disjoint objects from \mathcal{A}. Its EGF is

$$
1+A(x)+A(x)^{2}+\cdots=\frac{1}{1-A(x)}
$$

- Assume $\mathcal{A}_{0}=\emptyset$, and fix $k \in \mathbb{N}_{0}$. Let $\operatorname{Set}_{k}(\mathcal{A})$ be the labelled comb. class of all the k-element sets $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ where the α_{i} are vertex-disjoint objects from \mathcal{A}, and $V\left(\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}\right)=V\left(\alpha_{1}\right) \cup V\left(\alpha_{2}\right) \cup \cdots \cup V\left(\alpha_{k}\right)$.

$$
\underbrace{\operatorname{EGF}\left(\operatorname{Set}_{k}(\mathcal{A})\right)=\frac{1}{k!} \operatorname{EGF}\left(\mathcal{A}^{\otimes k}\right)_{J}=\frac{1}{k!} A(x)^{k}}
$$

- Assume $\mathcal{A}_{0}=\emptyset$. Define $\operatorname{Set}(\mathcal{A})=\bigcup_{k=0}^{\infty} \operatorname{Set}_{k}(\mathcal{A})$. Then

$$
\operatorname{EGF}(\operatorname{Set}(\mathcal{A}))=1+A(x)+\frac{A(x)^{2}}{2!}+\frac{A(x)^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{A(x)^{k}}{k!}=\underbrace{\exp (A(x))},
$$

where $\exp (x)\left(\right.$ or $\left.e^{x}\right)$ denotes the f.p.s. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.,

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=\underbrace{\binom{n}{2}}$)

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set [n] (define $c_{0}=0$)

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set [n] (define $c_{0}=0$)
- \mathcal{G}... labelled class of all graphs, $G(x)=E G F(\mathcal{G})=$

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- c_{n}. . number of connected graphs on the vertex set [n] (define $c_{0}=0$)
- \mathcal{G}... labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- C ... labelled class of connected graphs, $C(x)=E G F(\mathcal{C})=$

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set [n] (define $c_{0}=0$)
- \mathcal{G}... labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- - . . . labelled class of connected graphs, $C(x)=E G F(C)$

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set $[n]$ (define $c_{0}=0$)
- $\mathcal{G} \ldots$. labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- $\mathcal{C} \ldots$ labelled class of connected graphs, $C(x)=E G F(\mathcal{C})$

Questions:

(1) What is the relationship between $G(x)$ and $C(x)$?
(3) How can we compute c_{n} efficiently?

Example: graphs and components

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set $[n]$ (define $c_{0}=0$)
- \mathcal{G}... labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- \mathcal{C}. . labelled class of connected graphs, $C(x)=E G F(\mathcal{C})$

Questions:
(1) What is the relationship between $G(x)$ and $C(x)$?
(2) How can we compute c_{n} efficiently?

Answer 1: $\mathcal{G} \stackrel{n}{=} \operatorname{Set}(\mathcal{C})$, hence $G(x)=\exp (C(x))$! $]$

$$
\frac{1}{k!} C^{k}(x)=E G F(\text { graphs with } k \text { comp. })
$$

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set $[n]$ (define $c_{0}=0$)
- $\mathcal{G} \ldots$ labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- $\mathcal{C} \ldots$ labelled class of connected graphs, $C(x)=E G F(\mathcal{C})$

Questions:

(1) What is the relationship between $G(x)$ and $C(x)$?
(3) How can we compute c_{n} efficiently?

Answer 1: $\mathcal{G}=\operatorname{Set}(\mathcal{C})$, hence $G(x)=\exp (C(x))$.
Answer 2:

- We saw that $G(x)=\exp (C(x))$, or equivalently $G(x)-1=\exp (C(x))-1$

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set $[n]$ (define $c_{0}=0$)
- $\mathcal{G} \ldots$ labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- $\mathcal{C} \ldots$ labelled class of connected graphs, $C(x)=E G F(\mathcal{C})$

Questions:

(1) What is the relationship between $G(x)$ and $C(x)$?
(2) How can we compute c_{n} efficiently?

Answer 1: $\mathcal{G}=\operatorname{Set}(\mathcal{C})$, hence $G(x)=\exp (C(x))$.
Answer 2:

- We saw that $G(x)=\exp (C(x))$, or equivalently $G(x)-1=\exp (C(x))-1$
- The series $\exp (x)-1$ has a composition inverse $L(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$ (Taylor series of $\ln (x+1))$.

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set [n] (define $c_{0}=0$)
- \mathcal{G}... labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- \mathcal{C}. . . labelled class of connected graphs, $C(x)=E G F(C)$

Questions:

(1) What is the relationship between $G(x)$ and $C(x)$?
(2) How can we compute c_{n} efficiently?

Answer 1: $\mathcal{G}=\operatorname{Set}(\mathcal{C})$, hence $G(x)=\exp (C(x))$.
Answer 2:

- We saw that $G(x)=\exp (C(x))$, or equivalently $G(x)-1=\exp (C(x))-1$
- The series $\exp (x)-1$ has a composition inverse $L(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+\boldsymbol{1}}}{n} x^{n}$ (Taylor series of $\ln (x+1))$.
- Hence $C(x)=L(G(x)-1)$.

Notation:

- $g_{n} \ldots$ number of graphs on the vertex set $[n]$ (so $g_{n}=2^{\binom{n}{2}}$)
- $c_{n} \ldots$ number of connected graphs on the vertex set $[n]$ (define $c_{0}=0$)
- \mathcal{G}... labelled class of all graphs, $G(x)=\operatorname{EGF}(\mathcal{G})$
- $\mathcal{C} \ldots$ labelled class of connected graphs, $C(x)=E G F(\mathcal{C})$

Questions:

(1) What is the relationship between $G(x)$ and $C(x)$?
(2) How can we compute c_{n} efficiently?

Answer 1: $\mathcal{G}=\operatorname{Set}(\mathcal{C})$, hence $G(x)=\exp (C(x))$.
Answer 2:

- We saw that $G(x)=\exp (C(x))$, or equivalently $G(x)-1=\exp (C(x))-1$
- The series $\exp (x)-1$ has a composition inverse $L(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$ (Taylor series of $\ln (x+1))$.
- Hence $C(x)=L(G(x)-1)$.
- So $c_{n}=n!\left[x^{n}\right] L(G(x)-1)$, which can be evaluated in time polynomial in n.

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets
$\left\{B_{1}, \ldots, B_{k}\right\}$, called blocks, such that $V=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$. Let p_{n} be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.
set partitions of $\{1,2,3\}$:

$$
\begin{aligned}
& \{\{1,2,3\}\},\{\{1\},\{2,3\}\},\{\{2,\{1,3\}\}, \\
& \{\{3\},\{1,2\}\},\{\{1\},\{2\},\{3\}\}
\end{aligned}
$$

Definition

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\left\{B_{1}, \ldots, B_{k}\right\}$, called blocks, such that $V=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$. Let p_{n} be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $\left(p_{n}\right)_{n=0}^{\infty}=1,1,2,5,15,52,203, \ldots$ are known as the Bell numbers. There is no easy formula for them.

Definition

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\left\{B_{1}, \ldots, B_{k}\right\}$, called blocks, such that $V=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$. Let p_{n} be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $\left(p_{n}\right)_{n=0}^{\infty}=1,1,2,5,15,52,203, \ldots$ are known as the Bell numbers. There is no easy formula for them.

Goal: Formula for $\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} p_{n} \frac{x^{n}}{n!}$.

Definition

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\left\{B_{1}, \ldots, B_{k}\right\}$, called blocks, such that $V=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$. Let p_{n} be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $\left(p_{n}\right)_{n=0}^{\infty}=1,1,2,5,15,52,203, \ldots$ are known as the Bell numbers. There is no easy formula for them.

Goal: Formula for $\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} p_{n} \frac{x^{n}}{n!}$.

- Define \mathcal{B} as the class of partitions with a single block. Clearly

$$
\operatorname{EGF}(\mathcal{B})=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=\exp (x)-1 .
$$

Definition

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\left\{B_{1}, \ldots, B_{k}\right\}$, called blocks, such that $V=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$. Let p_{n} be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $\left(p_{n}\right)_{n=0}^{\infty}=1,1,2,5,15,52,203, \ldots$ are known as the Bell numbers. There is no easy formula for them.

Goal: Formula for $\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} p_{n} \frac{x^{n}}{n!}$.

- Define \mathcal{B} as the class of partitions with a single block. Clearly $\operatorname{EGF}(\mathcal{B})=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=\exp (x)-1$.
- $\operatorname{Set}_{k}(\mathcal{B}) \cong$ class of partitions with k blocks. $\operatorname{EGF}\left(\operatorname{Set}_{k}(\mathcal{B})\right)=\frac{(\exp (x)-1)^{k}}{k!}$.)

Definition

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets $\left\{B_{1}, \ldots, B_{k}\right\}$, called blocks, such that $V=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$. Let p_{n} be the number of set partitions of the set [n]. Let \mathcal{P} be the labelled comb. class of set partitions.

Remark: The elements of the sequence $\left(p_{n}\right)_{n=0}^{\infty}=1,1,2,5,15,52,203, \ldots$ are known as the Bell numbers. There is no easy formula for them.

Goal: Formula for $\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} p_{n} \frac{x^{n}}{n!}$.

- Define \mathcal{B} as the class of partitions with a single block. Clearly $\operatorname{EGF}(\mathcal{B})=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=\exp (x)-1$.
- $\operatorname{Set}_{k}(\mathcal{B}) \cong$ class of partitions with k blocks. $\operatorname{EGF}\left(\operatorname{Set}_{k}(\mathcal{B})\right)=\frac{(\exp (x)-1)^{k}}{k!}$.
- ${ }^{\mathcal{P}} \cong \operatorname{Set}(\mathcal{B})$, hence

$$
\operatorname{EGF}(\mathcal{P})=\sum_{k=0}^{\infty} \frac{(\exp (x)-1)^{k}}{k!}=\underbrace{\exp (\exp (x)-1)}
$$

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \rightarrow K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set X and objects on vertex set Y.

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \rightarrow K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set X and objects on vertex set Y.
We then define

$$
\operatorname{EGF}(\mathcal{A}, w)=\sum_{n=0}^{\infty}\left(\sum_{\alpha \in \mathcal{A}_{n}} w(\alpha)\right) \frac{x^{n}}{n!}=\sum_{\alpha \in \mathcal{A}_{*}} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}
$$

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \rightarrow K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set X and objects on vertex set Y.
We then define

$$
\operatorname{EGF}(\mathcal{A}, w)=\sum_{n=0}^{\infty}\left(\sum_{\alpha \in \mathcal{A}_{n}} w(\alpha)\right) \frac{x^{n}}{n!}=\sum_{\alpha \in \mathcal{A}_{*}} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}
$$

- Union of two disjoint weighted labelled classes is defined as in the unlabelled case.

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \rightarrow K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set X and objects on vertex set Y.
We then define

$$
\operatorname{EGF}(\mathcal{A}, w)=\sum_{n=0}^{\infty}\left(\sum_{\alpha \in \mathcal{A}_{n}} w(\alpha)\right) \frac{x^{n}}{n!}=\sum_{\alpha \in \mathcal{A}_{*}} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}
$$

- Union of two disjoint weighted labelled classes is defined as in the unlabelled case.
- Labelled product of weighted labelled comb. classes $\left(\mathcal{A}, w_{\mathcal{A}}\right) \otimes\left(\mathcal{B}, w_{\mathcal{B}}\right)$ is the weighted labelled class $\left(\mathcal{A} \otimes \mathcal{B}, w_{\otimes}\right)$, where $w_{\otimes}((\alpha, \beta))=w_{\mathcal{A}}(\alpha) w_{\mathcal{B}}(\beta)$.

Definition

A weighted labelled combinatorial class is a pair (\mathcal{A}, w) where \mathcal{A} is a labelled comb. class, and $w: \mathcal{A} \rightarrow K$ is a function such that for any two finite sets $X, Y \subseteq \mathbb{N}$ of the same cardinality, there is a weight-preserving bijection between objects on vertex set X and objects on vertex set Y.
We then define

$$
\operatorname{EGF}(\mathcal{A}, w)=\sum_{n=0}^{\infty}\left(\sum_{\alpha \in \mathcal{A}_{n}} w(\alpha)\right) \frac{x^{n}}{n!}=\sum_{\alpha \in \mathcal{A}_{*}} w(\alpha) \frac{x^{|\alpha|}}{|\alpha|!}
$$

- Union of two disjoint weighted labelled classes is defined as in the unlabelled case.
- Labelled product of weighted labelled comb. classes $\left(\mathcal{A}, w_{\mathcal{A}}\right) \otimes\left(\mathcal{B}, w_{\mathcal{B}}\right)$ is the weighted labelled class $\left(\mathcal{A} \otimes \mathcal{B}, w_{\otimes}\right)$, where $w_{\otimes}((\alpha, \beta))=w_{\mathcal{A}}(\alpha) w_{\mathcal{B}}(\beta)$.
- $\operatorname{EGF}\left(\left(\mathcal{A}, w_{\mathcal{A}}\right) \otimes\left(\mathcal{B}, w_{\mathcal{B}}\right)\right)=\operatorname{EGF}\left(\mathcal{A}, w_{\mathcal{A}}\right) \operatorname{EGF}\left(\mathcal{B}, w_{\mathcal{B}}\right)$.

Example: cycles and permutations

Question: What is the expected number of cycles in a random permutation of [n]?

$1 \rightarrow 1$
$L \rightarrow 5$
$5 \rightarrow 3$
$3 \rightarrow 2$
$4 \rightarrow 4$

Example: cycles and permutations

Question: What is the expected number of cycles in a random permutation of $[n]$?
Notation:

- $p_{n, k} \ldots$ number of permutations of $[n]$ with exactly k cycles

Example: cycles and permutations

Question: What is the expected number of cycles in a random permutation of $[n]$?
Notation:

- $p_{n, k} \ldots$ number of permutations of $[n]$ with exactly k cycles
- $\mathcal{P} \ldots$ class of permutations. Clearly $\left|\mathcal{P}_{n}\right|=n$!, hence

$$
\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} n!\frac{x^{n}}{n!}=\frac{1}{1-x} .
$$

Question: What is the expected number of cycles in a random permutation of $[n]$?
Notation:

- $p_{n, k} \ldots$ number of permutations of $[n]$ with exactly k cycles
- \mathcal{P}. . class of permutations. Clearly $\left|\mathcal{P}_{n}\right|=n$!, hence

$$
\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} n!\frac{x^{n}}{n!}=\frac{1}{1-x} .
$$

- \mathcal{C}...class of permutations having 1 cycle. Define

$$
C(x):=\operatorname{EGF}(\mathcal{C})=\sum_{n=0}^{\infty} \tilde{p}_{n, 1} \frac{x^{n}}{n!} .
$$

Question: What is the expected number of cycles in a random permutation of [n]?
Notation:

- $p_{n, k} \ldots$ number of permutations of $[n]$ with exactly k cycles
- \mathcal{P}. . . class of permutations. Clearly $\left|\mathcal{P}_{n}\right|=n$!, hence

$$
\operatorname{EGF}(\mathcal{P})=\sum_{n=0}^{\infty} n!\frac{x^{n}}{n!}=\frac{1}{1-x}
$$

- \mathcal{C}...class of permutations having 1 cycle. Define

$$
C(x):=\operatorname{EGF}(\mathcal{C})=\sum_{n=0}^{\infty} p_{n, 1} \frac{x^{n}}{n!}
$$

- Note: $p_{n, 1}=(n-1)$!, hence

Question: What is the expected number of cycles in a random permutation of $[n]$?

Notation:

- $p_{n, k} \ldots$ number of permutations of $[n]$ with exactly k cycles
- \mathcal{P}. . class of permutations. Clearly $\left|\mathcal{P}_{n}\right|=n$!, hence

EEE(P)= $\left.\sum_{n=0}^{\infty}!\frac{x^{n}}{n!}-\frac{1}{1-x}\right]$

- C...class of permutations having 1 cycle. Define

$$
C(x):=\operatorname{EGF}(\mathcal{C})=\sum_{n=0}^{\infty} p_{n, 1} \frac{x^{n}}{n!}
$$

- Note: $p_{n, 1}=(n-1)$!, hence

$$
C(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n}=-\ln (1+(-x))=" \ln \left(\frac{1}{1-x}\right) " .
$$

- Note also, that permutations with exactly k cycles correspond to $\operatorname{Set}_{k}(\mathcal{C})$ and have EGF $\frac{1}{k!} C(x)^{k}$, while \mathcal{P} corresponds to $\operatorname{Set}(\mathcal{C})$ and hence

Example continued

Question: What is the expected number of cycles in a random permutation of $[n]$?
To answer the question, follow these steps:
(1) To a permutation $\pi \in \mathcal{P}$ assign the weight $w(\pi)=y^{c(\pi)}$, where $c(\pi)$ is the number of cycles of π and y is a new formal variable.

Question: What is the expected number of cycles in a random permutation of $[n]$?
To answer the question, follow these steps:
(1) To a permutation $\pi \in \mathcal{P}$ assign the weight $w(\pi)=y^{c(\pi)}$, where $c(\pi)$ is the number of cycles of π and y is a new formal variable.
(2) Find formula for
$\rightarrow P(x, y):=\operatorname{EGF}(\mathcal{P}, w)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n, k} y^{k} \frac{x^{n}}{n!}=\sum_{\pi \in \mathcal{P}_{*}} y^{c(\pi)} \frac{x|\pi|}{|\pi|!}$.
\rightarrow Question: What is the expected number of cycles in a random permutation of [n]?
To answer the question, follow these steps:
(1) To a permutation $\pi \in \mathcal{P}$ assign the weight $w(\pi)=y^{c(\pi)}$, where $c(\pi)$ is the number of cycles of π and y is a new formal variable.
(2) Find formula for
$\rightarrow P(x, y):=\operatorname{EGF}(\mathcal{P}, w)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n, k} y^{k} \frac{x^{n}}{n!}=\sum_{\pi \in \mathcal{P}_{*}} y^{c(\pi) \frac{x^{|\pi|}}{|\pi|!} .}$
(3) Calculate

$$
\begin{aligned}
D(x, y) & =\frac{\mathrm{d}}{\mathrm{~d} y} P(x, y)=\sum_{n, k} p_{n, k} k y^{k-1} \frac{x^{n}}{n!} \\
D(x, 1) & =\sum_{n, k} p_{n, k} k \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty}(\text { total number of cycles in permutations of }[n]) \frac{x^{n}}{n!} \\
{\left[x^{n}\right] D(x, 1) } & =\frac{\text { total number of cycles in permutations of }[n]}{n!!} \\
& =\text { expected number of cycles in a random permutation }
\end{aligned}
$$

Example finished

Question: What is the expected number of cycles in a random permutation of $[n]$?

