3. Consider a spherical model for the autocovariance function of a stationary isotropic random field:

$$
C(\|h\|)=\sigma^{2} \frac{|b(o, \varrho) \cap b(h, \varrho)|}{|b(o, \varrho)|}, h \in \mathbb{R}^{d}
$$

This model is valid in the dimension d and all the lower dimensions, see Exercise 1 above. However, it is not valid in higher dimensions. Express this autocovariance function for $d=1$ and check that it is a positive semidefinite function. Show that this function considered in \mathbb{R}^{2} (using $\|h\|, h \in \mathbb{R}^{2}$, as its argument) is not positive semidefinite.

Hint: Consider the points $x_{i j}=(i \sqrt{2} \varrho, j \sqrt{2} \varrho), i, j=1, \ldots, 8$ and the coefficients $\alpha_{i j}=(-1)^{i+j}$.

L) positive semidefinite function: (1 -llhll) ${ }^{+}$Car. function of:

$$
f(x)=\frac{1}{\pi} \frac{1-\cos x}{x^{2}} \quad, x \in \mathbb{R}
$$

"tent model"
now choose $d=2, C(\|h\|), h \in \mathbb{R}^{2}$, is NOT PSD

if C(Ilhil), h $\in \mathbb{L}^{2}$, would the PSD.
then it must hold:

$$
\begin{aligned}
& (*)=\sum_{i, j=1}^{m} \sum_{l_{1} l=1}^{n} \alpha_{i j} \alpha_{\& l} C^{\left(\left\|x_{i j}-x_{e l}\right\|\right) \geq 0} \\
& \text { use } \alpha_{i j}=(-1)^{i+j} \quad \forall n, \forall \alpha_{i j}, \forall x
\end{aligned}
$$

choose

$$
x i j=(i \sqrt{2} \rho, j \sqrt{2} \rho)
$$

$$
i, j=1,-, 8
$$

$$
\begin{aligned}
& d=1 \quad \ldots \quad b(\sigma, \rho)=(-\rho, \rho) \\
& h \in \mathbb{R} \quad \mid \operatorname{lo} s) \mid=2 S \\
& |b(\sigma, \rho) \cap b(h, \rho)|=2 \rho-|h|,|h| \leq 2 \rho \\
& \rightarrow C(\|h\|)=\sigma^{2} \cdot\left(1-\frac{\| h_{\|}}{2 \rho}\right)^{+}, h \in \mathbb{R}=0,\left|h_{1}\right|>2 \rho \\
& \infty>\sigma^{2}>0
\end{aligned}
$$

non-zero contributions from:
zero: $f_{0}^{2 \rho} \Rightarrow C(z \rho)=0$

$$
(x)=\sum_{i, j=1}^{m} \sum_{Q_{1} l=1}^{m} \alpha_{i j} \alpha_{k l} C\left(\left\|x_{i j}-x_{2 l}\right\|\right)=64 \cdot 1 \cdot c(0)-224 c(\sqrt{2 \rho})
$$

$8 \times 7=56$ horizontal edges +56 vertical edges

36	points with 4 neighbours	3
24	2	6×6
4		$\ldots 22$

$$
\begin{aligned}
(* *)= & 64 \sigma^{2}-224 \sigma^{2}\left(1-\frac{\sqrt{2}}{2}\right)=\sigma^{2}(64-224+112 \cdot \sqrt{2})= \\
= & \sigma^{2}(112 \sqrt{2}-160)<0 \\
& 28 \sqrt{2}-40 \\
& \frac{7 \sqrt{2}-10}{} 12 \\
& 49 \cdot 2<100
\end{aligned}
$$

