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Overview

Discrete r.v. – expectation and variance

Parameters of discrete distributions

Random vectors



What we have learned
I What is a discrete r.v.
I How to describe it using a PMF and/or CDF.
I Examples of distributions: Bernoulli, binomial,

hypergeometric, Poisson, geometric.
I Expectation: two possible definitions
I E(X) =

∑
x∈Im(X) x · P (X = x)

I E(X) =
∑

ω∈ΩX(ω)P ({ω})
I E(g(X)) =

∑
x∈Im(X) g(x)P (X = x) (LOTUS)

I “How much we expect to get on average, when we repeat
independent experiments with result given by X” . . . we
will discuss later as the law of large numbers.













Comparing binomial and Poisson distribution: PMF
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Generated by the following code in R

x = 0:40
b in = dbinom ( x , 4 0 , 0 . 1 )
po is = dpois ( x , 4 )
plot ( x , bin , y lab=" Bin ( 4 0 , . 1 ) vs Pois ( 4 ) " )
points ( x + .1 , pois , col=" red " )







Properties of E

Theorem
Suppose X,Y are discrete r.v. and a, b ∈ R.

1. If P (X ≥ 0) = 1 and E(X) = 0, then P (X = 0) = 1.
2. If E(X) ≥ 0 then P (X ≥ 0) > 0.
3. E(a ·X + b) = a · E(X) + b.
4. E(X + Y ) = E(X) + E(Y ).



























Another formula for expectation

Theorem
Let X be a discrete r.v. such that Im(X) ⊆ N0 = {0, 1, 2, . . . }.
Then we have

E(X) =

∞∑
n=0

P (X > n).













Variance

Definition
Variance of a r.v. X is the number E((X − EX)2). It is denoted
by var(X).

Theorem

var(X) = E(X2)− E(X)2























Conditional expectation

Definition
Let X be a discrete r.v. and P (B) > 0. Conditional expectation
of X given B is

E(X | B) =
∑

x∈Im(X)

x · P (X = x | B),

whenever the sum is defined.







Law Of Total Expectation

Theorem
Suppose B1, B2, . . . is a partition of Ω and A ∈ F . Then

E(X) =
∑
i

P (Bi)E(X | Bi),

whenever the sum is defined. (Terms with P (Bi) = 0 are
counted as 0.)







Law Of Total Expectation
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Distribution parameters – Bernoulli
Pro X ∼ Bern(p) je
I E(X) = p

I var(X) = p− p2













Distribution parameters – binomial
Pro X ∼ Bin(n, p) je
I E(X) = np

I var(X) = np(1− p)

I First way: X =
∑n

i=1Xi, where Xi =

I E(Xi) = P (Xi = 1) =

I Second way:
E(X) =

∑n
k=0 k · P (X = k) =

∑n
k=0 k

(
n
k

)
pk(1− p)n−k















Distribution parameters – hypergeometric
Pro X ∼ Hyper(N,K, n)

I E(X) = nK
N

I var(X) = nK
N (1− K

N )N−nN−1

I First way: X =
∑n

i=1Xi, where Xi =

I E(Xi) = P (Xi = 1) =

I Second way: X =
∑K

j=1 Yj , where Yj =

I E(Yj) = P (Yj = 1) =























Distribution parameters – geometric
For X ∼ Geom(p) we have
I E(X) = 1/p

I var(X) = 1−p
p2





Distribution parameters – Poisson
Pro X ∼ Pois(λ) je
I E(X) = λ

I var(X) = λ
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Basic description of random vectors
I X, Y – random variables on the same probability space

(Ω,F , P ).
I We wish to treat (X,Y ) as one object – a random vector.
I How to do that?
I Example: we roll twice a 4-sided dice, X = first outcome,
Y = second one.





Joint distribution

Definition
For a discrete r.v. X, Y on a probability space (Ω,F , P ) we
define their joint PMF pX,Y : R2 → [0, 1] by a formula

pX,Y (x, y) = P ({ω ∈ Ω : X(ω) = x&Y (ω) = y).

I We can define it also for more than two r.v.’s
pX1,...,Xn(x1, . . . , xn).



Marginal distribution
I Given pX,Y , how to find the distribution of each of the

coordinates, that is pX and pY ?



Independence of r.v.’s

Definition
Discrete r.v.’s X, Y are independent if for every x, y ∈ R the
events {X = x} a {Y = y} are independent. That happens if
and only if

P (X = x, Y = y) = P (X = x)P (Y = y).



Product of independent r.v.’s

Theorem
For independent discrete r.v.’s X, Y we have

E(XY ) = E(X)E(Y ).



Function of a random vector

Theorem
Suppose X, Y are r.v.’s on (Ω,F , P ), let g : R2 → R be a
function.
I Then Z = g(X,Y ) is a r.v. on (Ω,F , P )

I and it satisfies

E(g(X,Y )) =
∑

x∈ImX

∑
y∈ImY

g(x, y)P (X = x, Y = y),

whenever the sum is defined.

Theorem
For X, Y r.v.’s and a, b ∈ R we have

E(aX + bY ) = aE(X) + bE(Y ).



Proof of the theorem about variance



Sum of independent r.v.’s
I Given pX,Y , how to find the distribution of the sum,
Z = X + Y ?



Sum of independent r.v.’s – convolution

Theorem
Let X, Y be discrete random variables. Then their sum
Z = X + Y has PMF given by

P (Z = z) =
∑

x∈Im(X)

P (X = x, Y = z − x).

If we further assume that X, Y are independent, then

P (Z = z) =
∑

x∈Im(X)

P (X = x)P (Y = z − x).
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