NMAI059 Probability and statistics 1 Class 4

Robert Šámal

Overview

Discrete r.v. - expectation and variance

Parameters of discrete distributions

Random vectors

What we have learned

- What is a discrete r.v.
- How to describe it using a PMF and/or CDF.
- Examples of distributions: Bernoulli, binomial, hypergeometric, Poisson, geometric.
- Expectation: two possible definitions
- $\mathbb{E}(X)=\sum_{x \in \operatorname{Im}(X)} x \cdot P(X=x)$
- $\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$
- $\mathbb{E}(g(X))=\sum_{x \in \operatorname{Im}(X)} g(x) P(X=x)$ (LOTUS)
- "How much we expect to get on average, when we repeat independent experiments with result given by X "... we will discuss later as the law of large numbers.

Comparing binomial and Poisson distribution: PMF

Generated by the following code in R
$x=0: 40$
bin $=$ dbinom $(x, 40,0.1)$
pois $=\operatorname{dpois}(x, 4)$
plot (x, bin, ylab="Bin(40,.1)_vs_Pois(4)")
points ($x+.1$, pois, col="red")

Properties of \mathbb{E}

Theorem
Suppose X, Y are discrete r.v. and $a, b \in \mathbb{R}$.

1. If $P(X \geq 0)=1$ and $\mathbb{E}(X)=0$, then $P(X=0)=1$.
2. If $\mathbb{E}(X) \geq 0$ then $P(X \geq 0)>0$.
3. $\mathbb{E}(a \cdot X+b)=a \cdot \mathbb{E}(X)+b$.
4. $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$.

Another formula for expectation

Theorem
Let X be a discrete r.v. such that $\operatorname{Im}(X) \subseteq \mathbb{N}_{0}=\{0,1,2, \ldots\}$. Then we have

$$
\mathbb{E}(X)=\sum_{n=0}^{\infty} P(X>n)
$$

Variance

Definition
Variance of a r.v. X is the number $\mathbb{E}\left((X-\mathbb{E} X)^{2}\right)$. It is denoted by $\operatorname{var}(X)$.

Theorem

$$
\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}
$$

Conditional expectation

Definition
Let X be a discrete r.v. and $P(B)>0$. Conditional expectation of X given B is

$$
\mathbb{E}(X \mid B)=\sum_{x \in \operatorname{Im}(X)} x \cdot P(X=x \mid B),
$$

whenever the sum is defined.

Law Of Total Expectation

Theorem
Suppose B_{1}, B_{2}, \ldots is a partition of Ω and $A \in \mathcal{F}$. Then

$$
\mathbb{E}(X)=\sum_{i} P\left(B_{i}\right) \mathbb{E}\left(X \mid B_{i}\right)
$$

whenever the sum is defined. (Terms with $P\left(B_{i}\right)=0$ are counted as 0.)

Law Of Total Expectation

Overview

Discrete r.v. - expectation and variance

Parameters of discrete distributions

Random vectors

Distribution parameters - Bernoulli

$$
\begin{aligned}
& \text { Pro } X \sim \operatorname{Bern}(p) \text { je } \\
& \\
& \mathbb{E}(X)=p \\
& \operatorname{var}(X)=p-p^{2}
\end{aligned}
$$

Distribution parameters - binomial

Pro $X \sim \operatorname{Bin}(n, p)$ je

- $\mathbb{E}(X)=n p$
- $\operatorname{var}(X)=n p(1-p)$
- First way: $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}=$
- $\mathbb{E}\left(X_{i}\right)=P\left(X_{i}=1\right)=$
- Second way:

$$
\mathbb{E}(X)=\sum_{k=0}^{n} k \cdot P(X=k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Distribution parameters - hypergeometric

$$
\begin{aligned}
& \text { Pro } X \sim \operatorname{Hyper}(N, K, n) \\
& > \\
& \mathbb{E}(X)=n \frac{K}{N} \\
& >\operatorname{var}(X)=n \frac{K}{N}\left(1-\frac{K}{N}\right) \frac{N-n}{N-1}
\end{aligned}
$$

- First way: $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}=$
- $\mathbb{E}\left(X_{i}\right)=P\left(X_{i}=1\right)=$
- Second way: $X=\sum_{j=1}^{K} Y_{j}$, where $Y_{j}=$
- $\mathbb{E}\left(Y_{j}\right)=P\left(Y_{j}=1\right)=$

Distribution parameters - geometric

For $X \sim \operatorname{Geom}(p)$ we have

- $\mathbb{E}(X)=1 / p$
- $\operatorname{var}(X)=\frac{1-p}{p^{2}}$

Distribution parameters - Poisson

$$
\begin{gathered}
\text { Pro } X \sim \operatorname{Pois}(\lambda) \text { je } \\
-\mathbb{E}(X)=\lambda \\
\operatorname{var}(X)=\lambda
\end{gathered}
$$

Overview

Discrete r.v. - expectation and variance

Parameters of discrete distributions

Random vectors

Basic description of random vectors

- X, Y - random variables on the same probability space (Ω, \mathcal{F}, P).
- We wish to treat (X, Y) as one object - a random vector.
- How to do that?
- Example: we roll twice a 4-sided dice, $X=$ first outcome, $Y=$ second one.

Joint distribution

Definition
For a discrete r.v. X, Y on a probability space (Ω, \mathcal{F}, P) we define their joint PMF $p_{X, Y}: \mathbb{R}^{2} \rightarrow[0,1]$ by a formula

$$
p_{X, Y}(x, y)=P(\{\omega \in \Omega: X(\omega)=x \& Y(\omega)=y)
$$

- We can define it also for more than two r.v.'s

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

Marginal distribution

- Given $p_{X, Y}$, how to find the distribution of each of the coordinates, that is p_{X} and p_{Y} ?

Independence of r.v.s

Definition
Discrete r.v.'s X, Y are independent if for every $x, y \in \mathbb{R}$ the events $\{X=x\}$ a $\{Y=y\}$ are independent. That happens if and only if

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Product of independent r.v.'s

Theorem
For independent discrete r.v.'s X, Y we have

$$
\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)
$$

Function of a random vector

Theorem
Suppose X, Y are r.v.'s on (Ω, \mathcal{F}, P), let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function.

- Then $Z=g(X, Y)$ is a r.v. on (Ω, \mathcal{F}, P)
- and it satisfies

$$
\mathbb{E}(g(X, Y))=\sum_{x \in \operatorname{Im} X} \sum_{y \in \operatorname{Im} Y} g(x, y) P(X=x, Y=y)
$$

whenever the sum is defined.
Theorem
For X, Y r.v.'s and $a, b \in \mathbb{R}$ we have

$$
\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y)
$$

Proof of the theorem about variance

Sum of independent r.v.'s

- Given $p_{X, Y}$, how to find the distribution of the sum,

$$
Z=X+Y ?
$$

Sum of independent r.v.s - convolution

Theorem
Let X, Y be discrete random variables. Then their sum $Z=X+Y$ has PMF given by

$$
P(Z=z)=\sum_{x \in \operatorname{Im}(X)} P(X=x, Y=z-x) .
$$

If we further assume that X, Y are independent, then

$$
P(Z=z)=\sum_{x \in \operatorname{Im}(X)} P(X=x) P(Y=z-x) .
$$

