Rotational selection rules

For a heteronuclear diatomic molecule a transition between two states with the
absorption or emission of electromagnetic radiation can only occur between cer-
tain two states ¥ a7, ¥ i a0, for which the matrix element (¥ s a0 ||t g ppor ) of
electric dipole moment operator is not zero. Derive the rotational selection rules
AJ=J —J"=41and AM = M' — M" = 0,+1 in the rigid rotor approxi-
mation, where the rotational wavefunction in spherical coordinates has the form

Va0, 0) = Yia(0,0) = P} (cos 0)e'?,
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where Y (6, ¢) are spherical harmonics functions and P}V[ are associate Le-
gendre polynomials.

Utilize both methods suggested below.
Method 1: Express dipole moment in spherical coordinates and utilize the

following identities for goniometric functions and for associated Legendre poly-
nomials:
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Method 2: The components of the dipole moment can be written as functi-
ons of the spherical harmonics:
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Y m is a member of the basis that spans the irreducible representation ) of
the full rotation group. Find the selection rules for AJ and AM for which the
integrand in the term (s p | p|1) y o) spans the completely symmetric irredu-
cible representation.

Solution 1: Components of the electric dipole moment can be expressed in
spherical coordinates as follows

Lz = fig sin @ cos ¢,
Hy = pho sin 0sin ¢,
Wy = puo cos 6.

Spherical harmonics Yj (6, ¢) can be written as a product of two functions
which depend only on one of the angles 6, or ¢
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which means that the matrix elements can be separated into two independent
integrals over 6 and over ¢ for each of the dipole moment components.
For p,, the matrix element can be expressed as
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The first integral will only be non-zero for M = M’ and using the substitution
z = cosf will allow us to use the following identity for associate Legendre
polynomials

(2J + 1)2P)(2) = (J — M + 1)P} (2) + (J + M)P} | (2).

If we further use the orthogonality condition for associate Legendre polynomials
for fixed M
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we will be able to fully evaluate the matrix element for ..
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From the expression above, it is clear that the matrix element for u, can be
non-zero only for transitions for which M = M’ and J = J’ 4+ 1 or rather when
AM =0 and AJ = +1.

The matrix elements for p, and pu, can be evaluated similarly with the
exception that dipole moment components in z and y directions depend on the
angle ¢ too. However expressing the cosine and sine of ¢ in terms of exponential
functions
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will allow us to follow a similar procedure as we did for u..
For p;, we will get
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It is clear that the first integral over ¢ will be non-zero only for M = M’ — 1
and the second for M = M’ + 1. Using this and the identities

VIZ2PY(e) = s [PHEAE) - P a)
V1-22PY(2) = 2J1+ (=M ) = M4+ 2)Py () = (+ M+ 1)+ M)Py (2)]

will allow us to use the orthogonality condition for associate Legendre polyno-
mials for fixed M again.
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The matrix element for 41, can be evaluated in the same way, only now it
depends on sin ¢ which changes the prefactor by 1/i and the sign for the second
two terms
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In summary, the matrix elements for p, and p, will only be non-zero for
AM = 41 and AJ = %1 and the matrix element for u, can be non-zero for
AM =0 and AJ = £1.



Solution 2: Spherical harmonics Y 5; are members of the basis that span
the irreducible representation I'(/) of the full rotation group.

Rotations around any axis going through the origin by an angle « are conju-
gate to each other and together they form a class of the full rotation group which
means that, if we want to count the character of the irreducible representation
I'¥)| we can do so by considering any of the axis going through the origin and
the result will be the same.

For simplicity, I will consider rotations around the z-axis, denoted by R,.
Applying this rotation to spherical harmonics simply yields

» —iMa
RQYLM =e YJ)M.

The character of the irreducible representation I'”) can then be expressed as a
sum

Since the components of the electric dipole moment can be expressed in
terms of the spherical harmonics
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I will be further interested in the product Y7 ,,Y;ar. This product will be a
member of a basis that spans a new representation I'*" which is generally
reducible.

To express this new representation in terms of the irreducible representations
it is convenient to consider its characters, which will be equal to the product of
¥’ (Ry) and x!(Ra) characters
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To make the result clear, I will write down the first sum explicitly and for
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It is therefore obvious that our new representation can be written in terms of
irreducible representations as follows

rrew) — 1) o) — U= o)) g I+D),

The matrix element (5 |u|tbsar) can be non-zero only if the direct pro-
duct [[7)]* @ T @ T) contains the completely symmetric irreducible repre-
sentation T'(©). Since we know that T'®) C [[®]* @ T(®) we can also say that
the matrix element can be non-zero only if

' ert) 517,

And as we have already expressed I'®) @ T'/) in terms of irreducible represen-
tations we can immediately say that the matrix element can be non-zero only
when J = J' or J = J' £ 1, or rather when AJ = 0, £1. In this case, the inte-
grand in the term (¢ av|p|ts ar) spans the completely symmetric irreducible
representation I'(0

The allowed transitions are further restricted by parity. The parity of sphe-
rical harmonics is known to be

PYjn = (-1)"Y5u (1)

which means that the matrix element can be non-zero only when J' + 1+ J
is an even number. Combining this result with the previously derived selection
rule for AJ gives us a new, more strict selection rule, which is AJ = +1.

To derive the selection rule for AM, it is convenient to realise that all the
matrix elements will be proportional to (J', M'|1,m; J, M).

We can use the fact that vectors |1, m; J, M) form a basis on the 1®.J space,
meaning that
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Any vector from this space |J’, M’) can be then written as
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MYy = > > (L J, Ma)(1,mas J, M| T, M), (2)
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Since we know the eigenvalues of the total angular momentum in the z-direction
J. to be J,|J, M) = EM|.J, M), applying the operator J, to both sides of the
equation results in

1 J
AM'|J', M) = Z Z h(my + My)|1,my; J, Ma)(1,my; J, M| J', M').

If we know multiply the equation by the bra-vector (1,m;J, M| and use the
orthogonality relation for spherical harmonics, we will get
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AM (1, m; J, M|J', M"y = h(m + M)(1,m; J, M|J', M")

Meaning that for non-zero (1,m;J, M|J', M’y = (J',M'|1,m; J, M)* it must
hold that M’ = m + M, or rather AM = m. The selection rule for the matrix
element pi, is then AM = 0 and for u, and p, it is AM = £1.



