
7
Moment Generating Functions
and Sums of Independent Random Variables

7.1 Moment Generating Functions

The purpose of this chapter is to introduce moment generating functions (mgt) .
We have two applications in mind that will be covered in the next section. We will
compute the distribution of some sums of independent random variables and we
will indicate how moment generating functions may be used to prove the Central
Limit Theorem. We start with their definition.

Moment Generating Functions

The moment generating function of a random variable X is defined as

In particular, if X is a discrete random variable, then

Mx (t) = L e'k P(X = k ) .
k

If X is a continuous random variable and has a density f, then

Mx (t) = ! e'xf(x)dx.

Note that an mgf is not necessarily defined for all t (because of convergence
problems of the series or of the generalized integral). But it is useful even if it is
defined only on a small interval. We start by computing some examples.
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162 7. Moment Generating Functions

Example 1. Consider a binomial random variable S with parameters n and p . Com­
pute its mgf.

We have that

We now use the binomial Theorem

with x = et p and y = (l - p) to get

Ms(t) = (pet + I - p)n for all t .

Example 2. Let N be a Poisson random variable with mean A. We have

00 00 Ak 00 (etA)k
MN(t) = E(etN) = LetkP(N =k) = Letke-A, = Le-A--,- .

k=O k=O k . k=O k .

Recall that
00 x k

eX = exp(x) =L-.
k=O k!

We use this power series expansion with x = e' A to get

We now give an example of computation of an mgf for a continuous random
variable.

Example 3. Assume X is exponentially distributed with rate A. Its mgf is

Mx(t) = E(etx) =100

etXAe-AXdx =100

Ae(t-A)Xdx .

Note that the preceding improper integral is convergent only if t - A < O. In that
case we get

A
Mx(t) = -- for t < A.

A-t

The moment generating functions get their name from the following property.
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Moments of a Random Variable

Let X be a random variable. The expectation E(X k ) is called the kth mo­
ment of X. If X has a moment generating function Mx defined on some
interval (-r, r) for r > 0, then all the moments of X exist and

where Mfl designates the kth derivative of Mx.

Example 4. We will use the formula above to compute the moments of the Poisson
distribution. Let N be a Poisson random variable with mean A. Then MN is defined
everywhere and

MN(t) = exp(A(-l + et».
Note that the first derivative is

Letting t = 0 in the formula above yields

E(X) = M~(O) = A.

We now compute the second derivative

Thus ,

Note that
Var(X) = E(X2) - E(X)2 = A.

Example 5. We now compute the mgf of a standard normal distribution. Let Z be
a standard normal distribution. We have

Note that we may 'complete the square' to get

zt - z2/2 = -(z - t)2/2 + t2/2.

Thus,
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Note that g(z) = .Jke-<z-t)2/2 is the density of a normal distribution with mean t

and standard deviation 1. Thus,

100 _1_e-<z-t)2/2dz = 1
-00$

and

Example 6. We may use Example 5 to compute the moments of a standard normal
distribution.

Letting t = 0 above we get
E(Z) = O.

We have

So
E(Z2) = M~(O) = 1.

We also compute the third moment

We get

Example 7. We now use the computation in Example 5 to compute the mgf of a
normal random variable X with mean u. and standard deviation a. First note that
the random variable Z defined as

X-f.L
Z=-­

a

is a standard normal distribution. We have that

Observe that et JL is a constant with respect to the expectation so

Mx(t) = e'" E(e ta Z
) = Mz(ta) .

We now use that Mz(t) = et2/2 to get



7.1. Moment Generating Functions 165

Our next example deals with the Gamma distribution.

Example 8. A random variable X is said to have a Gamma distribution with pa­
rameters r > 0 and A > 0 if its density is

A'X,-I
f(x) = e-Ax for x > 0

f(r)

where

f(r) =ioo
x,-Ie-xdx.

The improper integral above is convergent for all r > O. Moreover, an easy induc­
tion proof shows that

F'(n) = (n - I)! for all integers n ~ 1.

Observe that a Gamma random variable with parameters r = 1 and A is an expo­
nential random variable with parameter A. We now compute its mgf,

1
00 A'X,-I

Mx(t) = E(etX) = etxe-Ax__dx.
o f(r)

The preceding improper integral converges only for t < A. We divide and multiply
the integrand by (A - t)' to generate another Gamma distribution.

A' 100 x,-I
Mx(t) = e-().-t)X(A - t)'--dx.

(A - t)' 0 I'(r)

But g(x) = e-().-t)x (A - t)' r~; is the density of a Gamma random variable with
parameters r and A - t. Thus,

1
00 ,-I

e-().-t )X(A - t)'~dx = 1
o r(r)

and
A'

Mx(t) = for t < A.
(A - t)'

Exercises

1. Compute the moment generating function of a geometric random variable with
parameter p.

2. Compute the mgf of a uniform random variable on [0,1].

3. Compute the first three moments of a binomial random variable by taking deriva­
tives of its mgf.
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4. Compute the first two moments ofa geometric random variable by using Exercise
1.

5. Compute the first two moments of a uniform random variable on [0,1] by using
Exercise 2.

6. Use the mgf in Example 8 to compute the mean and standard deviation of a
Gamma distribution with parameters n and x.

7. What is the mgf of a normal distribution with mean 1 and standard deviation 2?

8. Use the mgf in Example 7 to compute the first two moments of a normal distri­
bution with mean JL and standard deviation a .

9. (a) Make a change of variables to show that

(b) Show that for all r > 0 and X > 0,

1
00 )...rxr-l

e-AX---dx = 1
o fer)

10. A random variable with density

is said to be a Chi-square random variable with n degrees of freedom (n is an
integer). Find the moment generating function of X.

7.2 Sums of Independent Random Variables

We first summarize the mgf we have computed in Section 7.1.

Random Variable Moment generating function

Binomial (n, p) (pet + 1 _ p)n

Poisson ()...) exp()...(-1 + et))

Exponential ()...) A~t for t < )...
Normal (JL, ( 2) exp(t JL + t2a 2 / 2)

Gamma (r,)...) A'
lA-f)' for t < )...

We will use moment generating functions to show the following important prop­
erty of normal random variables .
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Linear Combination of Independent Normal Random Variables

Assume that Xl, X2, . .. , Xn are independent normal random variables with
mean JLi and variance a/.Let aI , a2, . . . , an be a sequence of real numbers .
Then

alXI + a2X2 + ...+ anXn

is also a normal variable with mean

and variance

The remarkable fact here is that a linear combination of independent normal
random variables is normal.

Example 1. Assume that in a given population, heights are normally distributed.
The mean height for men is 172 ern with SD 5 ern and for women the mean is 165
ern with SD 3 ern. What is the probability that a woman taken at random is taller
than a man taken at random?

Let X be the man 's height and let Y be the woman's height. We want P(X <
Y) = P(Y - X > 0). According to the preceding property Y - X is normally
distributed with

E(Y - X) = E(Y) - E(X) = 165 - 172 =-7

and
Var(Y - X) = Var(Y) + Var(X) = 32 + 52 = 34.

We normalize Y - X to get

P(X<y) = P(Y_X>0)=p(Y-:;(-7) > 0~7))

= p(z>~)=o.12.

Example 2. Assume that at a certain university, salaries of junior faculty are nor­
mally distributed with mean 40,000 and SD 5,000. Assume also that salaries of
senior faculty are normally distributed with mean 60,000 and SD 10,000. What is
the probability that the salary of a senior faculty member taken at random is at least
twice the salary of a junior faculty member taken at random?

Let X be the salary of the junior faculty member and Y be the salary of the
senior faculty member. We want P(Y > 2X). We know that Y - 2X is normally
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distributed. We express all the figures in thousands of dollars to get

E(Y-2X) = -20 and Var(Y-2X) = Var(Y)+4Var(X) = 1Q2+4xS2 = 200.

We normalize to get

P(Y - 2X > 0) = p(Y - 2X - (-20) > 0 - (-20))
J200 J200

= p(Z > J~~O) = 0.08.

Before proving that a linear combination of independent normally distributed
random variables is normally distributed we need two properties of moment gener­
ating functions that we now state.

Pl. The moment generating function of a random variable characterizes its distri­
bution. That is, if two random variables X and Yare such that

Mx(t) = My(t) for all t in (-r, r)

for some r > 0, then X and Y have the same distribution.

PI is a crucial property. It tells us that if we recognize a moment generating
function then we know what the underlying distribution is.

n. Assume that the random variables XI, X2, .. . , X n are independent and have
moment generating functions. Let S = XI + X2 + ... + Xn ; then

The proof of PI involves mathematics that are beyond the scope of this book.
For a proof of P2 see P2 in Section 8.3. We now prove that a linear combination of
independent normally distributed random variables is normally distributed. Assume
that XI, X2, ... , Xn are independent normal random variables with mean JLi and
variance of. Let a I, a2, . . . , an be a sequence of real numbers. We compute the mgf
of atXt + a2X2 + . .. + anXn. The random variables aiXi are independent so by
P2 we have

Note that by definition

We now use the mgf corresponding to the normal distribution to get

Ma;x;(t) = exp(aitJLi +att2al / 2).
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Thus,

MatXl+azXz+.+anXn (t) = exp(altJ-Ll +aft2ar /2) x ... x exp(antJ-Ln +a;t2af /2).

Therefore,

MatXt+azXz+ .+anXn (t) = exp«alJ-L1+...+anJ-Ln)t + (afar +...+a;a;)t2/2).

This is exactly the mgf of a normal random variable with mean

and variance
2 2 2 2ala, + ...+anan·

So according to property PI this shows that alX I + ... + anXn follows a normal
distribution with mean and variance given above.

Example 3. Let TI, ... , Tn be i.i.d, exponentially distributed random variables with
rate A. What is the distribution of TI + T2+ ...+ Tn?

We compute the mgf of the sum by using Property P2.

MTl+Tz+..·+Tn(t) = MTI (t)MTz (t) . . . MTn(t) = MT1(t)

since all the Tt have all the same distribution and therefore the same mgf. We use
the mgf for an exponential random variable with rate A to get

A n
MTI+Tz+ ·+Tn(t) = (--) .

A - t

This is not the mgf of an exponential distribution. However, this is the mgf of a
Gamma distribution with parameters nand A. That is, we have the following.

Sum of Li.d. Exponential Random Variables

Let T" ... , Tn be i.i.d. exponentially distributed ran­
dom variables with rate A. Then Tl + T2 + ... + Tn
has a Gamma distribution with parameters nand A.

Example 4. Assume that you have two batteries that have an exponential lifetime
with mean two hours. As soon as the first battery fails you replace it with a second
battery. What is the probability that the batteries will last at least four hours?

The total time, T , the batteries will last is a sum of two exponential i.i.d. random
variables. Therefore, T follows a Gamma distribution with parameters n = 2 and
A = 1/2. We use the density of a Gamma distribution (see Example 8 in 7.1 and
note that ['(2) = 1) to get

rcr > 4) = 100

A2te-Atdt = 3e- 2 = 0.41
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where we use an integration by parts to get the second equality.

Example 5. Let X and Y be two independent Poisson random variables with means
A and J-L, respectively. What is the distribution of X + Y?

We compute the mgf of X + Y. By property P2 we have that

Mx+y(t) = Mx(t)My(t).

Thus,

This is the moment generating function of a Poisson random variable with mean
A+ J-L. Thus, by property PI , X + Y is a Poisson random variable with mean A+ J-L.

We now state the general result.

Sum of Independent Poisson Random Variables

Let Ni, .. . , Nn be independent Poisson random vari­
ables with means Al, ... , An, respectively. Then ,

Ni + N2+ ...+ Nn

is a Poisson random variable with mean

Only a few distributions are stable under addition . Normal and Poisson distribu­
tions are two of them.

Example 6. Assume that at a given hospital there are on average two births of twins
per month and one birth of triplets per year. Assume that both are Poisson random
variables . What is the probability that on a given month there are four or more
multiple births?

Let Ni and N2 be the numbers of births oftwins and of triplets in a given month,
respectively. Then N = N, + N2 is a Poisson random variable with mean A =
2 + 1/12 = 25/12. We have that

peN ::: 4) = 1 - peN = 0) - peN = 1) - peN = 2) - peN = 3)
= 1 - e-J.. - Ae-J.. - A2e-J../2 - A3e-J../3! = 0.16.

As noted before, when we sum two random variables with the same type of
distribution we do not, in general, get the same distribution. Next, we will look at
such an example.
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Example 7. Roll two fair dice. What is the distribution of the sum?
Let X and Y be the faces shown by the two dice. The random variables X and Y

are discrete uniform random variables on {I, 2 . .. , 6}. Let S = X + Y. Note that S
must be an integer between 2 and 12. We have that

PtS = 2) = P(X = 1; Y = 1) = P(X = I)P(Y = I) = 1/36

where we use the independence of X and Y to get the second equality. Likewise,
we have that

peS = 3) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = 2/36.

In general, we have the following formula

n-l

pes = n) = L P(X = k)P(Y = n - k) for n = 2, 3 ... , 12.
k=l

We get the following distribution for S.

k 2 3 4 5 6 7 8 9 10 11 12

P(X = k) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Note that S is not a uniform random variable . In this case using the moment
generating function does not help. We could compute the mgf of S but it would not
correspond to any distribution we know.

We now state the general form of the distribution of the sum of two independent
random variables.

Sum of Two Independent Random Variables

Let X and Y be two discrete independent random variables . The distribu­
tion of X + Y may be computed by using the formula

P(X + Y = n) = L P(X = k)P(Y = n - k) .
k

If X and Yare independent continuous random variables with densities f
and g, then X + Y has density h that may be computed by using the formula

hex) = f f(y)g(x - y)dy =f g(y)f(x - y)dy.

We now apply the preceding formula to uniform random variables.
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Example 8. Let U and V be two independent uniform random variables on [0,1].
The density for both of them is f(x) = 1 for x in [0,1]. Let S = U + V and let h
be the density of S. We have that

hex) = f f(y)f(x - y)dy .

Note that fey) > 0 if and only if y is in [0,1]. Note also that f(x - y) > 0 if and
only if x - y is in [0,1], that is y is in [-1 +x, x] . Thus, f (y) f (y - x) > 0 if and
only if y is simultaneously in [0,1] and in [-1 + x, x]. So

hex) = l X

dy = x if x is in [0, 1]

and

h(X)=1
1

dy=2-xifxisin[I ,2] .
-l+x

Observe that the sum of two uniform random variables is not uniform; the density
has a triangular shape instead.

Example 9. Let X and Y be two independent exponentially distributed random
variables with rates 1 and 2, respectively. What is the density of X + Y?

The densities of X and Y are f(x) = e- x for x > 0 and g(x) = 2e-2x for x > 0,
respectively. The density h of the sum X + Y is

hex) = f f(y)g(x - y) .

In order for f(y)g(x - y) > 0 we need y > 0 and x - y > O. Thus,

hex) = lX

e-Y2e-2(x - Y)dy for x > o.

We get
hex) = 2(e-X

- e-2x ) for x > O.

Note that this is not the density of an exponential distribution. If the two rates
were the same we would have obtained a Gamma distribution for the sum, but with
different rates we get another type of distribution.

Proof of the Central Limit Theorem

We now sketch the proof of the Central Limit Theorem in the particular case
where the random variables have moment generating functions (in the general
case it is only assumed that the random variables have finite second moments).
Let Xl, X2, . . . , Xn be a sequence of independent identically distributed random
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variables with mean J-L and variance a 2. Assume that X, has an mgf Mx; defined
on (-r, r) for some r > O. Let

- Xl+ X2+",+ XnX= .
n

We want to show that the distribution of

X-J-L
T=--

o]-Iii
approaches the distribution of a standard normal distribution. We start by comput­
ing the moment generating function of T .

Observe now that
x- J-L = .!. t Xj - J-L .

a n j = l a

Let Yj = X;;IL and S = L:?=1 Yj. We have that

Since the Yj are independent we get by P2 that

MT(t) = My(:nY

We now write a third degree Taylor expansion for My .

( )

2 3tt, t /I t /II

My -Iii = My (0) + -IiiMy (0) + 2n My (0) + 6n3/ 2My (s)

for some sin (0, ..in).Since the Yj are standardized we have that

MHO) = E(Y) = 0 and M~(O) = E(y2
) = Var(Y) = 1.

We also have (for any random variable) that My (0) = 1. Thus,

(
t ) t

2
t
3

11/

My -Iii = 1+ 2n + 6n3/2My (s).

We have that

In(MT(t)) = In(My (:nY) = nln(My(:n)) = nln(l+~: + 6~:/2M~/(S)).
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By writing that the derivative of In(l + x) at 0 is 1 we get

lim In(l + x) = 1.
x--+o x

Let Xn = ~: + 6~:72 MF(s) and note that Xn converges to 0 as n goes to infinity. We
have

n In(My (5n))= n In(l + xn ) = nx; In(lx: x
n

) •

Note that M~'(s) converges to M~'(O) as n goes to infinity. Thus,

. 2 In(l + Xn )
lim nXn = t /2 and lim = I.

n--+oo n--+oo X n

Therefore,

lim In(MT (t)) = t2/2 and lim MT (t) = e
t2

/2.
n--+oo n--+oo

That is, this computation shows that the mgf of ;/]k converges to the moment

generating function of a standard normal distribution. A rather deep result of prob­
ability theory called Levy 's Continuity Theorem shows that this is enough to prove

that the distribution of ;/]k converges to the distribution of a standard normal ran­

dom variable. This concludes the sketch of the proof of the CLT.

Exercises

1. The weight of a manufactured product is normally distributed with mean 5 kg
and SD 0.1 kg.

(a) Take two items at random, what is the probability that they have a weight
difference of at least 0.3 kg?

(b) Take three items at random. What is the probability that the sum of the three
weights is less than 14 kg?

2. Consider X a binomial random variable with parameters n = 10 and p. Let Y
be independent of X and be a binomial random variable with n = 15 and p. Let
S = X + Y.

(a) Find the mgf of S.
(b) What is the distribution of S?

3. Let X be normally distributed with mean 10 and SD 1. Let Y = 2X - 30.
(a) Compute the mgf of Y.
(b) Use (a) to show that Y is normally distributed and to find the mean and SD

of Y.

4. Let X be the number of students from University A that get into Medical School
at University B. Let Y be the number of students from University A that get into
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Law School at University B. Assume that X and Yare two independent Poisson
random variables with means 2 and 3, respectively. What is the probability that
X + Y is larger than 5?

5. Assume that 6-year old weights are normally distributed with mean 20 kg and SD
3 kg. Assume that male adults ' weights are normally distributed with mean 70 kg
and SD 6 kg. What is the probability that the sum of the weights of three children
is larger than an adult's weight?

6. Assume you roll a die three times; you win each time you get a 6. Assume you
toss a coin twice; you win each time heads comes up. Compute the distribution of
your total number of wins.

7. Find the density of a sum of three independent uniform random variables on
[0,1]. You may use the result for the sum of two uniform random variables in Ex­
ample 8.

8. Let X and Y be two independent geometric random variables with the same
probability of success p. Find the distribution of X + Y.

9. (a) Use moment generating functions to show that if X and Yare independent
binomial random variables with parameters nand p, and m and p, respectively,
then X + Y is also a binomial random variable.

(b) If the probabilities of success are distinct for X and Y, is X + Y a binomial
random variable?


