
Loops of small orders, semisymmetry and paratopy

It is immediate to observe that each loop of order 2 is isomorphic to (Z2,+) and
that each loop of order 3 is isomorphic to (Z3,+).

Theorem. Each loop of order ≤ 4 is a group.

Proof. What remains is the order 4. Let Q be a 4-element loop with unit e. Suppose
first that x2 = e for all x ∈ Q. Assume that Q = {0, 1, 2, 3} and e = 0. The table
upon the left may be completed in only one way to a latin square (on the right).
The multiplication table upon the right describes a group that is isomorphic to
(Z2 × Z2,+).

0 1 2 3
0 0 1 2 3
1 1 0
2 2 0
3 3 0

→

0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Assume now that there exists x ̸= e such that x2 = y ̸= e. The elements e, x and
y are pairwise distinct. Assume that e = 0, x = 1, y = 2 and verify the completion
to (Z4,+) below (the first cell to fill is (3, 3)).

0 1 2 3
0 0 1 2 3
1 1 2
2 2
3 3

→

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

□

Lemma 1. Let Q be a loop of order 5. If the mapping x 7→ x2 is a permutation of
Q, then Q ∼= (Z5,+).

Proof. Put Q1 = Q\{1}. Then x 7→ x2 permutes Q1 and this permutations lacks a
fixed point. The permutation has one or two cycles. In the former case let us assume
that the permutation is equal to (a b c d). In the latter case let it be (a b)(c d). In
the former case there is only one completion to a latin square (first positions to fill
are (a, d) and (d, a)):

1 a b c d
1 1 a b c d
a a b
b b c
c c d
d d a

→

1 a b c d
1 1 a b c d
a a b d 1 c
b b d c a 1
c c 1 a d b
d d c 1 b a

Let us now consider the case of (a b)(c d).

1 a b c d
1 1 a b c d
a a b
b b a
c c d
d d c

The table upon the right cannot be com-
pleted to a latin square since the only po-
sitions to place the four entries a and b
into rows c and d are (c, d) and (d, c).

This shows that up to isomorphism there is only one loop Q of order 5 such that
x 7→ x2 permutes Q. The group (Z5,+) fulfils this requirement. □
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Lemma 2. Up to isomorphism there is only one loop Q of order 5 in which x 7→ x2

does not permute Q and in which there exists no x ̸= 1 such that x2 = 1.

Proof. Let Q be such a loop. There exist a, b, s ∈ Q such that a2 = b2 = s ̸= 1
and a ̸= b. Therefore there exists c ∈ Q such that Q = {1, a, b, c, s}. This yields a
partial table in which the only row that does not carry s is the row c and the only
column that does not carry s is the column c. Hence c2 = s.

There has to be s2 ∈ {a, b, c}. Let us assume that s2 = a. If as = 1, then (a, b)
and (a, c) are the only unfilled entries in the row a, implying ab = c and ac = b.
That means {b, c} ∩ {sb, sc} = ∅. Hence sx ∈ {b, c} may happen if and only if
x = a. That is impossible. Therefore as ̸= 1.

There thus exists x ∈ {b, c} such that ax = 1. With no loss of generality it may
be assumed that x = b. The rest can be completed uniquely, see below:

1 a b c s
1 1 a b c s
a a s 1
b b s
c c s
s s a

→

1 a b c s
1 1 a b c s
a a s 1 b c
b b c s a 1
c c 1 a s b
s s b c 1 a

(L5.1)

□

To finish the classification of loops of order 5 it may be thus assumed that there
exists a ∈ Q such that a2 = 1 and a ̸= 1. Put X = Q \ {1, a}. Since both La and
Ra switch 1 and a, both of them act upon X. Denote La ↾ X by σ and Ra ↾ X by
σ̄. With no loss of generality it may be assumed that X = {b, c, d} and σ = (b c d).
Note that σ̄ is either σ or σ−1.

Lemma 3. Up to isomorphism there is only one loop Q of order 5 in which there
exist at least three x ∈ Q such that x2 = 1.

Proof. This follows from the comments above and from the unique completion
below.

1 a b c d
1 1 a b c d
a a 1 c d b
b b 1
c c
d d

→

1 a b c d
1 1 a b c d
a a 1 c d b
b b d 1 a c
c c b d 1 a
d d c a b 1

(L5.2)

□

Lemma 4. Let Q be a loop of order 5 in which there exists exactly one a ∈ Q
with a2 = 1, a ̸= 1. If La ̸= Ra, then the isomorphism type of Q is determined
uniquely.

Proof. By comments above it may be assumed that Ra ↾ X = σ−1. The rest follows
from the unique completion below.

1 a b c d
1 1 a b c d
a a 1 c d b
b b d
c c b
d d c

→

1 a b c d
1 1 a b c d
a a 1 c d b
b b d a 1 c
c c b d a 1
d d c 1 b a

(L5.3)

□
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Lemma 5. Let Q be a loop of order 5 in which there exists exactly one a ∈ Q
with a2 = 1, a ̸= 1. There are two classes of isomorphism to which Q may belong if
La = Ra is assumed. Loops belonging to one of these two classes are opposite (i.e.,
mirror images) to loops from the other class.

Proof. Let X and σ be as above. Since c = 1c = ab = ba = c1, there must be
c = d2. Similarly b2 = d and c2 = b. The multiplication table is thus known up to
products xy, where x, y ∈ X and x ̸= y. In each such case xy ∈ {1, a}. There two
ways how to complete the table:

1 a b c d
1 1 a b c d
a a 1 c d b
b b c d 1 a
c c d a b 1
d d b 1 a c

and

1 a b c d
1 1 a b c d
a a 1 c d b
b b c d a 1
c c d 1 b a
d d b a 1 c

(L5.4/5)

To see that the two loops are not isomorphic consider the permutation type of Lx,
x ∈ X. In the loop upon the left (L5.4) the translations take the form of a 5-cycle.
Those upon the right (L5.5) consist of a 3-cycle and a transpozition. □

We have proved that there are 6 isomorphism types of loops of order 5. One
of them is the abelian group, the other are exemplified by tables (L5.1)–(L5.5).

Exercise. Prove that all nonassociative loops of order 5 are isotopic.

Parastrophes and paratopy. A parastrophe of a quasigroup (Q, ·) is a quasi-
group that is equal or opposite to one of the quasigroups (Q, ·), (Q, \) and (Q, /).
The operation x ∗ y of a parastrophe thus is one of

xy, x\y, x/y, yx, y\x and y/x.

It is easy to see that a parastrophe of a parastrophe of Q is a parastrophe of Q.
Quasigroups Q1 and Q2 are said to be paratopic if one of them is isotopic to a

parastrophe of the other. The relation ’being paratopic’ is (as can be seen easily)
an equivalence.

Main class. Two latin squares are paratopic if they are multiplication tables of
paratopic quasigroups. A main class is a class of all latin squares that consists of
all latin squares paratopic to one of them. The number of main classes of order n
hence coincides with the number of quasigroups of order n up to paratopy. This
number is as follows:

n 1 2 3 4 5 6 7 8 9
main classes 1 1 1 2 2 12 147 283 657 19 270 853 541

n = 10: 34 817 397 894 749 939

n = 11: 2 036 029 552 582 883 134 196 099

The known numbers for isotopy classes are as follows:

n 1 2 3 4 5 6 7 8 9
isotopy cl. 1 1 1 2 2 22 564 1 676 267 115 618 721 533

n = 10: 208 904 371 354 363 006

n = 11: 12 216 177 315 369 229 261 482 540

Note that for n ≥ 8 the number of isotopy classes is just a little less than 6 times
the number of main classes. This is because with n big enough it becomes less and
less likely that a quasigroup is isotopic to one of its nontrivial parastrophes.
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The numbers for isomorphism classes of loops:

n 1 2 3 4 5 6 7 8
isomorphism cl. 1 1 1 2 6 109 23 746 106 228 849

n = 9: 9 365 022 303 540

n = 10: 20 890 436 195 945 769 617

Semisymmetry. What if some parastrophes coincide? If xy = yx, then the quasi-
group is commutative. Multiplication tables of commutative binary operations are
symmetric across the main diagonal. If (Q, ·) is commutative, then x\y = y/x.

What if xy = y/x? Let us first show that in each quasigroup every of the
following identities implies the other three:

x\y = yx ⇔ x · yx = y ⇔ xy · x = y ⇔ xy = y/x. (SS)

Proof. It suffices to verify the implication x · yx = y ⇒ xy · x = y since the
converse direction follows by a mirror argument. Suppose that x · yx = y holds for
all x, y ∈ Q. Then xy · x = xy · ((x/xy)(xy)) = x/xy. That is equal to y since
x = y · xy is assumed. □

A quasigroup fulfilling the identities of (SS) is called semisymmetric. A binary
operation is called semisymmetric if x ·yx = y = xy ·x. Note that a semisymmetric
operation is always a quasigroup operation.

Notational remark. Let a1, . . . , ak be elements of set, say Ω. Then (a1 a2 . . . ak)
denotes a cycle consisting of elements a1, . . . , ak. These elements are implicitly
assumed to be pairwise distinct. The integer k is the length of the cycle. A cycle
of length k is called a k-cycle. Note that if k ≥ 3, then

(a1 a2 . . . ak) = (a2 a3 . . . a1) = (ak a1 . . . ak−1).

Mendelsohn triple systems. Let · be a binary operation on a set Q. Each
ordered pair (x, y) initializes a walk a0, a1, a2, . . . upon Q such that a0 = x, a1 = y
and ai+2 = ai ·ai+1. If the operation is semisymmetric and x ̸= y, then these walks
form cycles (x y xy) since y · xy = x and xy · x = y. If x = y, then the cycle shrinks
to (x) if x = xx, and to (xxx) if x ̸= xx. Recall that a quasigroup Q is called
idempotent if x = xx.

We have observed that if · is a semisymmetric idempotent operation upon Q,
then each ordered pair (x, y), x ̸= y, occurs in exactly one of the 3-cycles induced
by walks of the binary operation. In other words, the 3-cycles of the operation
partition the complete oriented graph of Q.

The construction may be reversed. That is, a partition of the complete oriented
graph to 3-cycles gives rise to a binary idempotent operation by setting xy = z
whenever the partition contains a cycle (x y z). It is clear that the operation is
semisymmetric.

A Mendelsohn triple system (MTS) upon Q is a collection of 3-cycles that parti-
tions the complete oriented graph upon Q. Idempotent semisymmetric quasigroups
are also known as MTS quasigroups.

An example of an MTS on a 4-element set: cycles (a b c), (c b d), (b a d) and
(a c d). The multiplication table:

a b c d
a a c d b
b d b a c
c b d c a
d c a b d
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Challenge. Occurences of each symbol in the body of the multiplication table
above may be connected by moves of a chess knight. Construct further examples of
such latin squares. Are there other examples that may be obtained from an MTS
quasigroup?

Steiner triple systems. A semisymmetric operation that is commutative yields
a quasigroup in which all parastrophes coincide. This is why such quasigroups are
called totally symmetric.

What are the commutative MTS quasigroups, i.e., idempotent totally symmetric
quasigroups? The commutativity implies that with each cycle (a b c) there is a
cycle (c b a). The cycles may be thus replaced by 3-element sets. What arises is
a collection of 3-element subsets (called blocks) such that each 2-element subset is
contained in exactly one block. These are the Steiner triple systems (STS).

An STS of order n exists for each n ≡ 1, 3 mod 6. Numbers of STS up to
isomorphism is given by the following table.

n 1 3 7 9 13 15 19
STS up to ∼= 1 1 1 1 2 80 11 084 874 829

Prolongation. Let (Q, ∗) be an idempotent quasigroup. Assume that Q does not

contain the symbol 1. Define an operation · upon Q̂ = Q ∪ {1} in such a way that

x · 1 = 1 · x = x, 1 · 1 = 1 = x · x and x · y = x ∗ y

whenever x, y ∈ Q and x ̸= y. Then Q̂ is a loop. The construction may be reversed
whenever starting from a loop Q such that x2 = 1 for each x ∈ Q.

Proposition. A prolongation of an idempotent totally symmetric quasigroup is
totally symmetric, and all totally symmetric loops may be obtained in this way.

Proof. Let (Q, ∗) be idempotent. It is clear that Q̂ is commutative if and only if

(Q, ∗) is commutative. Hence it is enough to show (1) that Q̂ is semisymmetric if
and only if (Q, ∗) is semisymmetric, and (2) that each semisymmetric loop fulfils
x2 = 1. The latter is clear since 1 = (x ·1)x = x2, by semisymmetry. For the former
property note that (x∗y)∗x = y if x = y. If x ̸= y, then x∗y ̸= x∗x = x, and thus

(x ∗ y) ∗ x = xy · x. On the other hand in Q̂ the identity xy · x = y holds whenever
x = y or 1 ∈ {x, y}. If x ̸= y and 1 /∈ {x, y}, then xy ̸= x and xy ·x = (x∗y)∗x. □

Note that by the proof prolongations of MTS quasigroups are exactly the semi-
symmetric loops.

Affine and projective STS. Let V be a vector space over a 3-element field. The
affine lines of V form an STS. Such STS are called affine. The idempotent operation
of the STS over V may be expressed by x ∗ y = −x− y.

A Hall Triple System (HTS) is an STS such that any two intersecting blocks
belong to a subsystem on 9 elements. (There is only one STS of order 9, and this
STS coincides with the affine plane of order 3.) Structure of Hall Triple Systems
will be investigated later in this course.

Consider a projective space over a 2-element field. If the space is of dimension
n, then it contains 2n+1 − 1 points. Each line consists of three elements and any
three noncollinear points belong to a Fano subplane. The lines form an STS. Such
an STS is called projective.

Let (Q, ∗) be the idempotent quasigroup of a projective STS. Suppose that x, y, z
do not belong to the same block (they are noncollinear). Consider the picture of
the Fano plane with x, y and z being the three vertices of the triangle that forms
the picture. Then (x∗y)∗z = x∗(y∗z) is the central element. This implies that the



6

prolongation yields an associative loop Q̂. In this loop (which is a group) x2 = 1

for each x ∈ Q. This means that Q̂ has to be an elementary abelian 2-group.
All projective STS thus may be derived from nonzero elements of an elementary

abelian 2-group. Blocks coincide with subgroups of order 4 from which the zero is
removed.


