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About the course

Me: Vít Jelínek
Contact: jelinek@iuuk.mff.cuni.cz
Moodle link:
https://dl1.cuni.cz/user/index.php?id=12105
Tutorials: homework
Exam: to be determined
Literature:

H. Wilf: Generatingfunctionology
P. Flajolet, R. Sedgwick: Analytic combinatorics

Notation:
N: natural numbers, i.e., {1, 2, 3, . . . }
N0 = {0, 1, 2, 3, . . . }
Z = {. . . ,−2,−1, 0, 1, 2, . . . }
Q: rational numbers
R: real numbers
C: complex numbers
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Overview of analytic method(s) in combinatorics

Basic situation: Suppose we have a set S of some combinatorial objects
(graphs, permutations, set partitions, . . . ) for which we have a notion of size.
We want to determine or estimate the number sn of objects of size n in S. But
finding a formula for sn directly is impossible.

The “analytic” approach:

1 Find a formula for the generating function of S, which is a formal power
series

S(x) =
∞∑
n=0

snx
n or maybe S(x) =

∞∑
n=0

sn
xn

n!
.

2 Treat S(x) as an actual function from C to C.
3 Apply complex-analytic tools (analytic continuation, contour integrals,

residues, . . . ) to the function S(x) to estimate sn.
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Formal power series

For the rest of today’s lecture, fix a coefficient ring K , to be a commutative
ring with a multiplicative unit and with no zero divisors. (Imagine K = R or Z
or C.)

A sequence (a0, a1, a2, . . . ) = (an)
∞
n=0 of elements of K , can be represented by

a formal power series (in x)

A(x) = a0 + a1x + a2x
2 + . . . =

∞∑
n=0

anx
n.

Then an is the coefficient of degree n in the f.p.s. A(x), denoted by [xn]A(x).

Let K [[x ]] denote the set of all f.p.s. in x over K .



Formal power series

For the rest of today’s lecture, fix a coefficient ring K , to be a commutative
ring with a multiplicative unit and with no zero divisors. (Imagine K = R or Z
or C.)

A sequence (a0, a1, a2, . . . ) = (an)
∞
n=0 of elements of K , can be represented by

a formal power series (in x)

A(x) = a0 + a1x + a2x
2 + . . . =

∞∑
n=0

anx
n.

Then an is the coefficient of degree n in the f.p.s. A(x), denoted by [xn]A(x).

Let K [[x ]] denote the set of all f.p.s. in x over K .



Formal power series

For the rest of today’s lecture, fix a coefficient ring K , to be a commutative
ring with a multiplicative unit and with no zero divisors. (Imagine K = R or Z
or C.)

A sequence (a0, a1, a2, . . . ) = (an)
∞
n=0 of elements of K , can be represented by

a formal power series (in x)

A(x) = a0 + a1x + a2x
2 + . . . =

∞∑
n=0

anx
n.

Then an is the coefficient of degree n in the f.p.s. A(x), denoted by [xn]A(x).

Let K [[x ]] denote the set of all f.p.s. in x over K .



Formal power series

For the rest of today’s lecture, fix a coefficient ring K , to be a commutative
ring with a multiplicative unit and with no zero divisors. (Imagine K = R or Z
or C.)

A sequence (a0, a1, a2, . . . ) = (an)
∞
n=0 of elements of K , can be represented by

a formal power series (in x)

A(x) = a0 + a1x + a2x
2 + . . . =

∞∑
n=0

anx
n.

Then an is the coefficient of degree n in the f.p.s. A(x), denoted by [xn]A(x).

Let K [[x ]] denote the set of all f.p.s. in x over K .



Operations with f.p.s.

Consider A(x),B(x) ∈ K [[x ]], with A(x) =
∑∞

n=0 anx
n and B(x) =

∑∞
n=0 bnx

n.
We then define . . .

A(x) + B(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · ·

A(x)B(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + · · ·

=
∞∑
n=0

(
n∑

k=0

akbn−k

)
xn.

Observe:

The series 0 = 0+ 0x + 0x2 + · · · satisfies A(x) + 0 = 0+ A(x) = A(x).

The series 1 = 1+ 0x + 0x2 + · · · satisfies A(x) · 1 = 1 · A(x) = A(x).

In fact, K [[x ]] is a commutative ring with a unit (and no zero divisors).
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Multiplicative inverses

Definition

Let A(x) be a f.p.s. from ∈ K [[x ]]. A multiplicative inverse (or reciprocal) of
A(x) is a f.p.s. B(x) ∈ K [[x ]] such that A(x)B(x) = 1. The multiplicative
inverse of A(x) (if it exists) is denoted A(x)−1 or 1

A(x)
.

When does a f.p.s. have a multiplicative inverse?
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Existence of inverses

Lemma

A f.p.s. A(x) =
∑∞

n=0 anx
n ∈ K [[x ]] has a multiplicative inverse in K [[x ]] if and

only if the coefficient a0 = [x0]A(x) has a multiplicative inverse in K . The
inverse, when it exists, is unique.



Formal convergence

Let A0(x),A1(x),A2(x), . . . be an infinite sequence of f.p.s. from K [[x ]]. How
to define its limit limk→∞ Ak(x)? (Problem: we cannot assume that there is
any notion of convergence for elements of K .)

Definition

A f.p.s. L(x) ∈ K [[x ]] is the (formal) limit of the sequence
A0(x),A1(x),A2(x), . . . , if for every n ∈ N0 there is a k0 ∈ N0 such that for all
k ≥ k0 we have

[xn]Ak(x) = [xn]L(x).

Examples:

The sequence of f.p.s. 1+ x , 1+ x2, 1+ x3, . . . has limit 1.

The sequence of f.p.s. 1+ x , 1+ x
2 , 1+

x
3 , . . . does not converge to a limit.



Formal convergence

Let A0(x),A1(x),A2(x), . . . be an infinite sequence of f.p.s. from K [[x ]]. How
to define its limit limk→∞ Ak(x)? (Problem: we cannot assume that there is
any notion of convergence for elements of K .)

Definition

A f.p.s. L(x) ∈ K [[x ]] is the (formal) limit of the sequence
A0(x),A1(x),A2(x), . . . , if for every n ∈ N0 there is a k0 ∈ N0 such that for all
k ≥ k0 we have

[xn]Ak(x) = [xn]L(x).

Examples:

The sequence of f.p.s. 1+ x , 1+ x2, 1+ x3, . . . has limit 1.

The sequence of f.p.s. 1+ x , 1+ x
2 , 1+

x
3 , . . . does not converge to a limit.



Formal convergence

Let A0(x),A1(x),A2(x), . . . be an infinite sequence of f.p.s. from K [[x ]]. How
to define its limit limk→∞ Ak(x)? (Problem: we cannot assume that there is
any notion of convergence for elements of K .)

Definition

A f.p.s. L(x) ∈ K [[x ]] is the (formal) limit of the sequence
A0(x),A1(x),A2(x), . . . , if for every n ∈ N0 there is a k0 ∈ N0 such that for all
k ≥ k0 we have

[xn]Ak(x) = [xn]L(x).

Examples:

The sequence of f.p.s. 1+ x , 1+ x2, 1+ x3, . . . has limit 1.

The sequence of f.p.s. 1+ x , 1+ x
2 , 1+

x
3 , . . . does not converge to a limit.



Formal convergence

Let A0(x),A1(x),A2(x), . . . be an infinite sequence of f.p.s. from K [[x ]]. How
to define its limit limk→∞ Ak(x)? (Problem: we cannot assume that there is
any notion of convergence for elements of K .)

Definition

A f.p.s. L(x) ∈ K [[x ]] is the (formal) limit of the sequence
A0(x),A1(x),A2(x), . . . , if for every n ∈ N0 there is a k0 ∈ N0 such that for all
k ≥ k0 we have

[xn]Ak(x) = [xn]L(x).

Examples:

The sequence of f.p.s. 1+ x , 1+ x2, 1+ x3, . . . has limit 1.

The sequence of f.p.s. 1+ x , 1+ x
2 , 1+

x
3 , . . . does not converge to a limit.



Summing infinitely many f.p.s.

Let A0(x),A1(x),A2(x), . . . be an infinite sequence of f.p.s. from K [[x ]]. How
to define their infinite sum

A0(x) + A1(x) + A2(x) + · · ·?

Answer: as a limit of the sequence partial sums
A0(x),A0(x) + A1(x),A0(x) + A1(x) + A2(x), . . . .

Observe: A0(x) + A1(x) + A2(x) + · · · exists iff for every degree n ∈ N0, there
are only finitely many summands Ak(x) with [xn]Ak(x) 6= 0.
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Examples of infinite sums

Example 1: Consider

A0(x) = 1+ x + x2 + x3 + x4 + · · ·

A1(x) = x + x2 + x3 + x4 + · · ·

A2(x) = x2 + x3 + x4 + · · ·

A3(x) = x3 + x4 + · · ·
· · ·

Is the sum A0(x) + A1(x) + A2(x) + · · · defined? What is its value?

Example 2: For which B(x) ∈ K [[x ]] is the sum
B(x) + B2(x) + B3(x) + B4(x) + · · · defined? Answer: Sum is defined iff
[x0]B(x) = 0.
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B(x) + B2(x) + B3(x) + B4(x) + · · · defined? Answer: Sum is defined iff
[x0]B(x) = 0.



Composition

Definition

For two f.p.s. A(x) =
∑∞

n=0 anx
n and B(x) =

∑∞
n=0 bnx

n, their composition,
denoted (A ◦ B)(x) or A(B(x)), is the f.p.s. defined as the infinite sum

∞∑
n=0

anB
n(x) = a0 + a1B(x) + a2B

2(x) + a3B
3(x) + · · · .

When is A(B(x)) defined?
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Composition

Lemma

A(B(x)) exists iff at least one of these two conditions holds:

1 A(x) is a polynomial (i.e., has only finitely many nonzero coefficients).

2 [x0]B(x) = 0.

Definition

A f.p.s. B(x) is composable if [x0]B(x) = 0.
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Nasty examples

Nasty example 1. Composition is not continuous, i.e., limk→∞ Ak(x) = L(x)
does NOT imply limk→∞ Ak(B(x)) = L(B(x)), even when all the expressions
are defined: take Ak(x) = 1+ xk (so L(x) = 1) and B(x) = 1.

Nasty example 2. Composition is not associative: take
A(x) = 1−

∑∞
n=1

(2n−2
n−1

)
/(n22n−1)xn (Taylor series of

√
1− x),

B(x) = 2x − x2, C(x) = 2.
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Composing composable series is not nasty

The good news: No such nastyness can occur for a composition A(B(x)) with
B composable.

Lemma

If A0(x),A1(x),A2(x), . . . is a sequence of f.p.s. with limit A(x), and if
B0(x),B1(x),B2(x), . . . is a sequence of composable f.p.s. with limit
B(x) (which is necessarily also composable), then
limk→∞ Ak(Bk(x)) = A(B(x)).

If A(x), B(x) and C(x) are f.p.s., with B(x) and C(x) composable, then
(A ◦ B) ◦ C = A ◦ (B ◦ C).



Composition inverse

Observe: The series Id(x) = x is the neutral element for composition:
Id(A(x)) = A(Id(x)) = A(x).

Definition

Let A(x) ∈ K [[x ]] be composable. A (left) composition inverse of A(x) is a
f.p.s. B(x) such that B(A(x)) = x . It is denoted A〈−1〉(x).

Lemma

A composable f.p.s. A(x) ∈ K [[x ]] has a composition inverse if and only if the
coefficient [x1]A(x) has a (multiplicative) inverse in K . In such case, the
composition inverse B(x) = A〈−1〉(x) is unique, is composable, and satisfies
B〈−1〉(x) = A(x).
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