Analytic combinatorics Lecture 1

March 10, 2021

About the course

- Me: Vít Jelínek

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link:
https://dl1.cuni.cz/user/index.php?id=12105

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link:
https://dl1.cuni.cz/user/index.php?id=12105
- Tutorials: homework

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link:
https://dl1.cuni.cz/user/index.php?id=12105
- Tutorials: homework
- Exam: to be determined

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link:
https://dl1.cuni.cz/user/index.php?id=12105
- Tutorials: homework
- Exam: to be determined
- Literature:

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link:
https://dl1.cuni.cz/user/index.php?id=12105
- Tutorials: homework
- Exam: to be determined
- Literature:
- H. Wilf: Generatingfunctionology

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link: https://dl1.cuni.cz/user/index.php?id=12105
- Tutorials: homework
- Exam: to be determined
- Literature:
- H. Wilf: Generatingfunctionology
- P. Flajolet, R. Sedgwick: Analytic combinatorics

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link: https://dl1.cuni.cz/user/index.php?id=12105
- Tutorials: homework
- Exam: to be determined
- Literature:
- H. Wilf: Generatingfunctionology
- P. Flajolet, R. Sedgwick: Analytic combinatorics

About the course

- Me: Vít Jelínek
- Contact: jelinek@iuuk.mff.cuni.cz
- Moodle link:

```
https://dl1.cuni.cz/user/index.php?id=12105
```

- Tutorials: homework
- Exam: to be determined
- Literature:
- H. Wilf: Generatingfunctionology
- P. Flajolet, R. Sedgwick: Analytic combinatorics

Notation:

- \mathbb{N} : natural numbers, i.e., $\{1,2,3, \ldots\}$
- $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- \mathbb{Q} : rational numbers
- \mathbb{R} : real numbers
- \mathbb{C} : complex numbers

Overview of analytic method(s) in combinatorics

Basic situation: Suppose we have a set \mathcal{S} of some combinatorial objects (graphs, permutations, set partitions, ...) for which we have a notion of size. We want to determine or estimate the number s_{n} of objects of size n in \mathcal{S}. But finding a formula for s_{n} directly is impossible.

Overview of analytic method(s) in combinatorics

Basic situation: Suppose we have a set \mathcal{S} of some combinatorial objects (graphs, permutations, set partitions, ...) for which we have a notion of size. We want to determine or estimate the number s_{n} of objects of size n in \mathcal{S}. But finding a formula for s_{n} directly is impossible.

The "analytic" approach:
(1) Find a formula for the generating function of \mathcal{S}, which is a formal power series

$$
S(x)=\sum_{n=0}^{\infty} s_{n} x^{n} \text { or maybe } S(x)=\sum_{n=0}^{\infty} s_{n} \frac{x^{n}}{n!}
$$

Overview of analytic method(s) in combinatorics

Basic situation: Suppose we have a set \mathcal{S} of some combinatorial objects (graphs, permutations, set partitions, ...) for which we have a notion of size. We want to determine or estimate the number s_{n} of objects of size n in \mathcal{S}. But finding a formula for s_{n} directly is impossible.

The "analytic" approach:
(1) Find a formula for the generating function of \mathcal{S}, which is a formal power series

$$
S(x)=\sum_{n=0}^{\infty} s_{n} x^{n} \text { or maybe } S(x)=\sum_{n=0}^{\infty} s_{n} \frac{x^{n}}{n!}
$$

(2) Treat $S(x)$ as an actual function from \mathbb{C} to \mathbb{C}.

Overview of analytic method(s) in combinatorics

Basic situation: Suppose we have a set \mathcal{S} of some combinatorial objects (graphs, permutations, set partitions, ...) for which we have a notion of size. We want to determine or estimate the number s_{n} of objects of size n in \mathcal{S}. But finding a formula for s_{n} directly is impossible.

The "analytic" approach:
(1) Find a formula for the generating function of \mathcal{S}, which is a formal power series

$$
S(x)=\sum_{n=0}^{\infty} s_{n} x^{n} \text { or maybe } S(x)=\sum_{n=0}^{\infty} s_{n} \frac{x^{n}}{n!}
$$

(2) Treat $S(x)$ as an actual function from \mathbb{C} to \mathbb{C}.
(3) Apply complex-analytic tools (analytic continuation, contour integrals, residues, \ldots) to the function $S(x)$ to estimate s_{n}.

Formal power series

For the rest of today's lecture, fix a coefficient ring K, to be a commutative ring with a multiplicative unit and with no zero divisors. (Imagine $K=\mathbb{R}$ or \mathbb{Z} or \mathbb{C}.)

Formal power series

For the rest of today's lecture, fix a coefficient ring K, to be a commutative ring with a multiplicative unit and with no zero divisors. (Imagine $K=\mathbb{R}$ or \mathbb{Z} or \mathbb{C}.)

A sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{n}\right)_{n=0}^{\infty}$ of elements of K, can be represented by a formal power series (in x)

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Formal power series

For the rest of today's lecture, fix a coefficient ring K, to be a commutative ring with a multiplicative unit and with no zero divisors. (Imagine $K=\mathbb{R}$ or \mathbb{Z} or \mathbb{C}.)

A sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{n}\right)_{n=0}^{\infty}$ of elements of K, can be represented by a formal power series (in x)

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Then a_{n} is the coefficient of degree n in the f.p.s. $A(x)$, denoted by $\left[x^{n}\right] A(x)$.

Formal power series

For the rest of today's lecture, fix a coefficient ring K, to be a commutative ring with a multiplicative unit and with no zero divisors. (Imagine $K=\mathbb{R}$ or \mathbb{Z} or \mathbb{C}.)

A sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{n}\right)_{n=0}^{\infty}$ of elements of K, can be represented by a formal power series (in x)

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then a_{n} is the coefficient of degree n in the f.p.s. $A(x)$, denoted by $\left[x^{n}\right] A(x)$. Let $K[[x]]$ denote the set of all f.p.s. in x over K.

Operations with f.p.s.

Consider $A(x), B(x) \in K[[x]]$, with $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. We then define...

Operations with f.p.s.

Consider $A(x), B(x) \in K[[x]]$, with $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. We then define...

Operations with f.p.s.

Consider $A(x), B(x) \in K[[x]]$, with $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. We then define ...

$$
\begin{aligned}
A(x)+B(x) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots \\
A(x) B(x) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}
\end{aligned}
$$

Operations with f.p.s.

Consider $A(x), B(x) \in K[[x]]$, with $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. We then define...

$$
\begin{aligned}
A(x)+B(x) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots \\
A(x) B(x) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} .
\end{aligned}
$$

Observe:

- The series $0=0+0 x+0 x^{2}+\cdots$ satisfies $A(x)+0=0+A(x)=A(x)$.

Operations with f.p.s.

Consider $A(x), B(x) \in K[[x]]$, with $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. We then define...

$$
\begin{aligned}
A(x)+B(x) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots \\
A(x) B(x) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} .
\end{aligned}
$$

Observe:

- The series $0=0+0 x+0 x^{2}+\cdots$ satisfies $A(x)+0=0+A(x)=A(x)$.
- The series $1=1+0 x+0 x^{2}+\cdots$ satisfies $A(x) \cdot 1=1 \cdot A(x)=A(x)$.

Operations with f.p.s.

Consider $A(x), B(x) \in K[[x]]$, with $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. We then define...

$$
\begin{aligned}
A(x)+B(x) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots \\
A(x) B(x) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} .
\end{aligned}
$$

Observe:

- The series $0=0+0 x+0 x^{2}+\cdots$ satisfies $A(x)+0=0+A(x)=A(x)$.
- The series $1=1+0 x+0 x^{2}+\cdots$ satisfies $A(x) \cdot 1=1 \cdot A(x)=A(x)$.
- In fact, $K[[x]]$ is a commutative ring with a unit (and no zero divisors).

Multiplicative inverses

Definition

Let $A(x)$ be a f.p.s. from $\in K[[x]]$. A multiplicative inverse (or reciprocal) of $A(x)$ is a f.p.s. $B(x) \in K[[x]]$ such that $A(x) B(x)=1$. The multiplicative inverse of $A(x)$ (if it exists) is denoted $A(x)^{-1}$ or $\frac{1}{A(x)}$.

Multiplicative inverses

Definition

Let $A(x)$ be a f.p.s. from $\in K[[x]]$. A multiplicative inverse (or reciprocal) of $A(x)$ is a f.p.s. $B(x) \in K[[x]]$ such that $A(x) B(x)=1$. The multiplicative inverse of $A(x)$ (if it exists) is denoted $A(x)^{-1}$ or $\frac{1}{A(x)}$.

When does a f.p.s. have a multiplicative inverse?

Existence of inverses

Lemma

A f.p.s. $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in K[[x]]$ has a multiplicative inverse in $K[[x]]$ if and only if the coefficient $a_{0}=\left[x^{0}\right] A(x)$ has a multiplicative inverse in K. The inverse, when it exists, is unique.

Formal convergence

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define its limit $\lim _{k \rightarrow \infty} A_{k}(x)$? (Problem: we cannot assume that there is any notion of convergence for elements of K.)

Formal convergence

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define its limit $\lim _{k \rightarrow \infty} A_{k}(x)$? (Problem: we cannot assume that there is any notion of convergence for elements of K.)

Definition

A f.p.s. $L(x) \in K[[x]]$ is the (formal) limit of the sequence $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$, if for every $n \in \mathbb{N}_{0}$ there is a $k_{0} \in \mathbb{N}_{0}$ such that for all $k \geq k_{0}$ we have

$$
\left[x^{n}\right] A_{k}(x)=\left[x^{n}\right] L(x) .
$$

Formal convergence

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define its limit $\lim _{k \rightarrow \infty} A_{k}(x)$? (Problem: we cannot assume that there is any notion of convergence for elements of K.)

Definition

A f.p.s. $L(x) \in K[[x]]$ is the (formal) limit of the sequence $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$, if for every $n \in \mathbb{N}_{0}$ there is a $k_{0} \in \mathbb{N}_{0}$ such that for all $k \geq k_{0}$ we have

$$
\left[x^{n}\right] A_{k}(x)=\left[x^{n}\right] L(x) .
$$

Examples:

- The sequence of f.p.s. $1+x, 1+x^{2}, 1+x^{3}, \ldots$ has limit 1 .

Formal convergence

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define its limit $\lim _{k \rightarrow \infty} A_{k}(x)$? (Problem: we cannot assume that there is any notion of convergence for elements of K.)

Definition

A f.p.s. $L(x) \in K[[x]]$ is the (formal) limit of the sequence $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$, if for every $n \in \mathbb{N}_{0}$ there is a $k_{0} \in \mathbb{N}_{0}$ such that for all $k \geq k_{0}$ we have

$$
\left[x^{n}\right] A_{k}(x)=\left[x^{n}\right] L(x) .
$$

Examples:

- The sequence of f.p.s. $1+x, 1+x^{2}, 1+x^{3}, \ldots$ has limit 1 .
- The sequence of f.p.s. $1+x, 1+\frac{x}{2}, 1+\frac{x}{3}, \ldots$ does not converge to a limit.

Summing infinitely many f.p.s.

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define their infinite sum

$$
A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots ?
$$

Summing infinitely many f.p.s.

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define their infinite sum

$$
A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots ?
$$

Answer: as a limit of the sequence partial sums

$$
A_{0}(x), A_{0}(x)+A_{1}(x), A_{0}(x)+A_{1}(x)+A_{2}(x), \ldots
$$

Summing infinitely many f.p.s.

Let $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ be an infinite sequence of f.p.s. from $K[[x]]$. How to define their infinite sum

$$
A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots ?
$$

Answer: as a limit of the sequence partial sums $A_{0}(x), A_{0}(x)+A_{1}(x), A_{0}(x)+A_{1}(x)+A_{2}(x), \ldots$
Observe: $A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots$ exists iff for every degree $n \in \mathbb{N}_{0}$, there are only finitely many summands $A_{k}(x)$ with $\left[x^{n}\right] A_{k}(x) \neq 0$.

Examples of infinite sums

Example 1: Consider

$$
\begin{array}{rr}
A_{0}(x)= & 1+x+x^{2}+x^{3}+x^{4}+\cdots \\
A_{1}(x)= & x+x^{2}+x^{3}+x^{4}+\cdots \\
A_{2}(x)= & x^{2}+x^{3}+x^{4}+\cdots \\
A_{3}(x)= & x^{3}+x^{4}+\cdots
\end{array}
$$

Is the sum $A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots$ defined? What is its value?

Examples of infinite sums

Example 1: Consider

$$
\begin{array}{rr}
A_{0}(x)= & 1+x+x^{2}+x^{3}+x^{4}+\cdots \\
A_{1}(x)= & x+x^{2}+x^{3}+x^{4}+\cdots \\
A_{2}(x)= & x^{2}+x^{3}+x^{4}+\cdots \\
A_{3}(x)= & x^{3}+x^{4}+\cdots
\end{array}
$$

Is the sum $A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots$ defined? What is its value?
Example 2: For which $B(x) \in K[[x]]$ is the sum $B(x)+B^{2}(x)+B^{3}(x)+B^{4}(x)+\cdots$ defined?

Examples of infinite sums

Example 1: Consider

$$
\begin{array}{rr}
A_{0}(x)= & 1+x+x^{2}+x^{3}+x^{4}+\cdots \\
A_{1}(x)= & x+x^{2}+x^{3}+x^{4}+\cdots \\
A_{2}(x)= & x^{2}+x^{3}+x^{4}+\cdots \\
A_{3}(x)= & x^{3}+x^{4}+\cdots
\end{array}
$$

Is the sum $A_{0}(x)+A_{1}(x)+A_{2}(x)+\cdots$ defined? What is its value?
Example 2: For which $B(x) \in K[[x]]$ is the sum $B(x)+B^{2}(x)+B^{3}(x)+B^{4}(x)+\cdots$ defined? Answer: Sum is defined iff $\left[x^{0}\right] B(x)=0$.

Composition

Definition

For two f.p.s. $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, their composition, denoted $(A \circ B)(x)$ or $A(B(x))$, is the f.p.s. defined as the infinite sum

$$
\sum_{n=0}^{\infty} a_{n} B^{n}(x)=a_{0}+a_{1} B(x)+a_{2} B^{2}(x)+a_{3} B^{3}(x)+\cdots
$$

Composition

Definition

For two f.p.s. $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, their composition, denoted $(A \circ B)(x)$ or $A(B(x))$, is the f.p.s. defined as the infinite sum

$$
\sum_{n=0}^{\infty} a_{n} B^{n}(x)=a_{0}+a_{1} B(x)+a_{2} B^{2}(x)+a_{3} B^{3}(x)+\cdots
$$

When is $A(B(x))$ defined?

Composition

Lemma

$A(B(x))$ exists iff at least one of these two conditions holds:
(1) $A(x)$ is a polynomial (i.e., has only finitely many nonzero coefficients).
(2) $\left[x^{0}\right] B(x)=0$.

Composition

Lemma

$A(B(x))$ exists iff at least one of these two conditions holds:
(1) $A(x)$ is a polynomial (i.e., has only finitely many nonzero coefficients).
(2) $\left[x^{0}\right] B(x)=0$.

Definition

A f.p.s. $B(x)$ is composable if $\left[x^{0}\right] B(x)=0$.

Nasty examples

Nasty example 1. Composition is not continuous, i.e., $\lim _{k \rightarrow \infty} A_{k}(x)=L(x)$ does NOT imply $\lim _{k \rightarrow \infty} A_{k}(B(x))=L(B(x))$, even when all the expressions are defined:

Nasty examples

Nasty example 1. Composition is not continuous, i.e., $\lim _{k \rightarrow \infty} A_{k}(x)=L(x)$ does NOT imply $\lim _{k \rightarrow \infty} A_{k}(B(x))=L(B(x))$, even when all the expressions are defined: take $A_{k}(x)=1+x^{k}$ (so $L(x)=1$) and $B(x)=1$.

Nasty examples

Nasty example 1. Composition is not continuous, i.e., $\lim _{k \rightarrow \infty} A_{k}(x)=L(x)$ does NOT imply $\lim _{k \rightarrow \infty} A_{k}(B(x))=L(B(x))$, even when all the expressions are defined: take $A_{k}(x)=1+x^{k}$ (so $L(x)=1$) and $B(x)=1$.

Nasty example 2. Composition is not associative:

Nasty examples

Nasty example 1. Composition is not continuous, i.e., $\lim _{k \rightarrow \infty} A_{k}(x)=L(x)$ does NOT imply $\lim _{k \rightarrow \infty} A_{k}(B(x))=L(B(x))$, even when all the expressions are defined: take $A_{k}(x)=1+x^{k}$ (so $L(x)=1$) and $B(x)=1$.

Nasty example 2. Composition is not associative: take $A(x)=1-\sum_{n=1}^{\infty}\binom{2 n-2}{n-1} /\left(n 2^{2 n-1}\right) x^{n}$ (Taylor series of $\sqrt{1-x}$), $B(x)=2 x-x^{2}, C(x)=2$.

Composing composable series is not nasty

The good news: No such nastyness can occur for a composition $A(B(x))$ with B composable.

Lemma

- If $A_{0}(x), A_{1}(x), A_{2}(x), \ldots$ is a sequence of f.p.s. with limit $A(x)$, and if $B_{0}(x), B_{1}(x), B_{2}(x), \ldots$ is a sequence of composable f.p.s. with limit $B(x)$ (which is necessarily also composable), then $\lim _{k \rightarrow \infty} A_{k}\left(B_{k}(x)\right)=A(B(x))$.
- If $A(x), B(x)$ and $C(x)$ are f.p.s., with $B(x)$ and $C(x)$ composable, then $(A \circ B) \circ C=A \circ(B \circ C)$.

Composition inverse

Observe: The series $\operatorname{Id}(x)=x$ is the neutral element for composition: $\operatorname{ld}(A(x))=A(\operatorname{ld}(x))=A(x)$.

Composition inverse

Observe: The series $\operatorname{Id}(x)=x$ is the neutral element for composition: $\operatorname{ld}(A(x))=A(\operatorname{ld}(x))=A(x)$.

Definition

Let $A(x) \in K[[x]]$ be composable. A (left) composition inverse of $A(x)$ is a f.p.s. $B(x)$ such that $B(A(x))=x$. It is denoted $A^{\langle-1\rangle}(x)$.

Composition inverse

Observe: The series $\operatorname{Id}(x)=x$ is the neutral element for composition:
$\operatorname{ld}(A(x))=A(\operatorname{ld}(x))=A(x)$.

Definition

Let $A(x) \in K[[x]]$ be composable. A (left) composition inverse of $A(x)$ is a f.p.s. $B(x)$ such that $B(A(x))=x$. It is denoted $A^{\langle-1\rangle}(x)$.

Lemma

A composable f.p.s. $A(x) \in K[[x]]$ has a composition inverse if and only if the coefficient $\left[x^{1}\right] A(x)$ has a (multiplicative) inverse in K. In such case, the composition inverse $B(x)=A^{\langle-1\rangle}(x)$ is unique, is composable, and satisfies $B^{\langle-1\rangle}(x)=A(x)$.

