Introduction to applied

bioinformatics

"Nucleotide bioinformatics III"

Retrieving nucleotide sequences from databases (Genbank/NCBI)

Feature analysis: statistics, reverse complement, restriction analysis

Translation, identifying open reading frame

PCR primer design - detection, rt-PCR

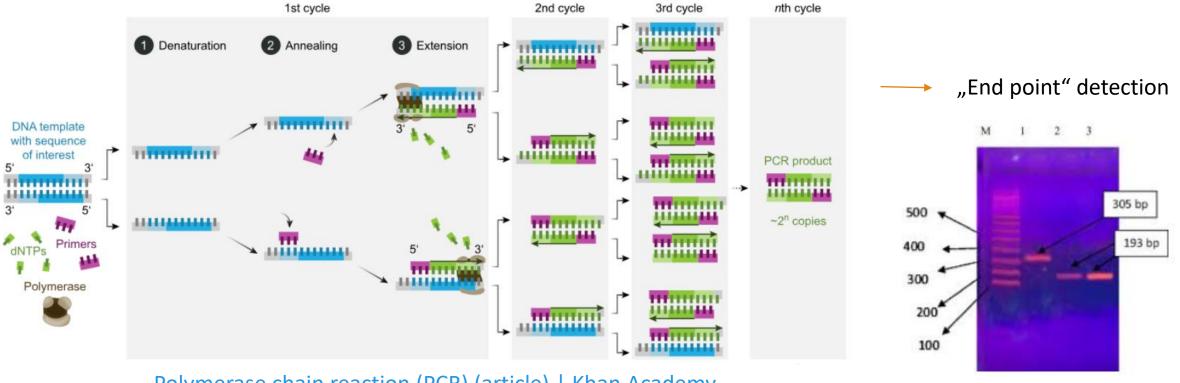
Secondary structure prediction

Sequence comparison, unknown sequence identification

Single Nucleotide Polymorphisms

DNA sequencing

Gene expression


microRNA

Genomes....

• • • •

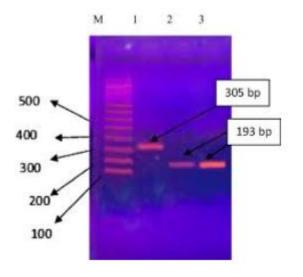
Polymerase chain reaction

Polymerase chain reaction (PCR) — amplification of required gene, between two primers

Polymerase chain reaction (PCR) (article) | Khan Academy

Polymerase chain reaction

Amplification of required gene —


for cloning, functional studies...

Product: various length, between two primers

Primers: manual design

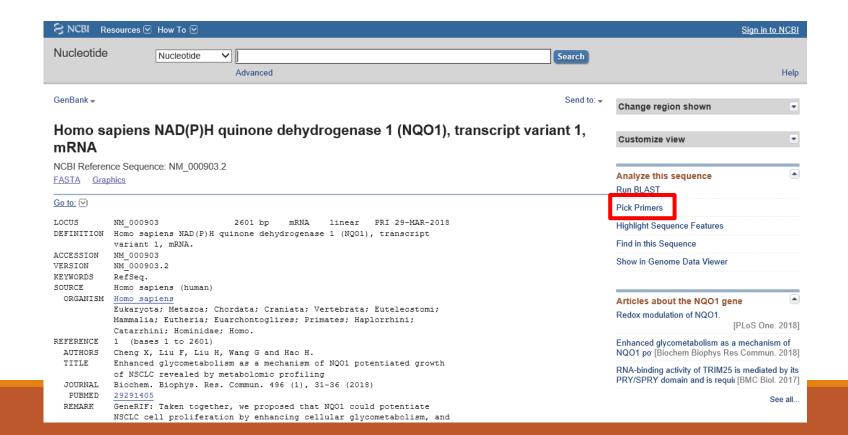
-forward-check by OligoCalc

-reverse -from reverse complement sequence and check by OligoCalc)

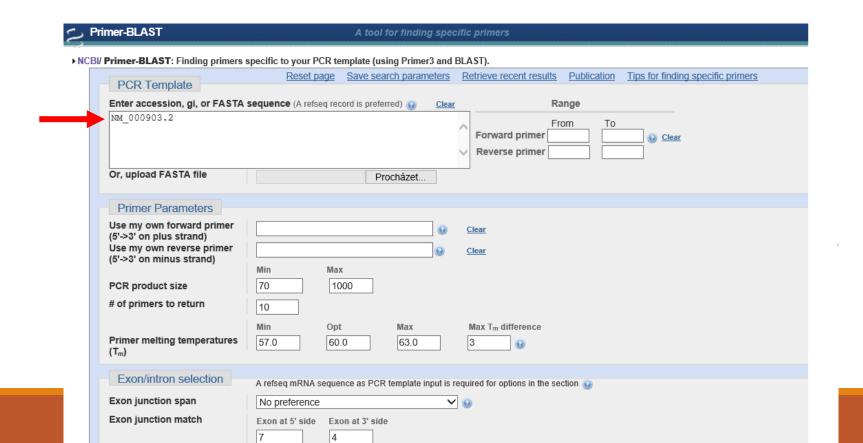
"End point" detection

Polymerase chain reaction

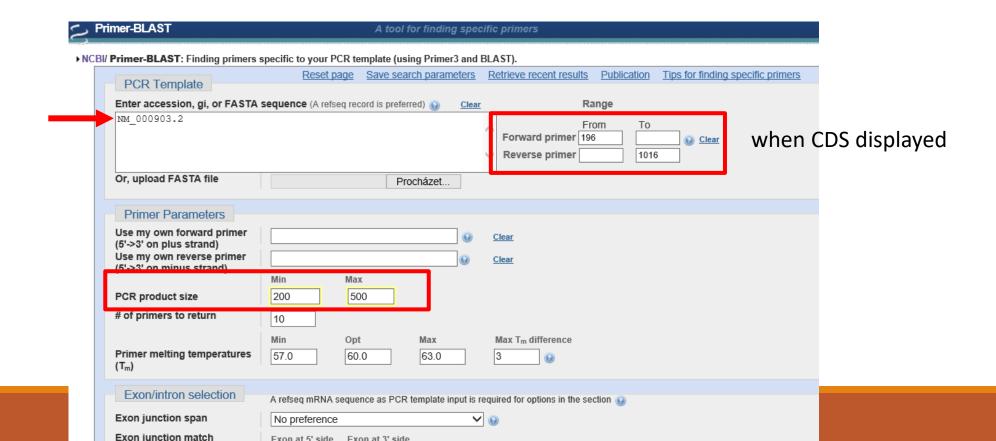
Specific gene detection

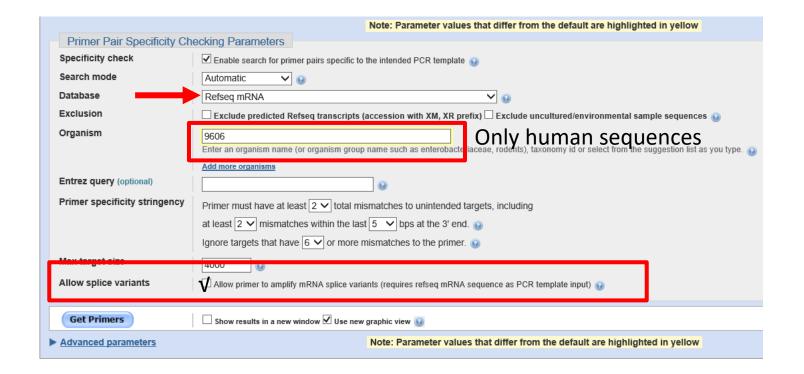

Primers: anywhere along the sequence!

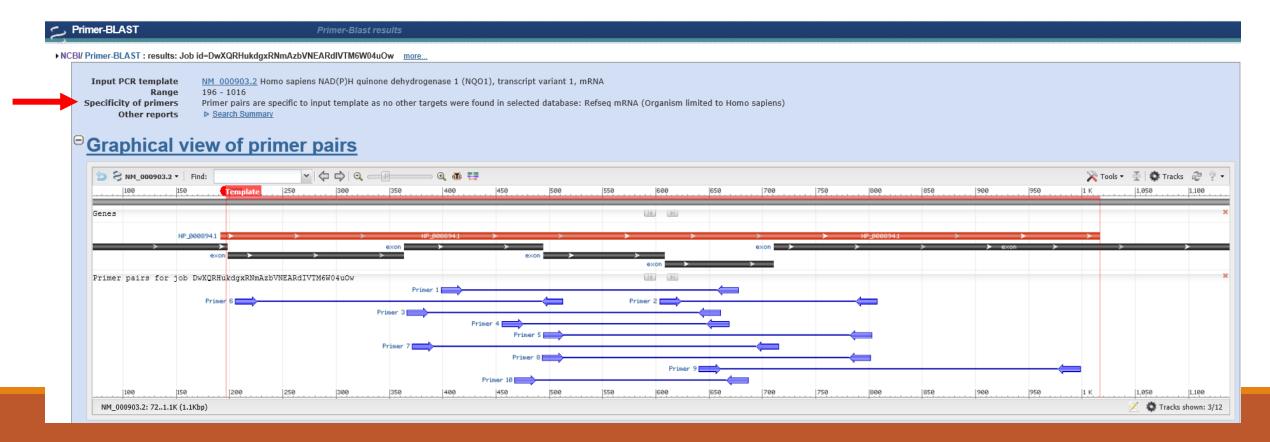
Product: 200 - 500nt (good separation for detection of length)



But primers: must be **specific** for tested organism → **BLAST**


Gene detection


Gene detection


Gene detection

Gene detection

Gene detection

Gene detection

Specificity matters! (Primer BLAST!)

Detailed primer reports

Primer pair 1

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	GCCGAGTCTGTTCTGGCTTA	Plus	20	399	418	59.75	55.00	3.00	2.00
Reverse primer	GTGGATCCCTTGCAGAGAGT	Minus	20	677	658	59.09	55.00	6.00	2.00
Product length	279								

Products on intended target

>NM_000903.2 Homo sapiens NAD(P)H quinone dehydrogenase 1 (NQO1), transcript variant 1, mRNA

Products on allowed transcript variants

> NM 001025434.1 Homo sapiens NAD(P)H quinone dehydrogenase 1 (NQO1), transcript variant 3, mRNA

```
        product length = 165
        5

        Forward primer 1 GCCGAGTCTGTTCTGGCTTA 20
        418

        Reverse primer 1 GTGGATCCCTTGCAGAGAGT 20
        563

        Template 563
        544
```

Practical part....

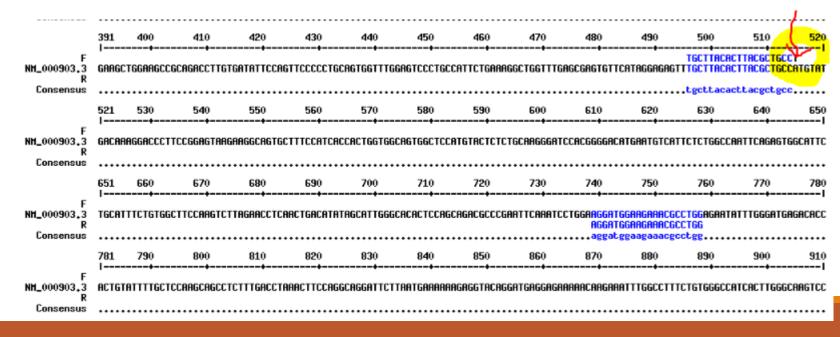
Design primers **specific** to detect your sequence using "pick primers" (and BLAST).

(Hw) Align the primers designed by the program (Pick primers) with your CDS and mRNA

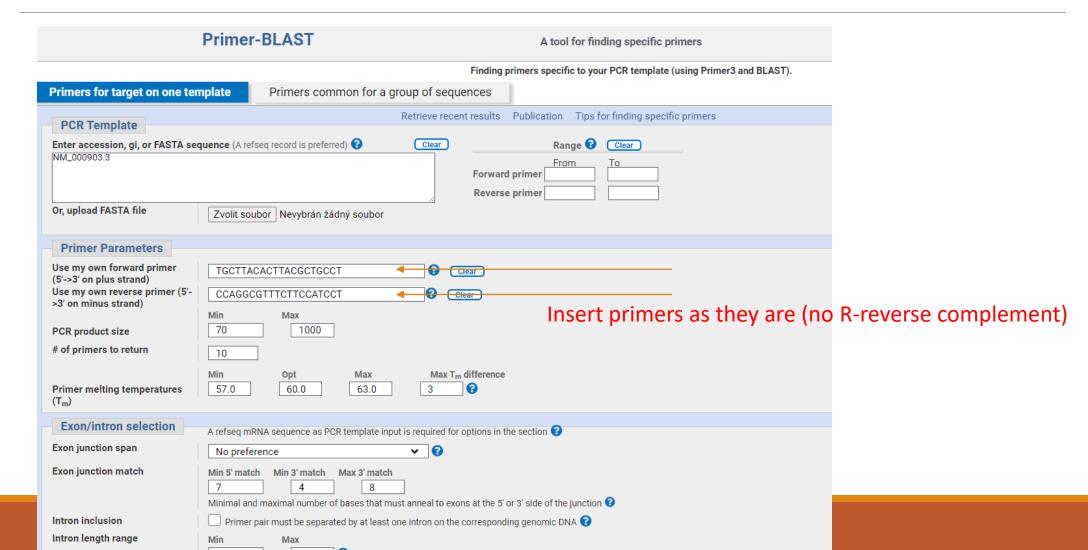
Primers verification

F:TGCTTACACTTACGCTGCCT

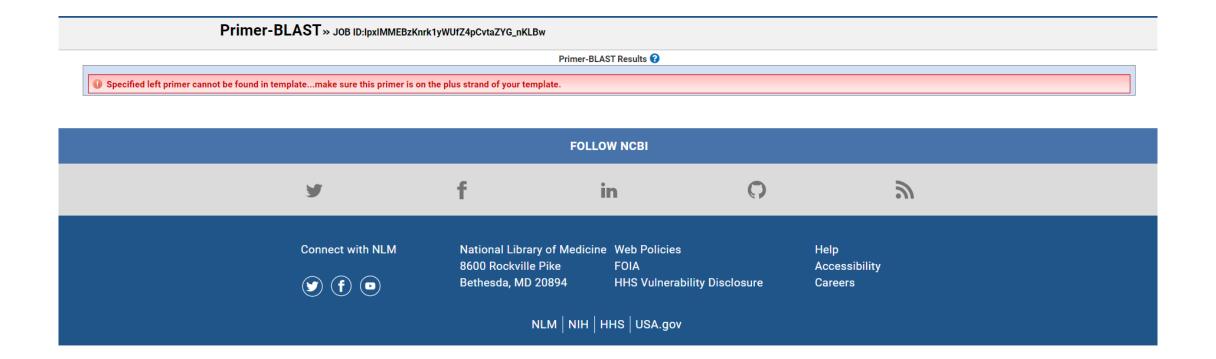
R:CCAGGCGTTTCTTCCATCCT


Verify if the primers can be used for detection of NQO1 (NM 000903.3) (use multalin)

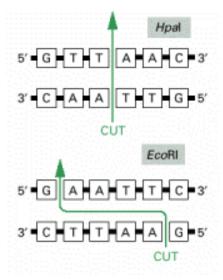
Primers verification

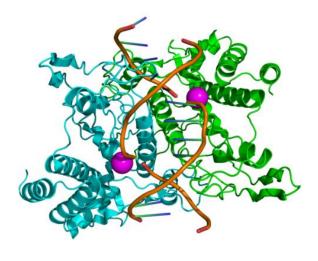

F:TGCTTACACTTACGCTGCCT

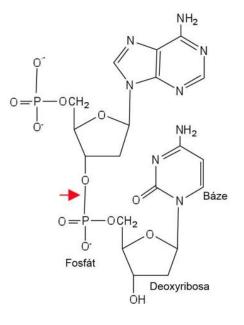
R:CCAGGCGTTTCTTCCATCCT


Verify if the primers can be used for detection of NQO1 (NM 000903.3) (use multalin)

Primers verification – control


Primers verification – control


Restriction analysis


Restriction endonucleases (molecular scissors)

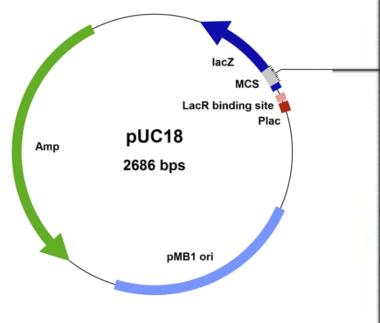
- cleaves both strands in specific symetric site palindrom
- creating blunt or cohesive ends

usage for DNA fragmentation, restriction analysis of mutations, cloning, etc.

Restriction analysis

Sequence Manipulation Suite: Restriction Summary -Combine FASTA Restriction Summary accepts a DNA sequence and returns the number and -EMBL to FASTA -EMBL Feature Extractor determine whether or not an enzyme cuts a particular segment of DNA. -EMBL Trans Extractor -Filter DNA -Filter Protein Paste the raw sequence or one or more FASTA sequences into the text area -GenBank to FASTA -GenBank Feature Extractor >sample sequence -GenBank Trans Extractor ctaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctca 🔨 -One to Three |ttttttaaccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgaga| -Range Extractor DNA tagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaa -Range Extractor Protein -Reverse Complement cgtcaaagggcgaaaaaccgtctatcagggcgatggcccactacgtgaaccatcaccctaa 🗸 -Split Codons tcaagttttttggggtcgaggtgccgtaaagcactaaatcggaaccctaaagggagccccc -Split FASTA -Three to One Please check the browser compatibility page before using this program. -Window Extractor DNA -Window Extractor Protein Submit Clear Reset Sequence Analysis -Codon Plot -Codon Usage -CpG Islands -DNA Molecular Weight -DNA Pattern Find *This page requires JavaScript. See browser compatibility. -DNA Stats *You can mirror this page or use it off-line. -Fuzzy Search DNA -Fuzzy Search Protein -Ident and Sim -Multi Rev Trans -Mutate for Digest Fri Jun 17 16:17:06 2016 -ORF Finder Valid XHTML 1.0; Valid CSS -Pairwise Align Codons

Pairwise Align DNA
Pairwise Align Protein
PCR Primer Stats
PCR Products
Protein GRAVY
Protein Isoelectric Point
Protein Molecular Weight
Protein Pattern Find
Protein Stats
Restriction Digest
Restriction Summary
Reverse Translate


Restriction Sur	mmary results					
cuts once						
cuts twice	C4					
Results for linear 2961 residue sequence "sample sequence" starting "ctaaattgta"						
Site:	Positions:					
Aatl agg cct	none					
AatII gacgt c	none					
Acc16l tgc gca	480, 2269					
AccII cg cg	36, 412, 432, 456, 622, 624, 664, 795, 1001, 1003, 1201, 1782, 2112, 2605, 2937					
AccIII t ccgga	none					
Acll aa cgtt	2273, 2646					
Acvl cac gtg	none					
Afal gt ac	758, 2527					
Afel agc gct	none					
AfIII c ttaag	none					
Agel a ccggt	none					
Ahll a ctagt	684					
Alw441 g tgcac	1468, 2714					
Alul ag ct	58, 315, 530, 656, 722, 764, 819, 914, 978, 1096, 1322, 1412, 1458, 1715, 2236, 2336, 2399					
Aor51HI agc gct	none					
Apal gggcc c	754					
ApaLl g tgcac	1468, 2714					
Ascl galcacacc	none					

Restriction Summary results

Practical part

Analyze your sequence for presence of RE target sites MI - check REs from multiple cloning site of vector:

нw: EcoRI, XbaI, BamHI

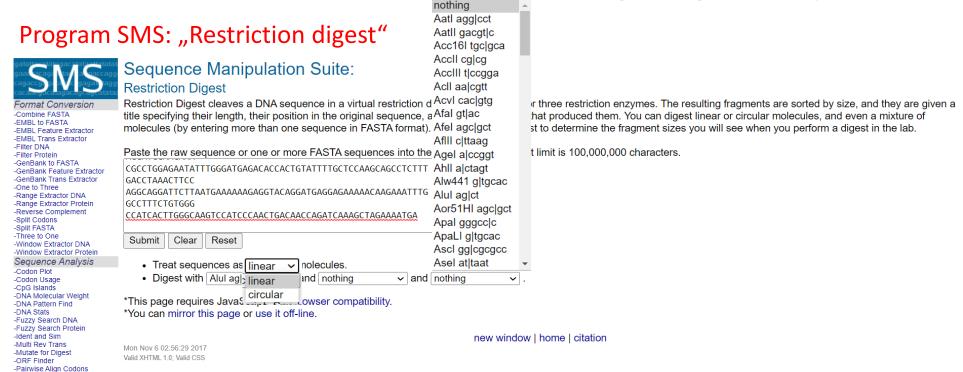
HindIII Sphl Pstl

Hincll Sall

Xbal BamHI

Aval Smal **Xmal**

Acc65I


Kpnl Banll Eco53k

Sacl

Apol EcoRI

-Pairwise Align DNA
-Pairwise Align Protein
-PCR Primer Stats
-PCR Products
-Protein GRAVY
-Protein Isoelectric Point
-Protein Molecular Weight
-Protein Pattern Find
-Protein Stats
-Restriction Digest
-Restriction Summary

= restriction simulation (what can be expected on the agarose gel after separation

NQO1:CDS-restiction summary

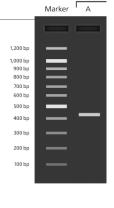
>NM_000903.3:122-946 Homo sapiens NAD(P)H quinone dehydrogenase 1 (NQO1), transcript variant 1. mRNA

NQO1:CDS-restiction digest

Restriction Digest

Restriction Digest cleaves a DNA sequence in a virtual restriction digest, with one, two, or title specifying their length, their position in the original sequence, and the enzyme sites the molecules (by entering more than one sequence in FASTA format). Use Restriction Digest

Paste the raw sequence or one or more FASTA sequences into the text area below. Input


Submit Clear Reset

- Treat sequences as linear v molecules.

A: 414+

411nt

NQO1:CDS (825nt)

EcoRI

B: 602+

223nt

NQO1:CDS (825nt)

- Treat sequences as linear → molecules.
- Digest with EcoRI glaattc

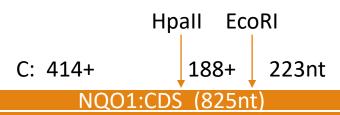
 and Hpall c|cgg

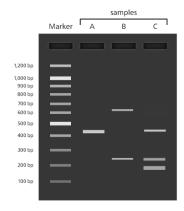
 and nothing

 □

NQO1:CDS-restiction digest

>NM_000903.3:122-946 Homo sapiens NAD(P)H quinone dehydrogenase 1 (NQO1), transcript variant 1, mRNA


ATEGECEGCAGAAGACACTEATCGTACTGGCTCACTCAGACAGGACGTCCTTCACTATGCCCATCAAGG
AGGCTGCTGCAGCGCCTTTGAAGAAGAAGGACGTGGTGGAGCTGGACCTCTATGCCATGAACT
CAATCCCATCATTTCCAGAAAGGACATCACAGGTAAACTGAAGGACCCTGCAGACTTTCAGTATCCTGC
GAGTCTGTTCTGGCTTATAAAGAAGACCCATCTGAGCCCAGATATTGTGGCTGAACAAAAGAAGCTGGAAG
CCGCAGACCTTGTGATATTCCAGTTCCCCTGCAGTGGTTTTGGATCCCTGCCATTCTGAAAGGACCTTCCGGAT
TGAGCAGTGTTCATAGGAGAGTTTGCTTACACTTACGCTGCCATTATAGACAAAGGACCCTTCCGGAGT
AAGAAGGCAGTGTTCATCACCACTGGTGGTGCTCCATGTACTCTCTGCAAGGACTCCACGGG
ACATGAATGTCATTCTCGGCCAATTCAGAGTGGCTCCATGTATTCTGCAAGTCTTCAGAACC
TCAACTGACATATAGCATTGGGCACACTCCAGCAGCCCCGAATTCAAATCCTTGGAAGAAAA
CGCCTGGAGAATATTTGGGATGAGACACCACTGTATTTTGCTCCAAGCACTCTTTGGCCTAACTCC
AGGCAGGATTCTTAATGAAAAAAGAGGTACAGGATGAGAAAAACAAGAAAATTTGGCCTTTCTGTGG


CCATCACTTGGGCAAGTCCATCCCAACTGACAACCAGATCAAAGCTAGAAAATGA

>414 bp linear fragment from linear parent NM_000903.3:122-946
ATGGTCGGCAGAAGAGCACTGATCGTACTGGCTCACTCAGAGAGGACGTCCTTCAACTAT
GCCATGAAGGAGGCTGCTGCAGCGGCTTTGAAGAAGAAAGGATGGGAGGTGGTGGAGTCG
GACCTCTATGCCATGAACTTCAATCCCATCATTTCCAGAAAGGACATCACAGGTAAACTG
AAGGACCCTGCGAACTTTCAGTATCCTGCCGAGTCTGTTCTGGCTTATAAAGAAGGCCAT
CTGAGCCCAGATATTGTGGCTGAACAAAAGAAGCTGGAAGCCGCAGACCTTGTGATATTC
CAGTTCCCCCTGCAGTGGTTTGGAGTCCCTGCCATTCTGAAAGGCTGGTTTGAGCGAGTG
TTCATAGGAGAGTTTGCTTACACTTACGCTGCCATGTATGACAAAGGACCCTTC

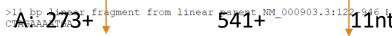
>188 bp linear fragment from linear parent NM_000903.3:122-946 CGGAGTAAGAAGGCAGTGCTTTCCATCACCACTGGTGGCAGTGGCTCCATGTACTCTCTG CAAGGGATCCACGGGGACATGAATGTCATTCTCTGGCCAATTCAGAGTGGCATTCTGCAT TTCTGTGGCTTCCAAGTCTTAGAACCTCAACTGACATATAGCATTGGGCACACTCCAGCA GACGCCCG

NQO1:CDS-restiction digest

>NM_000903.3:122-946 Homo sapiens NAD(P)H quinone dehydrogenase 1 (NQO1), transcript variant 1, mRNA

Restriction Digest

Restriction Digest cleaves a DNA sequence in a virtual restriction digest, with one, two, or title specifying their length, their position in the original sequence, and the enzyme sites th molecules (by entering more than one sequence in FASTA format). Use Restriction Digest


Paste the raw sequence or one or more FASTA sequences into the text area below. Input

CGCCTGGAGAATATTTGGGATGAGACACCACTGTATTTTGCTCCAAGCAGCCTCTTT
GACCTAAACTTCC
AGGCAGGATTCTTAATGAAAAAAGAGGTACAGGATGAGGAGAAAAACAAGAAATTTG
GCCTTTCTGTGGG
CCATCACTTGGGCAAGTCCAACTGACAACCAGATCAAAGCTAGAAAATGA

Submit Clear Reset

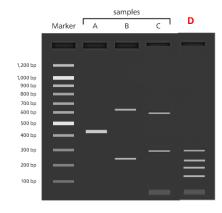
- Treat sequences as linear v molecules.
- Digest with Alul aglct \checkmark and nothing \checkmark and nothing \checkmark .

>541 bp linear fragment from linear parent NM_000903.3:122-946
CTGGAAGCCGCAGACCTTGTGATATTCCAGTTCCCCCTGCAGTGGTTTGGAGTCCCTGCC
ATTCTGAAAGGCTGGTTTGAGCAGATGTTCATAGGAGAGTTTGCTTACACTTACGCTGCC
ATGTATGACAAAGGACCTTCCGGAGTAAGAAGGCAGTGCTTTCCATCACCACTGGTGGC
AGTGGCTCCATGTACTCTCTGCAAGGGATCCACGGGGACATGAATGTCATTCTCTGGCCA
ATTCAGAGTGGCATTCTGCATTTCTGTGGCTTCCAAGTCTTAGAACCTCAACTGACATAT
AGCATTGGGCACACTCCAGCAGACGCCCGAATTCAAATCCTGGAAGGATGAAGAAACGC
CTGGAGAATATTTGGGATGAGACACCACTGTATTTTGCTCCAAGCAGCCTCTTTGACCTA
AACTTCCAGGCAGGATTCTTAATGAAAAAAGAGGTACAGGATGAGAGAAAAACAAGAAA
TTTTGGCCTTTCTGTGGGCCATCACTTGGGCAAGTCCCCAACTGACAACCAGATCAAA
G

NQO1:CDS (825nt)

- Treat sequences as linear v molecules.
- Digest with EcoRl glaattc v and Hpall clcgg v and Alul aglct v

NQO1:CDS-restiction digest


>NM_000903.3:122-946 Homo sapiens NAD(P)H quinone dehydrogenase 1 (NQO1), transcript variant 1, mRNA

>188 bp linear fragment from linear parent NM_000903.3:122-946 CGGAGTAAGAAGGCAGTGCTTCCATCACCACTGGTGGCAGTGGCTCCATGTACTCTTG CAAGGGATCCACGGGGACATGAATGTCATTCTCTGGCCAATTCAGAGTGGCATTCTGCAT TTCTGTGGCTTCCAAGTCTTAGAACCTCAACTGACATATAGCATTGGGCACACTCCAGCA GACGCCCG

>141 bp linear fragment from linear parent NM 000903.3:122-946 CTGGAAGCCGCAGACCTTGTGATATTCCAGTTCCCCTGCAGTGGTTTGGAGTCCCTGCC ATCTGAAAGGCTGGTTTGAGCAGTGTTCATAGGAGAGTTTGCTTACACTTACGCTGCC ATGTATGACAAAGGACCCTTC

>11 bp linear fragment from linear parent NM_000903.3:122-946 F CTAGAAAATGA

Practical part

- Using Restriction summary find RE which cuts you sequence 1x and another that cuts 2x

- simulate restriction in **Restriction Digest** what will you see on the gel after such digestion?

Homework 8

Work with "your" nucleotide sequence.

- 1) Find primers for the detection of your gene that would be specific (other transcript variants allowed).
- 2) Check the primers by multalin (CDS,mRNA and F, R)
- 3) Find out if and how many times cut your CDS following REs: EcoRI, BamHI, XbaI
- 4) Find out an REs that cut just once and on that cuts twice. Simulate the restriction digest of your CDS by both enzymes, what will be the products?