THEORETICAL INTRODUCTION

Rheology

Rheology, by definition, is the study of the flow and deformation of materials.

BASIC TERMS

The stress is the internal force acting on the area. Unit of stress is the pascal Pa

Normal stress σ is penperdicular stress to a plane and *shear stress* τ is tangential to a plane.

<u>Strain</u> is the relative deformation of a material in response to a stress, extent of deformation. Symbol is γ , and has no units.

<u>Shear rate</u> D is velocity gradient dv/dx that is caused in liquids during the flow. Unit is reciprocal seconds.

Definition of viscosity (EuPh 10.0):

The dynamic viscosity or *coefficient* η is the tangential force per unit surface, known as shearing stress τ and expressed in pascals, necessary to move, parallel to the sliding plane, a layer of liquid of 1 square metre at a rate (v) 1 metre per second relative to a parallel layer at a distance (x) of 1 metre.

The ratio dv/dx is a speed gradient giving the rate of shear D expressed in reciprocal seconds (s⁻¹), so that $\eta = \tau/D$.

The kinematic viscosity v, expressed in square metres per second, is obtained by dividing the dynamic viscosity η by the density ρ expressed in kilograms per cubic metre, of the liquid measured at the same temperature, i.e. $v = \eta / \rho$. The kinematic viscosity is usually expressed in square millimetres per second.

<u>Rheogram</u> is a graph of shear stress against shear rate.

Quantity	Unit in SI units	Unit in CGS units	Transliteration
Shear stress τ	N/m ²	dyn/cm ²	$1 \text{ dyn/cm}^2 = 0.1 \text{ N/m}^2$
Shear rate D	s ⁻¹	s ⁻¹	
Dynamic viscosity η	Pa∙s mPa s	dyne·s/cm ² P (Poise)	$1 \text{ dyn} \cdot \text{s/cm}^2 = 1P = 0,1 \text{ N} \cdot \text{s/m}^2$ $1cP = 1 \text{ mPa} \cdot \text{s}$
Kinematic viscosity v	m ² /s mm ² /s	cm ² /s cSt	$cSt = 10^{-6} m^2/s$

Tabule 1: The units of the basic rheological quantity

NEWTONIAN LIQUIDS

Newton's equation for ideal viscous liquids:

$$\tau = \eta \cdot \frac{d\nu}{dx} \qquad D = \frac{d\nu}{dx} \quad [s^{-1}] \qquad \tau = \eta \cdot D \quad [Pa \cdot s]$$

- direct proportionality between shear stress and shear rate
- reogram is staight line going through the origin with the value of its slope 1/η
 (η=cotg α)
- viscosity is constant
- gases, water, mineral and vegetable oils, alcohols, glycerin, and true solutions

NONNEWTONIAN LIQUIDS

Pseudoplastic liquid

- rheogram passes through the origin
- apparent dynamic viscosity decreases continuously with increasing shear rate
- diluted water solutions of polymers, diluted suspensions, emulsions

Dilatant liquid

- rheogram passes through the origin
- apparent dynamic viscosity increases continuously with increasing shear rate
- concentrated suspensions (susp of ZnO)

reogram

curve of viscosity

Plastic liquid

- rheogram does not pass through the origin
- yield point
- at shear stresses greater then yield point is possible newtonian flow (A) or nonnewtonian flow (B)
- oitments, creams, gels

reogram

curve of viscosity