
C. Curves and function fields

An elliptic curve is often regarded as a synonymous for a smooth Weierstraß
curve. But in fact an elliptic curve is a much broader concept the essence of which
can be expressed algebraically in the language of algebraic function fields.

This text does not aspire to provide a formal introduction into that theory.
Nevertheless this introductory section presents several of its concepts and notions.
The aim is to sketch what is the connection between the geometry of curves and
the algebra of function fields.

Let us start by making some notational conventions and introductory definitions.
Let K be a field, and let K̄ be an algebraic closure of K. Both K and K̄ are

regarded as fixed.
The n-dimensional affine space K̄n is denoted by An, and the set Kn by An(K).

The elements of An(K) are called K-rational points.
If f1, . . . , fk ∈ K[x1, . . . , xn] are polynomials, then Vf1,...,fk denotes the set of all

α = (α1, . . . , αn) ∈ An such that fi(α) = fi(α1, . . . , αn) = 0 for all i ∈ {1, . . . , k}.
A planar affine curve over K is any subset of A2 than can be expressed as Vf ,

where f ∈ K[x1, x2], deg(f) ≥ 0.
In other words, planar affine curves are the zero points of nonzero polynomials

in two variables. Since K[x1, x2] is a UFD (unique factorization domain) each
polynomial f ∈ K[x1, x2], deg(f) ≥ 1, may be expressed uniquely, up to scalar
multiples, as f1 · · · fk, where each fi is an irreducible polynomial.

If f = f1 · · · fk, k ≥ 1, then Vf = Vf1 ∪ · · · ∪ Vfk . For example, if f = x1x2, then
Vf is the union of the coordinate lines.

The case of k > 1 will be discussed only briefly. The main focus is upon the case
k = 1.

C.1. Coordinate rings and function fields. Suppose that C is an affine planar
curve. There are many g ∈ K[x1, x2] such that g(α) = 0 for every α ∈ C. The set of
all such g is closed under addition, and also under multiplication by another element
of K[x1, x2]. This set is thus an ideal of the ring K[x1, x2]. It may be proved that
this ideal is the principal ideal of a polynomial f = f1 · · · fk, where k ≥ 1, where
each fi is irreducible, 1 ≤ i ≤ k, and where (fi) 6= (fj) if 1 ≤ i < j ≤ k. The latter
condition says that the principal ideals of fi and fj are different. Since both fi
and fj are irreducible, this means, in fact, that fi is not a scalar multiple of fj . (A
scalar multiple always refers to a multiplication by a nonzero element of K. The
group of nonzero elements of K is denoted by K∗).

For polynomials g, h ∈ K[x1, x2] write g ∼ h if g(α) = h(α) for each α ∈ C.
This is clearly an equivalence upon K[x1, x2] such that g ∼ h if and only if g − h
vanishes on all points of C. In other words g ∼ h if and only if g−h ∈ (f). Classes
of ∼ thus coincide with cosets of the ideal (f).

Where there is an ideal, there is also a factor ring. The ring K[x1, x2]/(f) is
determined only by the curve C since f is determined by C uniquely, up to a scalar
multiple. Hence it is correct to put

K[C] = K[x1, x2]/(f).

The ring K[C] is called the coordinate ring of the curve C. Elements of K[C] are
cosets a+ (f), where a runs through K[x1, x2].

Such a description of K[C] is complete, correct and exhaustive. Nevertheless it
is somewhat formal. Such a description will be called algebraic. Another term for
it might be syntactic.

To move from syntax to semantics let us return to the above definition of ∼. By
this definition, g ∼ h if and only if polynomials g and h behave identically upon
C. The ring K[C] may be understood as a collection of all possible polynomial
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behaviours on C. Note that in this way K[C] could be defined without introducing
any ideal since polynomials upon C may be both added and multiplied in a natural
way. Such an approach to K[C] will be termed geometric or, perhaps more exactly,
functional.

Note that elements of K[C] are defined with respect to all points of C. This is
important to realize especially when working with finite fields. Points of C that are
not K-rational always have to be taken into account. At first glance this may be
regarded as superfluous since the group of an elliptic curve over K is defined only
upon the K-rational points. However, there exist important and efficient algorithms
that determine properties of such a group (like the order) that work with points
that are not K-rational.

Note also that if K is finite then two elements of K[C] may agree upon all
K-rational points and yet be different.

Let f ∈ K[x1, x2] be a polynomial of degree at least one and let K[C] =
K[x1, x2]/(f), C = Vf . The ring K[C] is a domain if and only if f is irreducible.
This is exactly when the curve C is called irreducible.

Recall that if R is a domain, then it is possible to construct the fraction field F ,
where a/b = c/d if and only if ad− bc = 0.

Suppose that C is an irreducible planar affine curve. The fraction field of K[C]
will be denoted by K(C) and called the function field of C.

The functions to which the name “function field” refers are the rational functions
a/b ∈ K(x1, x2). Note that K(x1, x2) may be defined as the fraction field of the
domain K[x1, x2].

The algebraic approach to K(C) stresses the formal description of its elements.
Each element of K(C) is equal to some (a + (f))/(b + (f)), where C = Vf , f ∈
K[x1, x2] irreducible. Elements a, b run through K[x1, x2], with b /∈ (f). The latter
condition is equivalent to b+ (f) 6= 0K(C). By the definition of fraction fields

a+ (f)

b+ (f)
=
c+ (f)

d+ (f)
⇔ ad− bc ∈ (f). (C.1)

The functional interpretation of K(C) is similar to that of K[C]. However, there
is a technical difficulty which has to be cosidered. For σ ∈ K(C) there are many
a/b ∈ K[x1, x2] such that σ = (a + (f))/(b + (f)). Each such a/b is said to be
a representative of σ. Since b /∈ (f) there are only finitely many α ∈ C such
that b(α) = 0 (this is not a completely obvious fact, but the proof is relatively
easy). Hence each representative of σ yields a mapping C → K̄ that is defined
nearly everywhere, that is up to finitely many points of C. The technical difficulty
mentioned above rests in the fact that if c/d is another representative of σ, then
the points α ∈ C where b(α) = 0 may be different from those where d(α) = 0.
However, (C.1) implies that if b(α) 6= 0 and d(α) 6= 0, then a(α)/b(α) = c(α)/d(α).

With each σ ∈ K(C) there thus may be associated a function C → K̄ that is
defined for every α ∈ C for which there exists a representative a/b of σ such that
b(α) 6= 0. If a/b is such a representative, then σ(α) = a(α)/b(α). This definition is
correct, as follows from (C.1).

The functional field K(C) may be regarded as a collection of all partial mappings
C → K̄ that may be obtained in such a way.

C.2. Discrete valuations. Let C be an irreducible planar affine curve. It turns
out that many important properties of C depend only upon the algebraic structure
of the function field K(C).

The key notion in the algebraic analysis of K(C) is the notion of discrete valua-
tion. This is something quite natural that arose from the most basic properties of
primes as they occur in every UFD.
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Let R be a UFD and let F be the fraction field of R. For each irreducible p ∈ R
define vp(r), r a nonzero element of R, as the largest k ≥ 0 such that pk | r. By
definition, vp(0) =∞.

Extend the definition of vp(r) from R to F by setting vp(r/s) = vp(r)− vp(s).
Put ν = vp. The following properties are true for all a, b ∈ F :

ν(ab) = ν(a) + ν(b); (DV1)

ν(a+ b) ≥ min{ν(a), ν(b)}, (DV2)

ν(a) =∞ ⇔ a = 0; and (DV3)

∃a ∈ F, ν(a) = 1. (DV4)

Let now F be a field (no assumption is now being made about F being a fraction
field of a domain R). A mapping ν : F → Z ∪ {∞} is called a discrete valuation
if it fulfils (DV1)–(DV3). Discrete valuations that also fulfil (DV4) are called nor-
malized.

Suppose that F = K(C). The discrete valuations of F that are considered when
investigating the curve C are those that fulfil this additional condition:

ν(a) = 0 for every a ∈ K∗.

They will be called valuations over K.
Let us pay attention to the way how the field K is embedded into K(C). Both

K[C] and K(C) are vector spaces over K. The unit in both of them is equal to
1 + (f), where C = Vf , f ∈ K[x1, x2] irreducible. Consider λ ∈ K. The element
λ is identified in both K[C] and K(C) with λ · 1K[C] = λ · 1K(C) = λ + (f). The
functional interpretation of λ+ (f) is clear: each α ∈ C is mapped upon λ.

For unique factorization domains (UFD) the notion of discrete valuation does
not seem to bring much new. That is not completely true as shown by the ensuing
analysis of K(x). Furthermore, the coordinate ring K[C] is rarely a UFD, and yet
K(C) contains many (in fact, infinitely many) normalized discrete valuations over
K.

If F = K(x) (the ring of rational functions in one variable), then each irreducible
polynomial p ∈ K[x] yields a normalized discrete valuation vp. Besides them there
exists exactly one normalized discrete valuation over K. This valuation is denoted
by v∞ and defined by v∞(a/b) = deg(b)− deg(a).

Suppose now, for a while, that K̄ = K. In such a case the monic irreducible
polynomials are the polynomials x− λ. With the exception of v∞ each normalized
discrete valuation overK thus may be identified with a unique point of the affine line
A1. To give a geometric meaning to v∞ extend the affine line A1 to the projective
line P1. This means to add just one point. This point is called the point at infinity.

The connection “one point—one discrete valuation” is not limited to the projec-
tive line. The connection is valid for all irreducible projective planar curves over K̄
that satisfy a certain additional condition. This will be precised later.

C.3. Planar projective curves. The formal definition of the n-dimensional pro-
jective space Pn states that Pn is equal to the set of all 1-dimensional subspaces
of An+1. However, a projective point (i.e., an element of Pn) is usually treated by
considering its homogeneous coordinates (α1 : α2 : · · · : αn+1). The connection to
the formal definition is made by considering these coordinates as representatives of
the space of all (λα1, λα2, . . . , λαn+1), where λ runs through K̄. This means that
homogeneous coordinates represent the same point if and only if in all positions
they differ by the same scalar multiple and that at least one position has to carry
a nonzero entry.
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A projective point is K-rational if it may be expressed as (α1 : · · · : αn+1), where
αi ∈ K for each i ∈ {1, . . . , n+ 1}.

It is usual to identify an affine point (α1, . . . , αn) ∈ An with the projective point
(α1 : · · · : αn : 1) ∈ Pn. The projective points that cannot be obtained in this way
are called points at infinity. In P1 there is only one point at infinity and this point
is equal to (1 : 0).

Let a =
∑
ai1,...,ikx

i1
1 . . . x

ik
k be a polynomial over K. This polynomial is called

homogeneous if its coefficients fulfil the implication

ai1,...,ik 6= 0 and aj1,...,jk 6= 0 ⇒ i1+ . . .+ik = j1+ . . .+jk.

If a 6= 0, then this means that the degree of a coincides with the degree of each
nonzero term. As a convention, the unknowns of a homogeneous polyomial are
written in capital letters.

If F ∈ K[X1, . . . , Xn+1] is a homogeneous polynomial and (α1 : · · · : αn+1) ∈ Pn,
then F (λα1, . . . , λαn+1) = λdF (α1, . . . , αn+1), where d = deg(F ). The equation
F (α1, . . . , αn+1) = 0 thus may be interpreted by saying that the projective point
(α1 : · · · : αn+1) is a zero of F . The set of all projectives zeros is denoted by VF ,
similarly to the affine case.

Say that C ⊆ P2 is a planar projective curve if there exists a (homogeneous)
F ∈ K[X1, X2, X3], deg(F ) ≥ 1, such that C = VF .

A projective curve may be connected to an affine curve by the process of ho-
mogenization. The homogenization of a polynomial f =

∑
aijx

i
1x
j
2 ∈ K[x1, x2],

d = deg(f) ≥ 0, is the polynomial F =
∑
aijX

i
1X

j
2X

d−i−j
3 . Now, (α1 : α2 : 1) ∈ P2

belongs to VF if and only if (α1, α2) ∈ Vf . Hence VF may differ from Vf only in

points at infinity. These are the points (α1 : α2 : 0) such that
∑
i+j=d aijα

i
1α

j
2 = 0.

If F is a homogenization of f , then f is irreducible if and only if F is irreducible
(this is not difficult to prove). A planar projective curve C is said to be irreducible if
it may be expressed as VF , where F ∈ K[X1, X2, X3] is an irreducible homogeneous
polynomial. There is only one irreducible planar projective curve that may not be
obtained by a homogenization of an affine (irreducible) curve, and that is the line
X3 = 0. This is because an irreducible homogeneous polynomial F that is divisible
by X3 has to be a scalar multiple of X3.

Let C be a planar projective curve. Then there is no reasonable way how to
define the coordinate ring of C. This is because we have to consider only those
mappings C → K that give the same value for each expression of a point α ∈
C by homogeneous coordinates. Such a behaviour cannot be achieved by using
polynomials only. However, if A,B ∈ K[X1, X2, X3] are homogeneous of the same
degree, then A(α)/B(α) is independent of the choice of homogeneous coordinates
of α = (α1 : α2 : α3) ∈ P3. This is utilized to define the function field K(C),
provided C = VF , F ∈ K[X1, X2, X3] irreducible. Nonzero elements of K(C) are
(A+ (F ))/(B + (F )), where A and B are as above.

If F is a homogenization of f ∈ K[x1, x2], then, as may be proved, K(VF ) ∼=
K(Vf ). This means that the algebraic structure of an irreducible planar affine curve
is not influenced by homogenization.

C.4. Smoothness. Consider a polynomial f ∈ K[x1, . . . , xn] and let α ∈ An be
such that f(α) = 0, i.e., α ∈ Vf . Say that f is smooth or (equivalently) nonsingular
at α if (∂f/∂xi)(α) 6= 0 for at least one i ∈ {1, . . . , n}.

Let C be a planar affine curve, K[C] = K[x1, x2]/(f). A point α ∈ C is said
to be smooth (or nonsingular) if f is smooth at α. The remaining points of C are
singular. If α ∈ C is a singular point, then it is also said that C has a singularity
at α. An affine curve with no singularity is called smooth (nonsingular).
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Similarly, if F ∈ K[X1, X2, X3] is homogeneous and α ∈ P2 is such that F (α) =
0, then F is said to be smooth (or nonsingular) at α if (∂F/∂Xi)(α) 6= 0 for at
least one i ∈ {1, 2, 3}. Notions of smoothness and singularity are being transferred
to planar curves like in the affine case.

Suppose that the homogeneous polynomial F is not equal to 0. Then

X1
∂F

∂X1
+X2

∂F

∂X2
+X3

∂F

∂X3
= dF, where d = deg(F ).

This can be used to prove that if F is a homogenization of f and f is smooth at
α = (α1, α2), then F is smooth at (α1 : α2 : 1). This means that the smoothness
of a point of an affine curve is not influenced by homogenization.

C.5. Places. Let F ∈ K[X1, X2, X3] be an irreducible homogeneous polynomial.
Suppose that the projective curve C = VF is smooth. If K = K̄, then each
point of C determines in K(C) exactly one normalized discrete valuation over K.
The exact nature of this correspondence and its proof is beyond the extent of
this overview. However, the structure of discrete valuations in K(x) suggets how
this correspondence may look like. Very briefly: in the affine case when C = Vf ,
f ∈ K[x1, x2] irreducible, the valuation ν associated with α ∈ C treats those
σ ∈ K(C) that may be represented by a polynomial g ∈ K[x1, x2] in such a way
that ν(σ) indicates the degree of smoothness coincidence between g and f . Thus
ν(σ) = 0 if g(α) 6= 0. If g(α) = 0 and g and f have different tangents, then
ν(σ) = 1. If g(α) = 0 and the tangents coincide, then ν(σ) ≥ 2.

The correspondence described above is partly valid also for curves over K̄ that
are not smooth everywhere. What remains true is that each smooth point uniquely
determines a normalized discrete valuation over K̄. However, a singularity may
determine more discrete valuations.

In context of function fields it is usual to speak about places rather than discrete
valuations. A place is every subset of K(C) that may be expressed as {a ∈ K(C);
ν(a) ≥ 1}, where ν is a normalized discrete valuation of K(C) over K. If C is
a projective curve that is smooth everywhere, then there is a natural bijection
between points of C and places of K̄(C).

The situation is more complicated if K 6= K̄. Consider again the case of K(x).
Valuations of K(x) over K are equal to vp or v∞, where p ∈ K[x] is irreducible.
With each valuation (and thus with each place) there may be associated a positive
integer that is called the degree of the valuation (and also of the place associated
with the valuation). It turns out that deg(vp) = deg(p) and deg(v∞) = 1. Note
that deg(vp) = 1 if and only if p = x − λ for some λ ∈ K. In K(x) the places of
degree one thus correspond to K-rational points of P1.

The degree may be defined for each place of a function field K(C). Each smooth
K-rational point of C determines a place of degree one. If C is an irreducible
projective planar curve that is smooth at every K-rational point, then there is a
natural bijection between K-rational points of C and places of degree one.

To get a feeling what are places of degree > 1 consider first K(x) again. If
deg(p) > 1 and p ∈ K[x] is irreducible, then the place of p is naturally associated
with all roots of the polynomial p. There are thus more points of P1 that correspond
to the place of p.

Something similar is true for places of a smooth curve over K. For simplicity
let us formulate this just for affine points. Suppose that C = Vf is a smooth affine
curve, f ∈ K[x1, x2] irreducible. Then (α1, α2) ∈ C and (β1, β2) ∈ C correspond
to the same place if and only if there exists a field L, K ≤ L ≤ K̄, and a K-
automorphism ψ of L such that ψ(αi) = βi for both i ∈ {1, 2}. Recall that K-
automorphisms are those automorphisms which fix each element of K.
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With a little knowledge of field theory it is apparent that L = K̄ may be always
assumed. However, it is also clear that assuming [L : K] < ∞ is always possible
too.

When working with curves it is usual to assume that the field K is perfect (either
char(K) = 0, or char(K) = p > 0 and the mapping λ 7→ λp is an automorphism
of K). The connection between places and K-automorphisms, as described above,
assumes that K is perfect.

If K = R and K̄ = C, then each place is either of degree 1 or degree 2. In the
latter case (α1, α2) forms a pair with (ᾱ1, ᾱ2), where a+ bi = a− bi.


