Local units. Let a be an element of a quasigroup Q. By the definition of quasigroups there exists exactly one $b \in Q$ such that $L_a(b) = a$. Denote this b by f_a . The equality $L_a(b) = a$ may be written as $a = af_a$. The element f_a is call the *right local unit* of a.

Similarly define the *left local unit* e_a such that $e_a a = a$.

Associative triples. Let Q be a quasigroup. A triple $(x, y, z) \in Q^3$ is said to be associative if $xy \cdot z = x \cdot yz$.

Claim. The triple (e_a, a, f_a) is associative.

Proof. $e_a a \cdot f_a = a f_a = a = e_a a = e_a \cdot a f_a$.

Corollary. A quasigroup of finite order n contains at least n associative triples.

Definitions. A quasigroup Q is said to be *idempotent* if xx = x for every $x \in Q$. The quasigroup Q is said to be maximally nonassociative if

 $\forall x, y, z \in Q \colon xy \cdot z = x \cdot yz \iff x = y = z.$

Exercise. Show that a maximally nonassociative quasigroup has to be idempotent. Show that a quasigroup of finite order n contains exactly n associative triples if and only if it is maximally nonassociative.

Existence of maximally nonassociative quasigroups. There are no maximally nonassociative quasigroups of orders 2, 3, 4, 5, 6, 7, 8, 10. Maximally nonassociative quasigroups of other orders n are known to exist for n = 9, n = 13 and for all $n \ge 16$ such that $n \notin \{40, 42, 44, 56, 66, 77, 88, 90, 110\}$ if n is not of the form 2p, p a prime, or $2p_1p_2$, $p_1 \le p_2 < 2p_1$.

Challenge. Find a maximally nonassociative quasigroup of order 2p, p a prime.

Global units. An element $e \in Q$ is a called a *left unit* if $e_a = e$ for all $a \in Q$. Similarly define the *right unit*. There is at most one left unit and at most one right unit. If there exist both of them, then they coincide since e = ef = f. An element $e \in Q$ is the left unit if and only if $L_e = id_Q$. The right unit f is characterized by $R_f = id_Q$. A both sided unit is also called the *neutral element*.

Loops and reduced latin squares. A quasigroup is called a *loop* if and only if it possesses a neutral element. Suppose that Q is a loop with unit equal to 1. If $a, b \in Q$ are such that ab = b, then a = 1. This means that if $a \neq 1$, then L_a fixes no point of Q. Similarly, if $a \neq 1$, then R_a is a fixed point free permutation.

Let Q be a loop on $\{1, 2, ..., n\}$ with 1 the unit. The body of the multiplication table contains 1, 2, ..., n in the first row (from the left to the right) and 1, 2, ..., n in the first column (from the top to the bottom). This is exactly the condition when a latin square is called *reduced*.

Equational definition of quasigroups. Another way of saying that L_a is permutation is to say that for any $b \in Q$ there exists exactly one $x \in Q$ such that ax = b. This approach is used in another definition of a quasigroup which goes by saying that for any $a, b \in Q$ the equations

ax = b and ya = b have unique solutions x and y.

How to express these x and y? We have $L_a(x) = b$ and $R_a(y) = b$. Thus $x = L_a^{-1}(b)$ and $y = R_a^{-1}(b)$. By convention, set

 $L_a^{-1}(b) = a \setminus b$ (the left division), and $R_a^{-1}(b) = b/a$ (the right division). What are the properties of the divisons when seen as binary operations? Since $L_x L_x^{-1}(y) = y = L_x^{-1} L_x(y)$ and $R_x R_x^{-1}(y) = y = R_x^{-1} R_x(y)$ we get equations

$$x(x \setminus y) = y = x \setminus (xy) \text{ and } (y/x)x = y = (yx)/x.$$
 (D)

Claim. If $(Q, \cdot, \backslash, /)$ fulfils (D), then (Q, \cdot) is a quasigroup.

Proof. To show that ax = b possesses a unique solution note first that $a(a \setminus b) = b$, and then observe that $ax_1 = ax_2$ implies $x_1 = a \setminus (ax_1) = a \setminus (ax_2) = x_2$.

We can thus regard (D) as an alternative definition of a quasigroup. This is a definition in the sense of universal algebra. A *quasigroup* is an algebra $(Q, \cdot, \backslash, /)$ where all operations are binary and the identities of (D) are satisfied.

This definition is usually called *equational*. The original definition may be called *combinatorial*. The equational definition of loop involves a nullary operation 1, and the laws $x \cdot 1 = x = 1 \cdot x$.

Claim. If Q is a quasigroup and $x, y \in Q$, then $x/(y \setminus x) = y = (x/y) \setminus x$. If Q is a loop, then $x/1 = x = 1 \setminus x$.

Proof. Indeed, $y = (y(y \setminus x))/(y \setminus x) = x/(y \setminus x)$ and $y = (x/y) \setminus ((x/y)y) = (x/y) \setminus y$. If 1 is the unit, then $x = (x \cdot 1)/1 = x/1$ and $x = 1 \setminus (1 \cdot x) = 1 \setminus x$.

Subquasigroups and congruences. Passing between combinatorial and equational definition is usually done informally. However, it is worth remembering that the equational definition exhibits in a clear fashion that *subquasigroups* have to be closed under divisions and *congruences of quasigroups* have to be compatible with divisions.

Exercises. (1) If Q is a finite quasigroup, then a subset closed under multiplication is a subquasigroup and an equivalence compatible with \cdot is a congruence of the quasigroup.

(2) Let Q be a quasigroup. Show that an equivalence \sim on Q is a congruence if and only if for all $x, y, z \in Q$

$$x \sim y \Rightarrow xz \sim yz, \ zx \sim zy, \ x/z \sim y/z \ \text{and} \ z \setminus x \sim z \setminus y.$$

Quasigroup words and reduction. Let X be a set of symbols. Denote by W(X) the absolutely free algebra over X in signature $(\cdot, \backslash, /)$. The elements of W(X) are called *quasigroup words*. A quasigroup word is called *reduced* if it contains no subword (subterm) of one of the forms

$$(st)/t, (s/t)t, t(t \setminus s), t \setminus (ts), t/(s \setminus t) \text{ and } (t/s) \setminus t.$$
 (R)

For $u, v \in W(X)$ write $u \to v$ if u contains a subterm that has a form that occurs in (R), and if v arises from u by replacing this term by s. The transitive closure of \to is denoted by \to^* . A word is thus reduced if and only if it is terminal with respect to \to^* .

The reduction decreases the size of the term. Hence for each $u \in W(X)$ there exists a reduced $v \in W(X)$ such that $u \to^* v$. The following fact appears in various contexts. Our proof will be hence brief.

Lemma. Let $u, w_1, w_2 \in W(X)$ be such that $u \to^* w_1$ and $u \to^* w_2$. If both w_1 and w_2 are reduced, then $w_1 = w_2$.

Proof. Let u be the smallest counterexample. To get a contradiction it suffices to show that if $u \to u_1$ and $u \to u_2$, then there exists u_3 such that $u_1 \to^* u_3$ and $u_2 \to^* u_3$. Indeed, if $u_i \to^* w_i$, $i \in \{1, 2, 3\}$, then $w_1 = w_3 = w_2$ since both u_1 and u_2 are smaller (with respect to the length of the quasigroup word) then u.

Let u_i be obtained from u by replacing a subterm v_i by s_i , where v_i takes the form $(s_i t_i)/t_i$, $(s_i/t_i)t_i$, etc., as listed in (R), $i \in \{1, 2\}$. The situation is easy to solve if v_2 is a subterm of an occurrence of t_1 . In that case make $v_2 \to s_2$ in both

occurence of t_1 and then replace the changed subterm by s_1 . This means that $u_2 \to^* u_1$. If v_2 is a subterm of s_1 , then define u_3 by making the replacement $v_2 \to s_2$ within the occurence of s_1 in u_2 . Both $u_1 \to^* u_3$ and $u_2 \to^* u_3$ are then true.

If there exists a subterm a_1a_2 of u such that v_1 is a subterm of a_1 and v_2 a subterm of a_2 , then the reductions commute and the existence of u_3 is obvious.

What remains are situations that are usually called *critical*. These are the situations when one of the terms has a root within the other term. Suppose that v_2 sits within v_1 . We shall consider only the case when $v_1 = (s_1t_1)/t_1$. The other cases are similar. The only nontrivial possibility in (R) with / at the top is $t_2/(s_2 \setminus t_2)$. However $t_2 = s_1t_1$ and $t_1 = s_2 \setminus s_2$ is impossible. Therefore there must be $v_2 = s_1t_1$. If $s_1t_1 = (s_2/t_2)t_2$, then $t_1 = t_2$ and both replacements change v_1 to $s_1 = s_2/t_1$. Thus $u_1 = u_2$ and nothing has to be constructed.

If $s_1t_1 = t_2(t_2 \setminus s_2)$, then $s_1 = t_2$ and $t_1 = t_2 \setminus s_2$. Thus

$$v_1 \to s_1 = t_2$$
 and $v_1 = v_2/t_1 \to s_2/t_1 = s_2/(t_2 \setminus s_2) \to t_2$.

The latter replacement shows that $u_2 \rightarrow u_1$.

Denote by \equiv the least congruence of W(X) such that $W(X)/\equiv$ is a quasigroup. This is a free quasigroup with basis $\{[x]_{\equiv}; x \in X\}$. Denote by F(X) the subset of W(X) that is formed by all reduced words. By the Lemma for each $w \in W(X)$ there exists a unique reduced word $\rho(w)$ such that $w \to^* \rho(w)$. If $u \to v$, then $\rho(u) = \rho(v)$. From that it follows that $u \equiv v$ if and only if $\rho(u) = \rho(v)$. Hence defining operations by

$$u \cdot v = \rho(uv), \ u/v = \rho(u/v) \text{ and } u \setminus v = \rho(u \setminus v)$$

makes F(X) a free quasigroup with basis X.

To get a **free loop** consider loop words in \cdot , \setminus , / and 1, and add reduction rules that change each of s/1, $s \cdot 1$, $1 \cdot s$ and $1 \setminus s$ to s.

Loops from quasigroups. Let Q be a quasigroup, and let e and f be elements of Q. Set $x * y = x/f \cdot e \setminus y$, for all $x, y \in Q$. Translations of (Q, \cdot) are denoted by L_x and R_x , while translations of (Q, *) will be denoted by λ_x and ρ_x , $x \in Q$. Clearly,

$$\lambda_x = L_{x/f} L_e^{-1}$$
 and $\rho_y = R_{e \setminus y} R_f^{-1}$,

for each $x, y \in Q$. Note that $x * (ef) = x/f \cdot f = x$ and $(ef) * y = e \cdot e \setminus y = y$. This means that (Q, *) is a loop, and ef is the neutral element of this loop.

Principal isotopes. An isotopy of quasigroups $(\alpha, \beta, \gamma): Q_1 \to Q_2$ is called *principal* if the underlying sets of Q_1 and Q_2 coincide and $\gamma = id_{Q_1}$. Call Q_2 a *principal isotope* of Q_1 if there exists a principal isotopy $Q_1 \to Q_2$.

Let (Q, *) be a principal isotope of (Q, \cdot) . There thus exist $\alpha, \beta \in \text{Sym}(Q)$ such that $x * y = \alpha(x)\beta(y)$. The translations of (Q, \cdot) are denoted by L_x and R_x , and those of (Q, *) by λ_x and ρ_x , $x \in Q$. Clearly,

$$\lambda_x = L_{\alpha(x)}\beta$$
 and $\rho_y = R_{\beta(y)}\alpha$,

for each $x, y \in Q$. If (Q, *) is a loop, then there must exist $x \in Q$ such that $\lambda_x = \rho_x = \mathrm{id}_Q$. If this true, then there exist $e, f \in Q$ such that $\beta = L_e^{-1}$ and $\alpha = R_f^{-1}$. If such e, f exist, then $x * y = \alpha(x)\beta(y) = x/f \cdot e \setminus y$. This is a loop, as observed above. We have proved the following statement:

Proposition 1. Let (Q, \cdot) be a quasigroup. A principal isotope (Q, *) of (Q, \cdot) is a loop if and only if there exist $e, f \in Q$ such that $x * y = x/f \cdot e \setminus y$ for all $x, y \in Q$.

Quasigroups induced by isomorphism and isotopy. Suppose that Q is a quasigroup and S a set. Suppose also that there exists a bijection $\gamma: Q \to S$. Then there is only one way how to define a quasigroup operation upon S, and that is by $st = \gamma(\gamma^{-1}(s)\gamma^{-1}(t))$ for all $s, t \in Q$. The quasigroup (S, \cdot) is called *isomorphically induced* by γ .

Similarly, if α, β, γ are bijections $Q \to S$, then $st = \gamma(\alpha^{-1}(s)\beta^{-1}(t))$ yields the only quasigroup upon S for which (α, β, γ) is an isotopy $(Q, \cdot) \to (S, \cdot)$. This is the quasigroup *isotopically induced* by (α, β, γ) .

Loops isotopic to a quasigroup. Suppose that (α, β, γ) is an isotopy of quasigroups $Q_1 \to Q_2$. Let $(Q_1, *)$ be the quasigroup isomorphically induced by the bijection $\gamma^{-1}: Q_2 \to Q_1$. Isotopies may be composed. Hence

 $(\gamma^{-1},\gamma^{-1},\gamma^{-1})(\alpha,\beta,\gamma)=(\gamma^{-1}\alpha,\gamma^{-1}\beta,\mathrm{id}_{Q_1})$

is a principal isotopy $(Q_1, \cdot) \to (Q_1, *)$, while $(Q_1, *) \cong (Q_2, \cdot)$. This gives immediately:

Proposition 2. Each quasigroup isotopic to a quasigroup Q is isomorphic to a principal isotope of Q.

Proposition 3. Let $(Q, \cdot, \backslash, /)$ be a quasigroup. For each loop L isotopic to Q there exist $e, f \in Q$ such that L is isomorphic to a loop on Q with multiplication $x * y = x/f \cdot e \backslash y$, for all $x, y \in Q$.

Proof. By the preceding statement every loop isotopic to Q is isomorphic to a principal isotope of Q. By Proposition 1, a principal isotope that is a loop has to be of the form $x/f \cdot e \setminus y$.

Exercise. Prove directly that each loop isotopic to a group G is isomorphic to G.

Notational remark: If H is a subgroup of a group G, then it is usual to write H = 1 if H is the trivial subgroup, that is if |H| = 1. Thus, if G is a permutation group on Ω , H = 1 means that $H = \{id_{\Omega}\}$.

Regular groups. A permutation group on Ω is, by definition, every subgroup of Sym(Ω). A permutation group $H \leq \text{Sym}(\Omega)$ is *transitive* if for all $\alpha, \beta \in \Omega$ there exists $h \in H$ such that $h(\alpha) = \beta$. Note that it suffices if the former holds for a single $\alpha \in \Omega$. In a transitive group all stabilizers $H_{\alpha} = \{h \in H; h(\alpha) = \alpha\}$ are conjugate one to another. Hence if $H_{\alpha} = 1$ for one $\alpha \in \Omega$, then $H_{\alpha} = 1$ for all $\alpha \in \Omega$.

The permutation group $H \leq \text{Sym}(\Omega)$ is called *regular* if it is transitive, and if $H_{\alpha} = 1$, for any $\alpha \in \Omega$. Note that the latter condition may also be expressed as $h = \text{id}_{\Omega}$ whenever $h \in H$ fixes a point.

Let G be a group. Then $\{L_x; x \in G\}$ is a regular permutation group on G. It is called the *left regular representation of G*.

Each regular permutation group may be interpreted as a left regular representation of an abstract group. To see this consider a regular group G upon Ω . Fix a point $\omega \in \Omega$ and identify it with the unit element 1 of an abstract group (Ω, \cdot) that will be now described. For each $\alpha \in \Omega$ denote by ψ_{α} the element of G that sends $1 = \omega$ upon α . Since G is regular, the permutation ψ_{α} is determined by α uniquely. Furthermore, $G = \{\psi_{\alpha}; \alpha \in \Omega\}$. Define a binary operation \cdot on Ω by $\alpha \cdot \beta = \psi_{\alpha}(\beta)$, and define $\Psi: G \to \Omega$ by $\Psi(\psi_{\alpha}) = \alpha$. Since $\psi_{\alpha}\psi_{\beta}(\omega) = \psi_{\alpha}(\beta) = \alpha \cdot \beta$, we have $\psi_{\alpha}\psi_{\beta} = \psi_{\alpha \cdot \beta}$. Therefore $\Psi(gh) = \Psi(g) \cdot \Psi(h)$ for all $g, h \in G$. Thus $\Psi: (G, \circ) \cong (\Omega, \cdot)$, and for each $\alpha \in \Omega$ the mapping ψ_{α} coincides with the left translation of α in (Ω, \cdot) . Note that denoting the neutral element by 1 is a matter of convention. If G is abelian, then it may be more natural to denote the neutral element by 0 and the binary operation by +.

Loops with translations closed under composition. A loop Q is said to have left translations closed under composition if

$$\forall x, y \in Q \; \exists z \in Q \text{ such that } L_x L_y = L_z$$

If this is true, then $xy = L_x L_y(1) = L_z(1) = z$, implying $L_x L_y = L_{xy}$ for all $x, y \in Q$. But that is equivalent to associativity since $L_x L_y(v) = x \cdot yv$ and $L_{xy}(v) = xy \cdot v$. This proves that a loop with left translations closed under composition has to be a group.

Albert's Theorem. A loop isotopic to a group G is isomorphic to G.

Proof. By Proposition 3 only the principal isotopes $x/f \cdot e \setminus y$ may be considered. The set of the left translations of such an isotope is equal to

 $\{L_{x/f}L_e^{-1}; \ x \in G\} = \{L_xL_e^{-1}; \ x \in G\} = \{L_{xe^{-1}}; \ x \in G\} = \{L_x; \ x \in G\}.$

The set of left translations of the principal isotope thus coincides with that of G. The left translations are closed under composition. The principal isotope thus must be a group. The both groups are isomorphic since they have coinciding left regular representations.