Quasigroups, 3-NETS AND ISOTOPY

Definition of a quasigroup. Let • be a binary operation upon a set Q. For every $a \in Q$ define $L_{a}: Q \rightarrow Q$ and $R_{a}: Q \rightarrow Q$ by

$$
L_{a}: x \mapsto a x \text { and } R_{a}: x \mapsto x a
$$

Call L_{a} the left translation of the element a, and R_{a} the right translation.
The pair (Q, \cdot) is called a quasigroup if L_{a} and R_{a} permute Q for each $a \in Q$. There are many alternative definitions of a quasigroup. We shall get to them later.

Operations of Q will be denoted by different symbols. For example + or $*$ or \circ. The choice of • is implicit. Hence stating that Q is a quasigroup means that we are considering the pair (Q, \cdot).

The application of \cdot may be replaced by a juxtaposition. Thus $x y$ is the same as $x \cdot y$. It is usual to assume that the juxtaposition binds more tightly than the explicit use of an operation. E.g., $x u \cdot(y z \cdot w)$ is the same as $(x \cdot u) \cdot((y \cdot z) \cdot w)$.

Multiplication table. Every binary operation may be represented by its multiplication (or operational) table. Both

$+$	0	1	2		*	0	1		2
0	0	1	2		0	0	2		1
1	1	2	0		1	2	1		0
2	2	0	1		2	1	0		2

are multiplication tables of a quasigroup. The operation of the quasigroup upon the left is equal to $(x+y) \bmod 3$. The formula for the operation of the quasigroup upon the right is $x * y \equiv-x-y \bmod 3$. The latter quasigroup is idempotent, i.e., $x * x=x$ for every $x \in Q$.

Consider the quasigroup $\left(\mathbb{Z}_{3},+\right)$ and decompose it to the border of the table (upon the left) and the body of the table (upon the right):

+	0	1	2		
0					
1					
2				\quad	
:---	:---	:---			

Latin squares and quasigroups. Let S be a finite set, $|S|=n$. A latin square over S is an $n \times n$ matrix $A=\left(a_{i j}\right)$ such that for every $i \in\{1, \ldots, n\}$

$$
S=\left\{a_{i 1}, \ldots, a_{i n}\right\}=\left\{a_{1 i}, \ldots, a_{n i}\right\}
$$

If • is a binary operation upon set Q, then (Q, \cdot) is a quasigroup if and only if the body of the operation table is a latin square.

Lines induced by a quasigroup. Let (Q, \cdot) be a quasigroup. Put $\mathcal{P}=Q \times Q$ and treat the set \mathcal{P} as a set of points. Define $\mathcal{L}_{i}, 1 \leq i \leq 3$, as sets of parallel lines (pencils) such that $\mathcal{L}_{1}=\left\{r_{a} ; a \in Q\right\}, \mathcal{L}_{2}=\left\{c_{a} ; a \in Q\right\}$ and $\mathcal{L}_{3}=\left\{s_{a} ; a \in Q\right\}$, where

$$
\begin{array}{ll}
r_{a}=\{(a, x) ; x \in Q\} & \quad \text { (the row of } a) \\
c_{a}=\{(x, a) ; x \in Q\} & \quad \text { (the column of } a) \\
s_{a}=\{(x, y) \in Q \times Q ; & x y=a\} \quad \text { (the transversal of } a)
\end{array}
$$

Axioms of the $\mathbf{3}$-net. The system $\left(\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}\right)$ clearly fulfils the following axioms:

- $\forall p \in \mathcal{P}, \forall i \in\{1,2,3\} \exists!\ell \in \mathcal{L}_{i}$ such that $p \in \ell$;
- $\forall i, j \in\{1,2,3\}$, where $i \neq j:\left(\ell_{i} \in \mathcal{L}_{i}, \ell_{j} \in \mathcal{L}_{j} \Rightarrow\left|\ell_{i} \cap \ell_{j}\right|=1\right)$

This can be put in words by saying that through each point there passes exactly one line of a given pencil, and that two lines from different pencils intersect in exactly one point.

Any system that fulfils the above two axioms is called a 3-net.
Theorem. Let $\left(\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}\right)$ be a 3-net. Then $\left|\mathcal{L}_{1}\right|=\left|\mathcal{L}_{2}\right|=\left|\mathcal{L}_{3}\right|=|\ell|$ for any $\ell \in \bigcup \mathcal{L}_{i}, i \in\{1,2,3\}$.

Proof. Suppose that $1 \leq i<j \leq 3, \ell_{i} \in \mathcal{L}_{i}, \ell_{j} \in \mathcal{L}_{j}$ and $\{1,2,3\}=\{i, j, k\}$. Map ℓ_{i} upon ℓ_{j} in the following way: take $q \in \ell_{i}$ and consider the line $\ell_{k} \in \mathcal{L}_{k}$ that passes through q. This line intersects ℓ_{j} in a point, say q^{\prime}. The mapping $q \mapsto q^{\prime}$ is a bijection since through every point of ℓ_{j} there passes exactly one line of \mathcal{L}_{k}.

The mapping $q \mapsto q^{\prime}$ thus also proves that $\left|\mathcal{L}_{k}\right|=\left|\ell_{i}\right|$. If ℓ_{i}^{\prime} is another line from \mathcal{L}_{i}, then $\left|\mathcal{L}_{k}\right|=\left|\ell_{i}^{\prime}\right|=\left|\ell_{j}\right|$ by the same argument.
Coordinatization. Let $\left(\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}\right)$ be a 3 -net, and let Q be a set of the same cardinality as $\mathcal{L}_{i}, 1 \leq i \leq 3$. Suppose that $\mu_{i}: Q \rightarrow \mathcal{L}_{i}$ are bijections. If $x, y \in Q$ then there exists a unique line in \mathcal{L}_{3} that passes through the intersection of $\mu_{1}(x)$ and $\mu_{2}(y)$. This line is equal to some $\mu_{3}(z)$. Hence there exists a binary operation upon Q such that

$$
\begin{equation*}
x y=z \Leftrightarrow \mu_{1}(x) \cap \mu_{2}(y) \cap \mu_{3}(z) \neq \emptyset . . \tag{C}
\end{equation*}
$$

The operation is a quasigroup since knowledge of y and z determines x uniquely, and, similarly, knowledge of x and z determines y uniquely.

Let Q be a quasigroup and let $\mu_{i}: Q \rightarrow \mathcal{L}_{i}$ be a bijection for each $i \in\{1,2,3\}$. If (C) holds for all $x, y, z \in Q$, then $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is called a coordinatization of the 3 -net ($\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$).

Proposition. Let $\left(\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}\right)$ be a 3-net, and let Q and Q^{\prime} be quasigroups. If $\mu_{i}: Q \rightarrow \mathcal{L}_{i}$ and $\mu_{i}^{\prime}: Q^{\prime} \rightarrow \mathcal{L}_{i}$ are bijections such that both $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ and $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \mu_{3}^{\prime}\right)$ are coordinatizations of the 3-net $\left(\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}\right)$, then the mappings $\alpha_{i}=\left(\mu_{i}^{\prime}\right)^{-1} \mu_{i}, 1 \leq i \leq 3$, are bijections $Q \rightarrow Q^{\prime}$ that fulfil

$$
x y=z \Leftrightarrow \alpha_{1}(x) \alpha_{2}(y)=\alpha_{3}(z)
$$

Proof. The mapping α_{i} is a bijection since both $\mu_{i}: Q \rightarrow \mathcal{L}_{i}$ and $\mu_{i}^{\prime}: Q^{\prime} \rightarrow \mathcal{L}_{i}$ are bijections, $i \in\{1,2,3\}$. Let $x, y, z \in Q$ be such that $x y=z$. Then $\mu_{1}(x) \cap$ $\mu_{2}(y) \cap \mu_{3}(z) \neq \emptyset$, by the definition of coordinatization. This can be written as $\mu_{1}^{\prime} \alpha_{1}(x) \cap \mu_{2}^{\prime} \alpha_{2}(y) \cap \mu_{3}^{\prime} \alpha_{3}(z) \neq \emptyset$ since $\mu_{i}^{\prime} \alpha_{i}=\mu_{i}^{\prime}\left(\mu_{i}^{\prime}\right)^{-1} \mu_{i}=\mu_{i}$. This means that $\alpha_{1}(x) \alpha_{2}(y)=\alpha_{3}(z)$ holds in Q_{2} since $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \mu_{3}^{\prime}\right)$ is a coordinatization of $\left(\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}\right)$.
Isotopy. Suppose that Q_{1} and Q_{2} are quasigroups. Suppose that α, β and γ are bijections $Q_{1} \rightarrow Q_{2}$. The triple (α, β, γ) is called an isotopy $Q_{1} \rightarrow Q_{2}$ if and only if

$$
\forall x, y, z \in Q: x y=z \Leftrightarrow \alpha(x) \beta(y)=\gamma(z)
$$

This can be also expressed as $\gamma(x y)=\alpha(x) \beta(y)$. The fact that α, β and γ are bijections means that is suffices to verify $x y=z \Rightarrow \alpha(x) \beta(y)=\gamma(z)$. Indeed, if $\alpha(x) \beta(y)=\gamma(z)$ and $x y=z^{\prime}$, then $\alpha(x) \beta(y)=\gamma\left(z^{\prime}\right)$ and $z=z^{\prime}$.

Quasigroups Q_{1} and Q_{2} are called isotopic if and only if there exists an isotopy $Q_{1} \rightarrow Q_{2}$.
Theorem. Quasigroups Q_{1} and Q_{2} are isotopic if and only if there exists a 3-net ($\mathcal{P} ; \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$) that may be coordinatized both by Q_{1} and Q_{2}.

Proof. By the Proposition any two quasigroups coordinatizing the same 3-net are isotopic. Suppose now that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is an isotopy $Q_{1} \rightarrow Q_{2}$. We shall show that both Q_{1} and Q_{2} may be used to coordinatize the 3-net of Q_{2} that consists of row lines r_{b}, column lines c_{b} and symbol lines $s_{b}, b \in Q_{2}$. A coordinatization $\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ by Q_{2} is defined straightforwardly as $\nu_{1}(b)=r_{b}, \nu_{2}(b)=c_{b}$ and $\nu_{3}(b)=s_{b}$. The triple ($\nu_{1}, \nu_{2}, \nu_{3}$) coordinatizes the 3-net since $x y=z$ if and only if $r_{x} \cap c_{y} \cap s_{z} \neq \emptyset$, for any $x, y, z \in Q_{2}$.

A coordinatization $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ by Q_{1} is defined so that $\lambda_{1}(a)=r_{\alpha_{1}(a)}, \lambda_{2}(a)=$ $c_{\alpha_{2}(a)}$ and $\lambda_{3}(a)=s_{\alpha_{3}(a)}$, for each $a \in Q_{1}$. Suppose that $x, y, z \in Q_{1}$. By the definition, $\lambda_{1}(x) \cap \lambda_{2}(y) \cap \lambda_{3}(z)$ is equal to $r_{\alpha_{1}(x)} \cap c_{\alpha_{2}(y)} \cap s_{\alpha_{3}(z)}$. This is nonempty if and only if $\alpha_{1}(x) \cdot \alpha_{2}(y)=\alpha_{3}(z)$. Since $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is an isotopy $Q_{1} \rightarrow Q_{2}$, the latter equality holds if and only if $x y=z$. Therefore $x y=z$ if and only if $\lambda_{1}(x) \cap \lambda_{2}(y) \cap \lambda_{3}(z) \neq \emptyset$. This verifies that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is a coordinatization of the 3 -net upon $Q_{2} \times Q_{2}$.

Elementary algebraic properties of isotopies. Suppose that $(\alpha, \beta, \gamma): Q_{1} \rightarrow$ Q_{2} and $(\delta, \epsilon, \eta): Q_{2} \rightarrow Q_{3}$ are isotopies. Then both $(\delta \alpha, \epsilon \beta, \eta \gamma): Q_{1} \rightarrow Q_{3}$ and $\left(\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right): Q_{2} \rightarrow Q_{1}$ are isotopies.

To verify the former property consider $x, y \in Q_{1}$. Then $\delta \alpha(x) \cdot \epsilon \beta(y)=\eta(\alpha(x)$. $\beta(y))=\eta \gamma(x y)$. To verify the latter property consider $x^{\prime}, y^{\prime} \in Q_{2}$. There exist unique $x, y \in Q_{1}$ such that $x^{\prime}=\alpha(x)$ and $y^{\prime}=\beta(y)$. Now, $\alpha^{-1}\left(x^{\prime}\right) \beta^{-1}\left(y^{\prime}\right)=x y=$ $\gamma^{-1} \gamma(x y)=\gamma^{-1}(\alpha(x) \beta(y))=\gamma^{-1}\left(x^{\prime} y^{\prime}\right)$.

Note that $\alpha: Q_{1} \rightarrow Q_{2}$ is an isomorphism if and only if (α, α, α) is an isotopomism $Q_{1} \rightarrow Q_{2}$.

Autotopies and the left nucleus. Let Q be a quasigroup. An isotopy $Q \rightarrow Q$ is called an autotopy. All autotopies form a group. This group will be denoted by $\operatorname{Atp}(Q)$.

Consider $a \in Q$ and recall that L_{a} denotes the left translation of the element a. The triple $\left(L_{a}, \mathrm{id}_{Q}, L_{a}\right)$ is an isotopy if and only if $L_{a}(x) \cdot \mathrm{id}_{Q}(y)=L_{a}(x y)$ for all $x, y \in Q$. This is the same as

$$
a \cdot x y=a x \cdot y \text { for all } x, y \in Q .
$$

All $a \in Q$ that fulfil this conditions form a subset of Q that is called the left nucleus. It is denoted by $N_{\lambda}(Q)$. Elements of $N_{\lambda}(Q)$ are those elements of Q that may be described by saying that they 'associate upon the left'.

Exercise. Let G be a group. Describe $\operatorname{Atp}(G)$.

