
Quasigroups, 3-nets and isotopy

Definition of a quasigroup. Let · be a binary operation upon a set Q. For every
a ∈ Q define La : Q→ Q and Ra : Q→ Q by

La : x 7→ ax and Ra : x 7→ xa.

Call La the left translation of the element a, and Ra the right translation.

The pair (Q, ·) is called a quasigroup if La and Ra permute Q for each a ∈ Q.
There are many alternative definitions of a quasigroup. We shall get to them later.

Operations of Q will be denoted by different symbols. For example + or ∗ or ◦.
The choice of · is implicit. Hence stating that Q is a quasigroup means that we are
considering the pair (Q, ·).

The application of · may be replaced by a juxtaposition. Thus xy is the same
as x · y. It is usual to assume that the juxtaposition binds more tightly than the
explicit use of an operation. E.g., xu · (yz · w) is the same as (x · u) · ((y · z) · w).

Multiplication table. Every binary operation may be represented by its multi-
plication (or operational) table. Both

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

∗ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

are multiplication tables of a quasigroup. The operation of the quasigroup upon
the left is equal to (x+ y) mod 3. The formula for the operation of the quasigroup
upon the right is x ∗ y ≡ −x − y mod 3. The latter quasigroup is idempotent, i.e.,
x ∗ x = x for every x ∈ Q.

Consider the quasigroup (Z3,+) and decompose it to the border of the table
(upon the left) and the body of the table (upon the right):

+ 0 1 2
0
1
2

0 1 2
1 2 0
2 0 1

Latin squares and quasigroups. Let S be a finite set, |S| = n. A latin square
over S is an n× n matrix A = (aij) such that for every i ∈ {1, . . . , n}

S = {ai1, . . . , ain} = {a1i, . . . , ani}.

If · is a binary operation upon set Q, then (Q, ·) is a quasigroup if and only if the
body of the operation table is a latin square.

Lines induced by a quasigroup. Let (Q, ·) be a quasigroup. Put P = Q × Q
and treat the set P as a set of points. Define Li, 1 ≤ i ≤ 3, as sets of parallel lines
(pencils) such that L1 = {ra; a ∈ Q}, L2 = {ca; a ∈ Q} and L3 = {sa; a ∈ Q},
where

ra = {(a, x); x ∈ Q} (the row of a)

ca = {(x, a); x ∈ Q} (the column of a)

sa = {(x, y) ∈ Q×Q; xy = a} (the transversal of a)
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Axioms of the 3-net. The system (P;L1,L2,L3) clearly fulfils the following ax-
ioms:

• ∀p ∈ P,∀i ∈ {1, 2, 3} ∃ ! ` ∈ Li such that p ∈ `;
• ∀i, j ∈ {1, 2, 3}, where i 6= j: (`i ∈ Li, `j ∈ Lj ⇒ |`i ∩ `j | = 1)

This can be put in words by saying that through each point there passes exactly one
line of a given pencil, and that two lines from different pencils intersect in exactly
one point.

Any system that fulfils the above two axioms is called a 3-net.

Theorem. Let (P;L1,L2,L3) be a 3-net. Then |L1| = |L2| = |L3| = |`| for any
` ∈

⋃
Li, i ∈ {1, 2, 3}.

Proof. Suppose that 1 ≤ i < j ≤ 3, `i ∈ Li, `j ∈ Lj and {1, 2, 3} = {i, j, k}. Map
`i upon `j in the following way: take q ∈ `i and consider the line `k ∈ Lk that
passes through q. This line intersects `j in a point, say q′. The mapping q 7→ q′ is
a bijection since through every point of `j there passes exactly one line of Lk.

The mapping q 7→ q′ thus also proves that |Lk| = |`i|. If `′i is another line from
Li, then |Lk| = |`′i| = |`j | by the same argument. �

Coordinatization. Let (P;L1,L2,L3) be a 3-net, and let Q be a set of the same
cardinality as Li, 1 ≤ i ≤ 3. Suppose that µi : Q → Li are bijections. If x, y ∈ Q
then there exists a unique line in L3 that passes through the intersection of µ1(x)
and µ2(y). This line is equal to some µ3(z). Hence there exists a binary operation
upon Q such that

xy = z ⇔ µ1(x) ∩ µ2(y) ∩ µ3(z) 6= ∅.. (C)

The operation is a quasigroup since knowledge of y and z determines x uniquely,
and, similarly, knowledge of x and z determines y uniquely.

Let Q be a quasigroup and let µi : Q → Li be a bijection for each i ∈ {1, 2, 3}.
If (C) holds for all x, y, z ∈ Q, then (µ1, µ2, µ3) is called a coordinatization of the
3-net (P;L1,L2,L3).

Proposition. Let (P;L1,L2,L3) be a 3-net, and let Q and Q′ be quasigroups.
If µi : Q → Li and µ′i : Q

′ → Li are bijections such that both (µ1, µ2, µ3) and
(µ′1, µ

′
2, µ
′
3) are coordinatizations of the 3-net (P;L1,L2,L3), then the mappings

αi = (µ′i)
−1µi, 1 ≤ i ≤ 3, are bijections Q→ Q′ that fulfil

xy = z ⇔ α1(x)α2(y) = α3(z).

Proof. The mapping αi is a bijection since both µi : Q → Li and µ′i : Q
′ → Li

are bijections, i ∈ {1, 2, 3}. Let x, y, z ∈ Q be such that xy = z. Then µ1(x) ∩
µ2(y) ∩ µ3(z) 6= ∅, by the definition of coordinatization. This can be written as
µ′1α1(x) ∩ µ′2α2(y) ∩ µ′3α3(z) 6= ∅ since µ′iαi = µ′i(µ

′
i)
−1µi = µi. This means

that α1(x)α2(y) = α3(z) holds in Q2 since (µ′1, µ
′
2, µ
′
3) is a coordinatization of

(P;L1,L2,L3). �

Isotopy. Suppose that Q1 and Q2 are quasigroups. Suppose that α, β and γ are
bijections Q1 → Q2. The triple (α, β, γ) is called an isotopy Q1 → Q2 if and only
if

∀x, y, z ∈ Q : xy = z ⇔ α(x)β(y) = γ(z).

This can be also expressed as γ(xy) = α(x)β(y). The fact that α, β and γ are
bijections means that is suffices to verify xy = z ⇒ α(x)β(y) = γ(z). Indeed, if
α(x)β(y) = γ(z) and xy = z′, then α(x)β(y) = γ(z′) and z = z′.
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Quasigroups Q1 and Q2 are called isotopic if and only if there exists an isotopy
Q1 → Q2.

Theorem. Quasigroups Q1 and Q2 are isotopic if and only if there exists a 3-net
(P;L1,L2,L3) that may be coordinatized both by Q1 and Q2.

Proof. By the Proposition any two quasigroups coordinatizing the same 3-net are
isotopic. Suppose now that (α1, α2, α3) is an isotopy Q1 → Q2. We shall show that
both Q1 and Q2 may be used to coordinatize the 3-net of Q2 that consists of row
lines rb, column lines cb and symbol lines sb, b ∈ Q2. A coordinatization (ν1, ν2, ν3)
by Q2 is defined straightforwardly as ν1(b) = rb, ν2(b) = cb and ν3(b) = sb. The
triple (ν1, ν2, ν3) coordinatizes the 3-net since xy = z if and only if rx ∩ cy ∩ sz 6= ∅,
for any x, y, z ∈ Q2.

A coordinatization (λ1, λ2, λ3) by Q1 is defined so that λ1(a) = rα1(a), λ2(a) =
cα2(a) and λ3(a) = sα3(a), for each a ∈ Q1. Suppose that x, y, z ∈ Q1. By the
definition, λ1(x)∩λ2(y)∩λ3(z) is equal to rα1(x)∩cα2(y)∩sα3(z). This is nonempty
if and only if α1(x) · α2(y) = α3(z). Since (α1, α2, α3) is an isotopy Q1 → Q2,
the latter equality holds if and only if xy = z. Therefore xy = z if and only if
λ1(x)∩λ2(y)∩λ3(z) 6= ∅. This verifies that (λ1, λ2, λ3) is a coordinatization of the
3-net upon Q2 ×Q2. �

Elementary algebraic properties of isotopies. Suppose that (α, β, γ) : Q1 →
Q2 and (δ, ε, η) : Q2 → Q3 are isotopies. Then both (δα, εβ, ηγ) : Q1 → Q3 and
(α−1, β−1, γ−1) : Q2 → Q1 are isotopies.

To verify the former property consider x, y ∈ Q1. Then δα(x) · εβ(y) = η(α(x) ·
β(y)) = ηγ(xy). To verify the latter property consider x′, y′ ∈ Q2. There exist
unique x, y ∈ Q1 such that x′ = α(x) and y′ = β(y). Now, α−1(x′)β−1(y′) = xy =
γ−1γ(xy) = γ−1(α(x)β(y)) = γ−1(x′y′).

Note that α : Q1 → Q2 is an isomorphism if and only if (α, α, α) is an iso-
topomism Q1 → Q2.

Autotopies and the left nucleus. Let Q be a quasigroup. An isotopy Q → Q
is called an autotopy. All autotopies form a group. This group will be denoted by
Atp(Q).

Consider a ∈ Q and recall that La denotes the left translation of the element a.
The triple (La, idQ, La) is an isotopy if and only if La(x) · idQ(y) = La(xy) for all
x, y ∈ Q. This is the same as

a · xy = ax · y for all x, y ∈ Q.

All a ∈ Q that fulfil this conditions form a subset of Q that is called the left nucleus.
It is denoted by Nλ(Q). Elements of Nλ(Q) are those elements of Q that may be
described by saying that they ‘associate upon the left’.

Exercise. Let G be a group. Describe Atp(G).


