
 Hadley Wickham &
Garrett Grolemund

R for Data
 Science
IMPORT, TIDY, TRANSFORM, VISUALIZE, AND MODEL DATA

Hadley Wickham and Garrett Grolemund

R for Data Science
Import, Tidy, Transform, Visualize,

and Model Data

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-91039-9

[TI]

R for Data Science
by Hadley Wickham and Garrett Grolemund

Copyright © 2017 Garrett Grolemund, Hadley Wickham. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Marie Beaugureau and
Mike Loukides
Production Editor: Nicholas Adams
Copyeditor: Kim Cofer
Proofreader: Charles Roumeliotis

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2016: First Edition

Revision History for the First Edition
2016-12-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491910399 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. R for Data Sci‐
ence, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491910399

Table of Contents

Preface. ix

Part I. Explore

1. Data Visualization with ggplot2. 3
Introduction 3
First Steps 4
Aesthetic Mappings 7
Common Problems 13
Facets 14
Geometric Objects 16
Statistical Transformations 22
Position Adjustments 27
Coordinate Systems 31
The Layered Grammar of Graphics 34

2. Workflow: Basics. 37
Coding Basics 37
What’s in a Name? 38
Calling Functions 39

3. Data Transformation with dplyr. 43
Introduction 43
Filter Rows with filter() 45
Arrange Rows with arrange() 50
Select Columns with select() 51

iii

Add New Variables with mutate() 54
Grouped Summaries with summarize() 59
Grouped Mutates (and Filters) 73

4. Workflow: Scripts. 77
Running Code 78
RStudio Diagnostics 79

5. Exploratory Data Analysis. 81
Introduction 81
Questions 82
Variation 83
Missing Values 91
Covariation 93
Patterns and Models 105
ggplot2 Calls 108
Learning More 108

6. Workflow: Projects. 111
What Is Real? 111
Where Does Your Analysis Live? 113
Paths and Directories 113
RStudio Projects 114
Summary 116

Part II. Wrangle

7. Tibbles with tibble. 119
Introduction 119
Creating Tibbles 119
Tibbles Versus data.frame 121
Interacting with Older Code 123

8. Data Import with readr. 125
Introduction 125
Getting Started 125
Parsing a Vector 129
Parsing a File 137
Writing to a File 143
Other Types of Data 145

iv | Table of Contents

9. Tidy Data with tidyr. 147
Introduction 147
Tidy Data 148
Spreading and Gathering 151
Separating and Pull 157
Missing Values 161
Case Study 163
Nontidy Data 168

10. Relational Data with dplyr. 171
Introduction 171
nycflights13 172
Keys 175
Mutating Joins 178
Filtering Joins 188
Join Problems 191
Set Operations 192

11. Strings with stringr. 195
Introduction 195
String Basics 195
Matching Patterns with Regular Expressions 200
Tools 207
Other Types of Pattern 218
Other Uses of Regular Expressions 221
stringi 222

12. Factors with forcats. 223
Introduction 223
Creating Factors 224
General Social Survey 225
Modifying Factor Order 227
Modifying Factor Levels 232

13. Dates and Times with lubridate. 237
Introduction 237
Creating Date/Times 238
Date-Time Components 243
Time Spans 249
Time Zones 254

Table of Contents | v

Part III. Program

14. Pipes with magrittr. 261
Introduction 261
Piping Alternatives 261
When Not to Use the Pipe 266
Other Tools from magrittr 266

15. Functions. 269
Introduction 269
When Should You Write a Function? 270
Functions Are for Humans and Computers 273
Conditional Execution 276
Function Arguments 280
Return Values 285
Environment 288

16. Vectors. 291
Introduction 291
Vector Basics 292
Important Types of Atomic Vector 293
Using Atomic Vectors 296
Recursive Vectors (Lists) 302
Attributes 307
Augmented Vectors 309

17. Iteration with purrr. 313
Introduction 313
For Loops 314
For Loop Variations 317
For Loops Versus Functionals 322
The Map Functions 325
Dealing with Failure 329
Mapping over Multiple Arguments 332
Walk 335
Other Patterns of For Loops 336

vi | Table of Contents

Part IV. Model

18. Model Basics with modelr. 345
Introduction 345
A Simple Model 346
Visualizing Models 354
Formulas and Model Families 358
Missing Values 371
Other Model Families 372

19. Model Building. 375
Introduction 375
Why Are Low-Quality Diamonds More Expensive? 376
What Affects the Number of Daily Flights? 384
Learning More About Models 396

20. Many Models with purrr and broom. 397
Introduction 397
gapminder 398
List-Columns 409
Creating List-Columns 411
Simplifying List-Columns 416
Making Tidy Data with broom 419

Part V. Communicate

21. R Markdown. 423
Introduction 423
R Markdown Basics 424
Text Formatting with Markdown 427
Code Chunks 428
Troubleshooting 435
YAML Header 435
Learning More 438

22. Graphics for Communication with ggplot2. 441
Introduction 441
Label 442
Annotations 445

Table of Contents | vii

Scales 451
Zooming 461
Themes 462
Saving Your Plots 464
Learning More 467

23. R Markdown Formats. 469
Introduction 469
Output Options 470
Documents 470
Notebooks 471
Presentations 472
Dashboards 473
Interactivity 474
Websites 477
Other Formats 477
Learning More 478

24. R Markdown Workflow. 479

Index. 483

viii | Table of Contents

Preface

Data science is an exciting discipline that allows you to turn raw
data into understanding, insight, and knowledge. The goal of R for
Data Science is to help you learn the most important tools in R that
will allow you to do data science. After reading this book, you’ll have
the tools to tackle a wide variety of data science challenges, using the
best parts of R.

What You Will Learn
Data science is a huge field, and there’s no way you can master it by
reading a single book. The goal of this book is to give you a solid
foundation in the most important tools. Our model of the tools
needed in a typical data science project looks something like this:

First you must import your data into R. This typically means that
you take data stored in a file, database, or web API, and load it into a
data frame in R. If you can’t get your data into R, you can’t do data
science on it!

ix

Once you’ve imported your data, it is a good idea to tidy it. Tidying
your data means storing it in a consistent form that matches the
semantics of the dataset with the way it is stored. In brief, when your
data is tidy, each column is a variable, and each row is an observa‐
tion. Tidy data is important because the consistent structure lets you
focus your struggle on questions about the data, not fighting to get
the data into the right form for different functions.

Once you have tidy data, a common first step is to transform it.
Transformation includes narrowing in on observations of interest
(like all people in one city, or all data from the last year), creating
new variables that are functions of existing variables (like comput‐
ing velocity from speed and time), and calculating a set of summary
statistics (like counts or means). Together, tidying and transforming
are called wrangling, because getting your data in a form that’s natu‐
ral to work with often feels like a fight!

Once you have tidy data with the variables you need, there are two
main engines of knowledge generation: visualization and modeling.
These have complementary strengths and weaknesses so any real
analysis will iterate between them many times.

Visualization is a fundamentally human activity. A good visualiza‐
tion will show you things that you did not expect, or raise new ques‐
tions about the data. A good visualization might also hint that you’re
asking the wrong question, or you need to collect different data. Vis‐
ualizations can surprise you, but don’t scale particularly well because
they require a human to interpret them.

Models are complementary tools to visualization. Once you have
made your questions sufficiently precise, you can use a model to
answer them. Models are a fundamentally mathematical or compu‐
tational tool, so they generally scale well. Even when they don’t, it’s
usually cheaper to buy more computers than it is to buy more
brains! But every model makes assumptions, and by its very nature a
model cannot question its own assumptions. That means a model
cannot fundamentally surprise you.

The last step of data science is communication, an absolutely critical
part of any data analysis project. It doesn’t matter how well your
models and visualization have led you to understand the data unless
you can also communicate your results to others.

x | Preface

Surrounding all these tools is programming. Programming is a cross-
cutting tool that you use in every part of the project. You don’t need
to be an expert programmer to be a data scientist, but learning more
about programming pays off because becoming a better program‐
mer allows you to automate common tasks, and solve new problems
with greater ease.

You’ll use these tools in every data science project, but for most
projects they’re not enough. There’s a rough 80-20 rule at play; you
can tackle about 80% of every project using the tools that you’ll
learn in this book, but you’ll need other tools to tackle the remain‐
ing 20%. Throughout this book we’ll point you to resources where
you can learn more.

How This Book Is Organized
The previous description of the tools of data science is organized
roughly according to the order in which you use them in an analysis
(although of course you’ll iterate through them multiple times). In
our experience, however, this is not the best way to learn them:

• Starting with data ingest and tidying is suboptimal because 80%
of the time it’s routine and boring, and the other 20% of the
time it’s weird and frustrating. That’s a bad place to start learn‐
ing a new subject! Instead, we’ll start with visualization and
transformation of data that’s already been imported and tidied.
That way, when you ingest and tidy your own data, your moti‐
vation will stay high because you know the pain is worth it.

• Some topics are best explained with other tools. For example,
we believe that it’s easier to understand how models work if you
already know about visualization, tidy data, and programming.

• Programming tools are not necessarily interesting in their own
right, but do allow you to tackle considerably more challenging
problems. We’ll give you a selection of programming tools in
the middle of the book, and then you’ll see they can combine
with the data science tools to tackle interesting modeling prob‐
lems.

Within each chapter, we try to stick to a similar pattern: start with
some motivating examples so you can see the bigger picture, and
then dive into the details. Each section of the book is paired with
exercises to help you practice what you’ve learned. While it’s tempt‐

Preface | xi

ing to skip the exercises, there’s no better way to learn than practic‐
ing on real problems.

What You Won’t Learn
There are some important topics that this book doesn’t cover. We
believe it’s important to stay ruthlessly focused on the essentials so
you can get up and running as quickly as possible. That means this
book can’t cover every important topic.

Big Data
This book proudly focuses on small, in-memory datasets. This is the
right place to start because you can’t tackle big data unless you have
experience with small data. The tools you learn in this book will
easily handle hundreds of megabytes of data, and with a little care
you can typically use them to work with 1–2 Gb of data. If you’re
routinely working with larger data (10–100 Gb, say), you should
learn more about data.table. This book doesn’t teach data.table
because it has a very concise interface, which makes it harder to
learn since it offers fewer linguistic cues. But if you’re working with
large data, the performance payoff is worth the extra effort required
to learn it.

If your data is bigger than this, carefully consider if your big data
problem might actually be a small data problem in disguise. While
the complete data might be big, often the data needed to answer a
specific question is small. You might be able to find a subset, sub‐
sample, or summary that fits in memory and still allows you to
answer the question that you’re interested in. The challenge here is
finding the right small data, which often requires a lot of iteration.

Another possibility is that your big data problem is actually a large
number of small data problems. Each individual problem might fit
in memory, but you have millions of them. For example, you might
want to fit a model to each person in your dataset. That would be
trivial if you had just 10 or 100 people, but instead you have a mil‐
lion. Fortunately each problem is independent of the others (a setup
that is sometimes called embarrassingly parallel), so you just need a
system (like Hadoop or Spark) that allows you to send different
datasets to different computers for processing. Once you’ve figured
out how to answer the question for a single subset using the tools

xii | Preface

http://bit.ly/Rdatatable

described in this book, you learn new tools like sparklyr, rhipe, and
ddr to solve it for the full dataset.

Python, Julia, and Friends
In this book, you won’t learn anything about Python, Julia, or any
other programming language useful for data science. This isn’t
because we think these tools are bad. They’re not! And in practice,
most data science teams use a mix of languages, often at least R and
Python.

However, we strongly believe that it’s best to master one tool at a
time. You will get better faster if you dive deep, rather than spread‐
ing yourself thinly over many topics. This doesn’t mean you should
only know one thing, just that you’ll generally learn faster if you
stick to one thing at a time. You should strive to learn new things
throughout your career, but make sure your understanding is solid
before you move on to the next interesting thing.

We think R is a great place to start your data science journey because
it is an environment designed from the ground up to support data
science. R is not just a programming language, but it is also an inter‐
active environment for doing data science. To support interaction, R
is a much more flexible language than many of its peers. This flexi‐
bility comes with its downsides, but the big upside is how easy it is
to evolve tailored grammars for specific parts of the data science
process. These mini languages help you think about problems as a
data scientist, while supporting fluent interaction between your
brain and the computer.

Nonrectangular Data
This book focuses exclusively on rectangular data: collections of val‐
ues that are each associated with a variable and an observation.
There are lots of datasets that do not naturally fit in this paradigm:
including images, sounds, trees, and text. But rectangular data
frames are extremely common in science and industry, and we
believe that they’re a great place to start your data science journey.

Hypothesis Confirmation
It’s possible to divide data analysis into two camps: hypothesis gen‐
eration and hypothesis confirmation (sometimes called confirma‐

Preface | xiii

tory analysis). The focus of this book is unabashedly on hypothesis
generation, or data exploration. Here you’ll look deeply at the data
and, in combination with your subject knowledge, generate many
interesting hypotheses to help explain why the data behaves the way
it does. You evaluate the hypotheses informally, using your skepti‐
cism to challenge the data in multiple ways.

The complement of hypothesis generation is hypothesis confirma‐
tion. Hypothesis confirmation is hard for two reasons:

• You need a precise mathematical model in order to generate fal‐
sifiable predictions. This often requires considerable statistical
sophistication.

• You can only use an observation once to confirm a hypothesis.
As soon as you use it more than once you’re back to doing
exploratory analysis. This means to do hypothesis confirmation
you need to “preregister” (write out in advance) your analysis
plan, and not deviate from it even when you have seen the data.
We’ll talk a little about some strategies you can use to make this
easier in Part IV.

It’s common to think about modeling as a tool for hypothesis confir‐
mation, and visualization as a tool for hypothesis generation. But
that’s a false dichotomy: models are often used for exploration, and
with a little care you can use visualization for confirmation. The key
difference is how often you look at each observation: if you look
only once, it’s confirmation; if you look more than once, it’s explora‐
tion.

Prerequisites
We’ve made a few assumptions about what you already know in
order to get the most out of this book. You should be generally
numerically literate, and it’s helpful if you have some programming
experience already. If you’ve never programmed before, you might
find Hands-On Programming with R by Garrett to be a useful
adjunct to this book.

There are four things you need to run the code in this book: R,
RStudio, a collection of R packages called the tidyverse, and a hand‐
ful of other packages. Packages are the fundamental units of repro‐

xiv | Preface

http://shop.oreilly.com/product/0636920028574.do

ducible R code. They include reusable functions, the documentation
that describes how to use them, and sample data.

R
To download R, go to CRAN, the comprehensive R archive network.
CRAN is composed of a set of mirror servers distributed around the
world and is used to distribute R and R packages. Don’t try and pick
a mirror that’s close to you: instead use the cloud mirror, https://
cloud.r-project.org, which automatically figures it out for you.

A new major version of R comes out once a year, and there are 2–3
minor releases each year. It’s a good idea to update regularly.
Upgrading can be a bit of a hassle, especially for major versions,
which require you to reinstall all your packages, but putting it off
only makes it worse.

RStudio
RStudio is an integrated development environment, or IDE, for R
programming. Download and install it from http://www.rstu
dio.com/download. RStudio is updated a couple of times a year.
When a new version is available, RStudio will let you know. It’s a
good idea to upgrade regularly so you can take advantage of the lat‐
est and greatest features. For this book, make sure you have RStudio
1.0.0.

When you start RStudio, you’ll see two key regions in the interface:

Preface | xv

https://cloud.r-project.org
https://cloud.r-project.org
http://www.rstudio.com/download
http://www.rstudio.com/download

For now, all you need to know is that you type R code in the console
pane, and press Enter to run it. You’ll learn more as we go along!

The Tidyverse
You’ll also need to install some R packages. An R package is a collec‐
tion of functions, data, and documentation that extends the capabili‐
ties of base R. Using packages is key to the successful use of R. The
majority of the packages that you will learn in this book are part of
the so-called tidyverse. The packages in the tidyverse share a com‐
mon philosophy of data and R programming, and are designed to
work together naturally.

You can install the complete tidyverse with a single line of code:

install.packages("tidyverse")

On your own computer, type that line of code in the console, and
then press Enter to run it. R will download the packages from
CRAN and install them onto your computer. If you have problems
installing, make sure that you are connected to the internet, and that
https://cloud.r-project.org/ isn’t blocked by your firewall or proxy.

You will not be able to use the functions, objects, and help files in a
package until you load it with library(). Once you have installed a
package, you can load it with the library() function:

library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages --------------------------------
#> filter(): dplyr, stats
#> lag(): dplyr, stats

This tells you that tidyverse is loading the ggplot2, tibble, tidyr,
readr, purrr, and dplyr packages. These are considered to be the
core of the tidyverse because you’ll use them in almost every analy‐
sis.

Packages in the tidyverse change fairly frequently. You can see if
updates are available, and optionally install them, by running tidy
verse_update().

xvi | Preface

https://cloud.r-project.org/

Other Packages
There are many other excellent packages that are not part of the
tidyverse, because they solve problems in a different domain, or are
designed with a different set of underlying principles. This doesn’t
make them better or worse, just different. In other words, the com‐
plement to the tidyverse is not the messyverse, but many other uni‐
verses of interrelated packages. As you tackle more data science
projects with R, you’ll learn new packages and new ways of thinking
about data.

In this book we’ll use three data packages from outside the tidyverse:

install.packages(c("nycflights13", "gapminder", "Lahman"))

These packages provide data on airline flights, world development,
and baseball that we’ll use to illustrate key data science ideas.

Running R Code
The previous section showed you a couple of examples of running R
code. Code in the book looks like this:

1 + 2
#> [1] 3

If you run the same code in your local console, it will look like this:

> 1 + 2
[1] 3

There are two main differences. In your console, you type after the
>, called the prompt; we don’t show the prompt in the book. In the
book, output is commented out with #>; in your console it appears
directly after your code. These two differences mean that if you’re
working with an electronic version of the book, you can easily copy
code out of the book and into the console.

Throughout the book we use a consistent set of conventions to refer
to code:

• Functions are in a code font and followed by parentheses, like
sum() or mean().

• Other R objects (like data or function arguments) are in a code
font, without parentheses, like flights or x.

Preface | xvii

• If we want to make it clear what package an object comes from,
we’ll use the package name followed by two colons, like
dplyr::mutate() or nycflights13::flights. This is also valid
R code.

Getting Help and Learning More
This book is not an island; there is no single resource that will allow
you to master R. As you start to apply the techniques described in
this book to your own data you will soon find questions that I do
not answer. This section describes a few tips on how to get help, and
to help you keep learning.

If you get stuck, start with Google. Typically, adding “R” to a query
is enough to restrict it to relevant results: if the search isn’t useful, it
often means that there aren’t any R-specific results available. Google
is particularly useful for error messages. If you get an error message
and you have no idea what it means, try googling it! Chances are
that someone else has been confused by it in the past, and there will
be help somewhere on the web. (If the error message isn’t in English,
run Sys.setenv(LANGUAGE = "en") and re-run the code; you’re
more likely to find help for English error messages.)

If Google doesn’t help, try stackoverflow. Start by spending a little
time searching for an existing answer; including [R] restricts your
search to questions and answers that use R. If you don’t find any‐
thing useful, prepare a minimal reproducible example or reprex. A
good reprex makes it easier for other people to help you, and often
you’ll figure out the problem yourself in the course of making it.

There are three things you need to include to make your example
reproducible: required packages, data, and code:

• Packages should be loaded at the top of the script, so it’s easy to
see which ones the example needs. This is a good time to check
that you’re using the latest version of each package; it’s possible
you’ve discovered a bug that’s been fixed since you installed the
package. For packages in the tidyverse, the easiest way to check
is to run tidyverse_update().

• The easiest way to include data in a question is to use dput() to
generate the R code to re-create it. For example, to re-create the
mtcars dataset in R, I’d perform the following steps:

xviii | Preface

http://stackoverflow.com

1. Run dput(mtcars) in R.
2. Copy the output.
3. In my reproducible script, type mtcars <- then paste.

Try and find the smallest subset of your data that still reveals the
problem.

• Spend a little bit of time ensuring that your code is easy for oth‐
ers to read:
— Make sure you’ve used spaces and your variable names are

concise, yet informative.
— Use comments to indicate where your problem lies.
— Do your best to remove everything that is not related to the

problem.
The shorter your code is, the easier it is to understand, and the
easier it is to fix.

Finish by checking that you have actually made a reproducible
example by starting a fresh R session and copying and pasting your
script in.

You should also spend some time preparing yourself to solve prob‐
lems before they occur. Investing a little time in learning R each day
will pay off handsomely in the long run. One way is to follow what
Hadley, Garrett, and everyone else at RStudio are doing on the RStu‐
dio blog. This is where we post announcements about new packages,
new IDE features, and in-person courses. You might also want to
follow Hadley (@hadleywickham) or Garrett (@statgarrett) on Twit‐
ter, or follow @rstudiotips to keep up with new features in the IDE.

To keep up with the R community more broadly, we recommend
reading http://www.r-bloggers.com: it aggregates over 500 blogs
about R from around the world. If you’re an active Twitter user, fol‐
low the #rstats hashtag. Twitter is one of the key tools that Hadley
uses to keep up with new developments in the community.

Acknowledgments
This book isn’t just the product of Hadley and Garrett, but is the
result of many conversations (in person and online) that we’ve had
with the many people in the R community. There are a few people

Preface | xix

https://blog.rstudio.org
https://blog.rstudio.org
https://twitter.com/hadleywickham
https://twitter.com/statgarrett
https://twitter.com/rstudiotips
http://www.r-bloggers.com:

we’d like to thank in particular, because they have spent many hours
answering our dumb questions and helping us to better think about
data science:

• Jenny Bryan and Lionel Henry for many helpful discussions
around working with lists and list-columns.

• The three chapters on workflow were adapted (with permission)
from “R basics, workspace and working directory, RStudio
projects” by Jenny Bryan.

• Genevera Allen for discussions about models, modeling, the
statistical learning perspective, and the difference between
hypothesis generation and hypothesis confirmation.

• Yihui Xie for his work on the bookdown package, and for tire‐
lessly responding to my feature requests.

• Bill Behrman for his thoughtful reading of the entire book, and
for trying it out with his data science class at Stanford.

• The #rstats twitter community who reviewed all of the draft
chapters and provided tons of useful feedback.

• Tal Galili for augmenting his dendextend package to support a
section on clustering that did not make it into the final draft.

This book was written in the open, and many people contributed
pull requests to fix minor problems. Special thanks goes to everyone
who contributed via GitHub (listed in alphabetical order): adi prad‐
han, Ahmed ElGabbas, Ajay Deonarine, @Alex, Andrew Landgraf,
@batpigandme, @behrman, Ben Marwick, Bill Behrman, Brandon
Greenwell, Brett Klamer, Christian G. Warden, Christian Mongeau,
Colin Gillespie, Cooper Morris, Curtis Alexander, Daniel Gromer,
David Clark, Derwin McGeary, Devin Pastoor, Dylan Cashman, Earl
Brown, Eric Watt, Etienne B. Racine, Flemming Villalona, Gregory
Jefferis, @harrismcgehee, Hengni Cai, Ian Lyttle, Ian Sealy, Jakub
Nowosad, Jennifer (Jenny) Bryan, @jennybc, Jeroen Janssens, Jim
Hester, @jjchern, Joanne Jang, John Sears, Jon Calder, Jonathan
Page, @jonathanflint, Julia Stewart Lowndes, Julian During, Justinas
Petuchovas, Kara Woo, @kdpsingh, Kenny Darrell, Kirill Sevastya‐
nenko, @koalabearski, @KyleHumphrey, Lawrence Wu, Matthew
Sedaghatfar, Mine Cetinkaya-Rundel, @MJMarshall, Mustafa Ascha,
@nate-d-olson, Nelson Areal, Nick Clark, @nickelas, @nwaff,
@OaCantona, Patrick Kennedy, Peter Hurford, Rademeyer Ver‐
maak, Radu Grosu, @rlzijdeman, Robert Schuessler, @robinlovelace,

xx | Preface

http://bit.ly/Rbasicsworkflow
http://bit.ly/Rbasicsworkflow
https://github.com/rstudio/bookdown

@robinsones, S’busiso Mkhondwane, @seamus-mckinsey, @seanp‐
williams, Shannon Ellis, @shoili, @sibusiso16, @spirgel, Steve Mor‐
timer, @svenski, Terence Teo, Thomas Klebel, TJ Mahr, Tom Prior,
Will Beasley, Yihui Xie.

Online Version
An online version of this book is available at http://r4ds.had.co.nz. It
will continue to evolve in between reprints of the physical book. The
source of the book is available at https://github.com/hadley/r4ds. The
book is powered by https://bookdown.org, which makes it easy to
turn R markdown files into HTML, PDF, and EPUB.

This book was built with:

devtools::session_info(c("tidyverse"))
#> Session info --
#> setting value
#> version R version 3.3.1 (2016-06-21)
#> system x86_64, darwin13.4.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> tz America/Los_Angeles
#> date 2016-10-10
#> Packages --
#> package * version date source
#> assertthat 0.1 2013-12-06 CRAN (R 3.3.0)
#> BH 1.60.0-2 2016-05-07 CRAN (R 3.3.0)
#> broom 0.4.1 2016-06-24 CRAN (R 3.3.0)
#> colorspace 1.2-6 2015-03-11 CRAN (R 3.3.0)
#> curl 2.1 2016-09-22 CRAN (R 3.3.0)
#> DBI 0.5-1 2016-09-10 CRAN (R 3.3.0)
#> dichromat 2.0-0 2013-01-24 CRAN (R 3.3.0)
#> digest 0.6.10 2016-08-02 CRAN (R 3.3.0)
#> dplyr * 0.5.0 2016-06-24 CRAN (R 3.3.0)
#> forcats 0.1.1 2016-09-16 CRAN (R 3.3.0)
#> foreign 0.8-67 2016-09-13 CRAN (R 3.3.0)
#> ggplot2 * 2.1.0.9001 2016-10-06 local
#> gtable 0.2.0 2016-02-26 CRAN (R 3.3.0)
#> haven 1.0.0 2016-09-30 local
#> hms 0.2-1 2016-07-28 CRAN (R 3.3.1)
#> httr 1.2.1 2016-07-03 cran (@1.2.1)
#> jsonlite 1.1 2016-09-14 CRAN (R 3.3.0)
#> labeling 0.3 2014-08-23 CRAN (R 3.3.0)
#> lattice 0.20-34 2016-09-06 CRAN (R 3.3.0)
#> lazyeval 0.2.0 2016-06-12 CRAN (R 3.3.0)
#> lubridate 1.6.0 2016-09-13 CRAN (R 3.3.0)
#> magrittr 1.5 2014-11-22 CRAN (R 3.3.0)

Preface | xxi

http://r4ds.had.co.nz
https://github.com/hadley/r4ds
https://bookdown.org

#> MASS 7.3-45 2016-04-21 CRAN (R 3.3.1)
#> mime 0.5 2016-07-07 cran (@0.5)
#> mnormt 1.5-4 2016-03-09 CRAN (R 3.3.0)
#> modelr 0.1.0 2016-08-31 CRAN (R 3.3.0)
#> munsell 0.4.3 2016-02-13 CRAN (R 3.3.0)
#> nlme 3.1-128 2016-05-10 CRAN (R 3.3.1)
#> openssl 0.9.4 2016-05-25 cran (@0.9.4)
#> plyr 1.8.4 2016-06-08 cran (@1.8.4)
#> psych 1.6.9 2016-09-17 CRAN (R 3.3.0)
#> purrr * 0.2.2 2016-06-18 CRAN (R 3.3.0)
#> R6 2.1.3 2016-08-19 CRAN (R 3.3.0)
#> RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.3.0)
#> Rcpp 0.12.7 2016-09-05 CRAN (R 3.3.0)
#> readr * 1.0.0 2016-08-03 CRAN (R 3.3.0)
#> readxl 0.1.1 2016-03-28 CRAN (R 3.3.0)
#> reshape2 1.4.1 2014-12-06 CRAN (R 3.3.0)
#> rvest 0.3.2 2016-06-17 CRAN (R 3.3.0)
#> scales 0.4.0.9003 2016-10-06 local
#> selectr 0.3-0 2016-08-30 CRAN (R 3.3.0)
#> stringi 1.1.2 2016-10-01 CRAN (R 3.3.1)
#> stringr 1.1.0 2016-08-19 cran (@1.1.0)
#> tibble * 1.2 2016-08-26 CRAN (R 3.3.0)
#> tidyr * 0.6.0 2016-08-12 CRAN (R 3.3.0)
#> tidyverse * 1.0.0 2016-09-09 CRAN (R 3.3.0)
#> xml2 1.0.0.9001 2016-09-30 local

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Bold
Indicates the names of R packages.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

xxii | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

Using Code Examples
Source code is available for download at https://github.com/hadley/
r4ds.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example: “R
for Data Science by Hadley Wickham and Garrett Grolemund
(O’Reilly). Copyright 2017 Garrett Grolemund, Hadley Wickham,
978-1-491-91039-9.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Preface | xxiii

https://github.com/hadley/r4ds
https://github.com/hadley/r4ds
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth‐
ers.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/r-for-data-science.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxiv | Preface

http://oreilly.com/safari
http://bit.ly/r-for-data-science
http://bit.ly/r-for-data-science
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Explore

The goal of the first part of this book is to get you up to speed with
the basic tools of data exploration as quickly as possible. Data explo‐
ration is the art of looking at your data, rapidly generating hypothe‐
ses, quickly testing them, then repeating again and again and again.
The goal of data exploration is to generate many promising leads
that you can later explore in more depth.

In this part of the book you will learn some useful tools that have an
immediate payoff:

• Visualization is a great place to start with R programming,
because the payoff is so clear: you get to make elegant and infor‐
mative plots that help you understand data. In Chapter 1 you’ll

dive into visualization, learning the basic structure of a ggplot2
plot, and powerful techniques for turning data into plots.

• Visualization alone is typically not enough, so in Chapter 3
you’ll learn the key verbs that allow you to select important vari‐
ables, filter out key observations, create new variables, and com‐
pute summaries.

• Finally, in Chapter 5, you’ll combine visualization and transfor‐
mation with your curiosity and skepticism to ask and answer
interesting questions about data.

Modeling is an important part of the exploratory process, but you
don’t have the skills to effectively learn or apply it yet. We’ll come
back to it in Part IV, once you’re better equipped with more data
wrangling and programming tools.

Nestled among these three chapters that teach you the tools of
exploration are three chapters that focus on your R workflow. In
Chapter 2, Chapter 4, and Chapter 6 you’ll learn good practices for
writing and organizing your R code. These will set you up for suc‐
cess in the long run, as they’ll give you the tools to stay organized
when you tackle real projects.

CHAPTER 1

Data Visualization with ggplot2

Introduction
The simple graph has brought more information to the data analy‐
st’s mind than any other device.

—John Tukey

This chapter will teach you how to visualize your data using
ggplot2. R has several systems for making graphs, but ggplot2 is
one of the most elegant and most versatile. ggplot2 implements the
grammar of graphics, a coherent system for describing and building
graphs. With ggplot2, you can do more faster by learning one sys‐
tem and applying it in many places.

If you’d like to learn more about the theoretical underpinnings of
ggplot2 before you start, I’d recommend reading “A Layered Gram‐
mar of Graphics”.

Prerequisites
This chapter focuses on ggplot2, one of the core members of the
tidyverse. To access the datasets, help pages, and functions that we
will use in this chapter, load the tidyverse by running this code:

library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr

3

http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf

#> Loading tidyverse: dplyr
#> Conflicts with tidy packages --------------------------------
#> filter(): dplyr, stats
#> lag(): dplyr, stats

That one line of code loads the core tidyverse, packages that you will
use in almost every data analysis. It also tells you which functions
from the tidyverse conflict with functions in base R (or from other
packages you might have loaded).

If you run this code and get the error message “there is no package
called ‘tidyverse’,” you’ll need to first install it, then run library()
once again:

install.packages("tidyverse")
library(tidyverse)

You only need to install a package once, but you need to reload it
every time you start a new session.

If we need to be explicit about where a function (or dataset) comes
from, we’ll use the special form package::function(). For example,
ggplot2::ggplot() tells you explicitly that we’re using the
ggplot() function from the ggplot2 package.

First Steps
Let’s use our first graph to answer a question: do cars with big
engines use more fuel than cars with small engines? You probably
already have an answer, but try to make your answer precise. What
does the relationship between engine size and fuel efficiency look
like? Is it positive? Negative? Linear? Nonlinear?

The mpg Data Frame
You can test your answer with the mpg data frame found in ggplot2
(aka ggplot2::mpg). A data frame is a rectangular collection of vari‐
ables (in the columns) and observations (in the rows). mpg contains
observations collected by the US Environment Protection Agency
on 38 models of cars:

mpg
#> # A tibble: 234 × 11
#> manufacturer model displ year cyl trans drv
#> <chr> <chr> <dbl> <int> <int> <chr> <chr>
#> 1 audi a4 1.8 1999 4 auto(l5) f
#> 2 audi a4 1.8 1999 4 manual(m5) f

4 | Chapter 1: Data Visualization with ggplot2

#> 3 audi a4 2.0 2008 4 manual(m6) f
#> 4 audi a4 2.0 2008 4 auto(av) f
#> 5 audi a4 2.8 1999 6 auto(l5) f
#> 6 audi a4 2.8 1999 6 manual(m5) f
#> # ... with 228 more rows, and 4 more variables:
#> # cty <int>, hwy <int>, fl <chr>, class <chr>

Among the variables in mpg are:

• displ, a car’s engine size, in liters.
• hwy, a car’s fuel efficiency on the highway, in miles per gallon

(mpg). A car with a low fuel efficiency consumes more fuel than
a car with a high fuel efficiency when they travel the same dis‐
tance.

To learn more about mpg, open its help page by running ?mpg.

Creating a ggplot
To plot mpg, run this code to put displ on the x-axis and hwy on the
y-axis:

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy))

The plot shows a negative relationship between engine size (displ)
and fuel efficiency (hwy). In other words, cars with big engines use
more fuel. Does this confirm or refute your hypothesis about fuel
efficiency and engine size?

First Steps | 5

With ggplot2, you begin a plot with the function ggplot().
ggplot() creates a coordinate system that you can add layers to. The
first argument of ggplot() is the dataset to use in the graph. So
ggplot(data = mpg) creates an empty graph, but it’s not very inter‐
esting so I’m not going to show it here.

You complete your graph by adding one or more layers to ggplot().
The function geom_point() adds a layer of points to your plot,
which creates a scatterplot. ggplot2 comes with many geom func‐
tions that each add a different type of layer to a plot. You’ll learn a
whole bunch of them throughout this chapter.

Each geom function in ggplot2 takes a mapping argument. This
defines how variables in your dataset are mapped to visual proper‐
ties. The mapping argument is always paired with aes(), and the x
and y arguments of aes() specify which variables to map to the x-
and y-axes. ggplot2 looks for the mapped variable in the data argu‐
ment, in this case, mpg.

A Graphing Template
Let’s turn this code into a reusable template for making graphs with
ggplot2. To make a graph, replace the bracketed sections in the fol‐
lowing code with a dataset, a geom function, or a collection of map‐
pings:

ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

The rest of this chapter will show you how to complete and extend
this template to make different types of graphs. We will begin with
the <MAPPINGS> component.

Exercises
1. Run ggplot(data = mpg). What do you see?
2. How many rows are in mtcars? How many columns?
3. What does the drv variable describe? Read the help for ?mpg to

find out.
4. Make a scatterplot of hwy versus cyl.

6 | Chapter 1: Data Visualization with ggplot2

5. What happens if you make a scatterplot of class versus drv?
Why is the plot not useful?

Aesthetic Mappings
The greatest value of a picture is when it forces us to notice what we
never expected to see.

—John Tukey

In the following plot, one group of points (highlighted in red) seems
to fall outside of the linear trend. These cars have a higher mileage
than you might expect. How can you explain these cars?

Let’s hypothesize that the cars are hybrids. One way to test this
hypothesis is to look at the class value for each car. The class vari‐
able of the mpg dataset classifies cars into groups such as compact,
midsize, and SUV. If the outlying points are hybrids, they should be
classified as compact cars or, perhaps, subcompact cars (keep in
mind that this data was collected before hybrid trucks and SUVs
became popular).

You can add a third variable, like class, to a two-dimensional scat‐
terplot by mapping it to an aesthetic. An aesthetic is a visual prop‐
erty of the objects in your plot. Aesthetics include things like the
size, the shape, or the color of your points. You can display a point
(like the one shown next) in different ways by changing the values of
its aesthetic properties. Since we already use the word “value” to

Aesthetic Mappings | 7

describe data, let’s use the word “level” to describe aesthetic proper‐
ties. Here we change the levels of a point’s size, shape, and color to
make the point small, triangular, or blue:

You can convey information about your data by mapping the aes‐
thetics in your plot to the variables in your dataset. For example, you
can map the colors of your points to the class variable to reveal the
class of each car:

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy, color = class))

(If you prefer British English, like Hadley, you can use colour
instead of color.)

To map an aesthetic to a variable, associate the name of the aesthetic
to the name of the variable inside aes(). ggplot2 will automatically
assign a unique level of the aesthetic (here a unique color) to each
unique value of the variable, a process known as scaling. ggplot2 will

8 | Chapter 1: Data Visualization with ggplot2

also add a legend that explains which levels correspond to which
values.

The colors reveal that many of the unusual points are two-seater
cars. These cars don’t seem like hybrids, and are, in fact, sports cars!
Sports cars have large engines like SUVs and pickup trucks, but
small bodies like midsize and compact cars, which improves their
gas mileage. In hindsight, these cars were unlikely to be hybrids
since they have large engines.

In the preceding example, we mapped class to the color aesthetic,
but we could have mapped class to the size aesthetic in the same
way. In this case, the exact size of each point would reveal its class
affiliation. We get a warning here, because mapping an unordered
variable (class) to an ordered aesthetic (size) is not a good idea:

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy, size = class))
#> Warning: Using size for a discrete variable is not advised.

Or we could have mapped class to the alpha aesthetic, which con‐
trols the transparency of the points, or the shape of the points:

Top
ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy, alpha = class))

Bottom
ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy, shape = class))

Aesthetic Mappings | 9

What happened to the SUVs? ggplot2 will only use six shapes at a
time. By default, additional groups will go unplotted when you use
this aesthetic.

For each aesthetic you use, the aes() to associate the name of the
aesthetic with a variable to display. The aes() function gathers
together each of the aesthetic mappings used by a layer and passes
them to the layer’s mapping argument. The syntax highlights a use‐
ful insight about x and y: the x and y locations of a point are them‐
selves aesthetics, visual properties that you can map to variables to
display information about the data.

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a
reasonable scale to use with the aesthetic, and it constructs a legend
that explains the mapping between levels and values. For x and y
aesthetics, ggplot2 does not create a legend, but it creates an axis

10 | Chapter 1: Data Visualization with ggplot2

line with tick marks and a label. The axis line acts as a legend; it
explains the mapping between locations and values.

You can also set the aesthetic properties of your geom manually. For
example, we can make all of the points in our plot blue:

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy), color = "blue")

Here, the color doesn’t convey information about a variable, but
only changes the appearance of the plot. To set an aesthetic man‐
ually, set the aesthetic by name as an argument of your geom func‐
tion; i.e., it goes outside of aes(). You’ll need to pick a value that
makes sense for that aesthetic:

• The name of a color as a character string.
• The size of a point in mm.
• The shape of a point as a number, as shown in Figure 1-1. There

are some seeming duplicates: for example, 0, 15, and 22 are all
squares. The difference comes from the interaction of the color
and fill aesthetics. The hollow shapes (0–14) have a border
determined by color; the solid shapes (15–18) are filled with
color; and the filled shapes (21–24) have a border of color and
are filled with fill.

Aesthetic Mappings | 11

Figure 1-1. R has 25 built-in shapes that are identified by numbers

Exercises
1. What’s gone wrong with this code? Why are the points not blue?

ggplot(data = mpg) +
 geom_point(
 mapping = aes(x = displ, y = hwy, color = "blue")
)

2. Which variables in mpg are categorical? Which variables are
continuous? (Hint: type ?mpg to read the documentation for the
dataset.) How can you see this information when you run mpg?

3. Map a continuous variable to color, size, and shape. How do
these aesthetics behave differently for categorical versus contin‐
uous variables?

4. What happens if you map the same variable to multiple aesthet‐
ics?

5. What does the stroke aesthetic do? What shapes does it work
with? (Hint: use ?geom_point.)

12 | Chapter 1: Data Visualization with ggplot2

6. What happens if you map an aesthetic to something other than
a variable name, like aes(color = displ < 5)?

Common Problems
As you start to run R code, you’re likely to run into problems. Don’t
worry—it happens to everyone. I have been writing R code for
years, and every day I still write code that doesn’t work!

Start by carefully comparing the code that you’re running to the
code in the book. R is extremely picky, and a misplaced character
can make all the difference. Make sure that every (is matched with
a) and every " is paired with another ". Sometimes you’ll run the
code and nothing happens. Check the left-hand side of your con‐
sole: if it’s a +, it means that R doesn’t think you’ve typed a complete
expression and it’s waiting for you to finish it. In this case, it’s usu‐
ally easy to start from scratch again by pressing Esc to abort process‐
ing the current command.

One common problem when creating ggplot2 graphics is to put the
+ in the wrong place: it has to come at the end of the line, not the
start. In other words, make sure you haven’t accidentally written
code like this:

ggplot(data = mpg)
+ geom_point(mapping = aes(x = displ, y = hwy))

If you’re still stuck, try the help. You can get help about any R func‐
tion by running ?function_name in the console, or selecting the
function name and pressing F1 in RStudio. Don’t worry if the help
doesn’t seem that helpful—instead skip down to the examples and
look for code that matches what you’re trying to do.

If that doesn’t help, carefully read the error message. Sometimes the
answer will be buried there! But when you’re new to R, the answer
might be in the error message but you don’t yet know how to under‐
stand it. Another great tool is Google: trying googling the error mes‐
sage, as it’s likely someone else has had the same problem, and has
received help online.

Common Problems | 13

Facets
One way to add additional variables is with aesthetics. Another way,
particularly useful for categorical variables, is to split your plot into
facets, subplots that each display one subset of the data.

To facet your plot by a single variable, use facet_wrap(). The first
argument of facet_wrap() should be a formula, which you create
with ~ followed by a variable name (here “formula” is the name of a
data structure in R, not a synonym for “equation”). The variable that
you pass to facet_wrap() should be discrete:

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
 facet_wrap(~ class, nrow = 2)

To facet your plot on the combination of two variables, add
facet_grid() to your plot call. The first argument of facet_grid()
is also a formula. This time the formula should contain two variable
names separated by a ~:

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
 facet_grid(drv ~ cyl)

14 | Chapter 1: Data Visualization with ggplot2

If you prefer to not facet in the rows or columns dimension, use a .
instead of a variable name, e.g., + facet_grid(. ~ cyl).

Exercises
1. What happens if you facet on a continuous variable?
2. What do the empty cells in a plot with facet_grid(drv ~ cyl)

mean? How do they relate to this plot?
ggplot(data = mpg) +
 geom_point(mapping = aes(x = drv, y = cyl))

3. What plots does the following code make? What does . do?
ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
 facet_grid(drv ~ .)

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
 facet_grid(. ~ cyl)

4. Take the first faceted plot in this section:
ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
 facet_wrap(~ class, nrow = 2)

What are the advantages to using faceting instead of the color
aesthetic? What are the disadvantages? How might the balance
change if you had a larger dataset?

Facets | 15

5. Read ?facet_wrap. What does nrow do? What does ncol do?
What other options control the layout of the individual panels?
Why doesn’t facet_grid() have nrow and ncol variables?

6. When using facet_grid() you should usually put the variable
with more unique levels in the columns. Why?

Geometric Objects
How are these two plots similar?

Both plots contain the same x variable and the same y variable, and
both describe the same data. But the plots are not identical. Each
plot uses a different visual object to represent the data. In ggplot2
syntax, we say that they use different geoms.

A geom is the geometrical object that a plot uses to represent data.
People often describe plots by the type of geom that the plot uses.
For example, bar charts use bar geoms, line charts use line geoms,
boxplots use boxplot geoms, and so on. Scatterplots break the trend;
they use the point geom. As we see in the preceding plots, you can
use different geoms to plot the same data. The plot on the left uses
the point geom, and the plot on the right uses the smooth geom, a
smooth line fitted to the data.

To change the geom in your plot, change the geom function that you
add to ggplot(). For instance, to make the preceding plots, you can
use this code:

left
ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy))

right
ggplot(data = mpg) +
 geom_smooth(mapping = aes(x = displ, y = hwy))

16 | Chapter 1: Data Visualization with ggplot2

Every geom function in ggplot2 takes a mapping argument. How‐
ever, not every aesthetic works with every geom. You could set the
shape of a point, but you couldn’t set the “shape” of a line. On the
other hand, you could set the linetype of a line. geom_smooth() will
draw a different line, with a different linetype, for each unique value
of the variable that you map to linetype:

ggplot(data = mpg) +
 geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv))

Here geom_smooth() separates the cars into three lines based on
their drv value, which describes a car’s drivetrain. One line describes
all of the points with a 4 value, one line describes all of the points
with an f value, and one line describes all of the points with an r
value. Here, 4 stands for four-wheel drive, f for front-wheel drive,
and r for rear-wheel drive.

If this sounds strange, we can make it more clear by overlaying the
lines on top of the raw data and then coloring everything according
to drv.

Geometric Objects | 17

Notice that this plot contains two geoms in the same graph! If this
makes you excited, buckle up. In the next section, we will learn how
to place multiple geoms in the same plot.

ggplot2 provides over 30 geoms, and extension packages provide
even more (see https://www.ggplot2-exts.org for a sampling). The
best way to get a comprehensive overview is the ggplot2 cheatsheet,
which you can find at http://rstudio.com/cheatsheets. To learn more
about any single geom, use help: ?geom_smooth.

Many geoms, like geom_smooth(), use a single geometric object to
display multiple rows of data. For these geoms, you can set the
group aesthetic to a categorical variable to draw multiple objects.
ggplot2 will draw a separate object for each unique value of the
grouping variable. In practice, ggplot2 will automatically group the
data for these geoms whenever you map an aesthetic to a discrete
variable (as in the linetype example). It is convenient to rely on this
feature because the group aesthetic by itself does not add a legend or
distinguishing features to the geoms:

ggplot(data = mpg) +
 geom_smooth(mapping = aes(x = displ, y = hwy))

ggplot(data = mpg) +
 geom_smooth(mapping = aes(x = displ, y = hwy, group = drv))

ggplot(data = mpg) +
 geom_smooth(
 mapping = aes(x = displ, y = hwy, color = drv),
 show.legend = FALSE
)

To display multiple geoms in the same plot, add multiple geom
functions to ggplot():

ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
 geom_smooth(mapping = aes(x = displ, y = hwy))

18 | Chapter 1: Data Visualization with ggplot2

https://www.ggplot2-exts.org
http://rstudio.com/cheatsheets

This, however, introduces some duplication in our code. Imagine if
you wanted to change the y-axis to display cty instead of hwy. You’d
need to change the variable in two places, and you might forget to
update one. You can avoid this type of repetition by passing a set of
mappings to ggplot(). ggplot2 will treat these mappings as global
mappings that apply to each geom in the graph. In other words, this
code will produce the same plot as the previous code:

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
 geom_point() +
 geom_smooth()

If you place mappings in a geom function, ggplot2 will treat them as
local mappings for the layer. It will use these mappings to extend or
overwrite the global mappings for that layer only. This makes it pos‐
sible to display different aesthetics in different layers:

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
 geom_point(mapping = aes(color = class)) +
 geom_smooth()

Geometric Objects | 19

You can use the same idea to specify different data for each layer.
Here, our smooth line displays just a subset of the mpg dataset, the
subcompact cars. The local data argument in geom_smooth() over‐
rides the global data argument in ggplot() for that layer only:

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
 geom_point(mapping = aes(color = class)) +
 geom_smooth(
 data = filter(mpg, class == "subcompact"),
 se = FALSE
)

(You’ll learn how filter() works in the next chapter: for now, just
know that this command selects only the subcompact cars.)

Exercises
1. What geom would you use to draw a line chart? A boxplot? A

histogram? An area chart?
2. Run this code in your head and predict what the output will

look like. Then, run the code in R and check your predictions:
ggplot(
 data = mpg,
 mapping = aes(x = displ, y = hwy, color = drv)
) +
 geom_point() +
 geom_smooth(se = FALSE)

3. What does show.legend = FALSE do? What happens if you
remove it? Why do you think I used it earlier in the chapter?

4. What does the se argument to geom_smooth() do?

20 | Chapter 1: Data Visualization with ggplot2

5. Will these two graphs look different? Why/why not?
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
 geom_point() +
 geom_smooth()

ggplot() +
 geom_point(
 data = mpg,
 mapping = aes(x = displ, y = hwy)
) +
 geom_smooth(
 data = mpg,
 mapping = aes(x = displ, y = hwy)
)

6. Re-create the R code necessary to generate the following graphs.

Geometric Objects | 21

Statistical Transformations
Next, let’s take a look at a bar chart. Bar charts seem simple, but they
are interesting because they reveal something subtle about plots.
Consider a basic bar chart, as drawn with geom_bar(). The follow‐
ing chart displays the total number of diamonds in the diamonds
dataset, grouped by cut. The diamonds dataset comes in ggplot2
and contains information about ~54,000 diamonds, including the
price, carat, color, clarity, and cut of each diamond. The chart
shows that more diamonds are available with high-quality cuts than
with low quality cuts:

ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut))

On the x-axis, the chart displays cut, a ‘variable from diamonds. On
the y-axis, it displays count, but count is not a variable in diamonds!
Where does count come from? Many graphs, like scatterplots, plot
the raw values of your dataset. Other graphs, like bar charts, calcu‐
late new values to plot:

• Bar charts, histograms, and frequency polygons bin your data
and then plot bin counts, the number of points that fall in each
bin.

• Smoothers fit a model to your data and then plot predictions
from the model.

22 | Chapter 1: Data Visualization with ggplot2

• Boxplots compute a robust summary of the distribution and
display a specially formatted box.

The algorithm used to calculate new values for a graph is called a
stat, short for statistical transformation. The following figure
describes how this process works with geom_bar().

You can learn which stat a geom uses by inspecting the default value
for the stat argument. For example, ?geom_bar shows the default
value for stat is “count,” which means that geom_bar() uses
stat_count(). stat_count() is documented on the same page as
geom_bar(), and if you scroll down you can find a section called
“Computed variables.” That tells that it computes two new variables:
count and prop.

You can generally use geoms and stats interchangeably. For example,
you can re-create the previous plot using stat_count() instead of
geom_bar():

ggplot(data = diamonds) +
 stat_count(mapping = aes(x = cut))

Statistical Transformations | 23

This works because every geom has a default stat, and every stat has
a default geom. This means that you can typically use geoms
without worrying about the underlying statistical transformation.
There are three reasons you might need to use a stat explicitly:

• You might want to override the default stat. In the following
code, I change the stat of geom_bar() from count (the default)
to identity. This lets me map the height of the bars to the raw
values of a y variable. Unfortunately when people talk about bar
charts casually, they might be referring to this type of bar chart,
where the height of the bar is already present in the data, or the
previous bar chart where the height of the bar is generated by
counting rows.

demo <- tribble(
 ~a, ~b,
 "bar_1", 20,
 "bar_2", 30,
 "bar_3", 40
)

ggplot(data = demo) +
 geom_bar(
 mapping = aes(x = a, y = b), stat = "identity"
)

(Don’t worry that you haven’t seen <- or tibble() before. You
might be able to guess at their meaning from the context, and
you’ll learn exactly what they do soon!)

24 | Chapter 1: Data Visualization with ggplot2

• You might want to override the default mapping from trans‐
formed variables to aesthetics. For example, you might want to
display a bar chart of proportion, rather than count:

ggplot(data = diamonds) +
 geom_bar(
 mapping = aes(x = cut, y = ..prop.., group = 1)
)

To find the variables computed by the stat, look for the help sec‐
tion titled “Computed variables.”

• You might want to draw greater attention to the statistical trans‐
formation in your code. For example, you might use stat_sum
mary(), which summarizes the y values for each unique x value,
to draw attention to the summary that you’re computing:

ggplot(data = diamonds) +
 stat_summary(
 mapping = aes(x = cut, y = depth),
 fun.ymin = min,
 fun.ymax = max,
 fun.y = median
)

Statistical Transformations | 25

ggplot2 provides over 20 stats for you to use. Each stat is a function,
so you can get help in the usual way, e.g., ?stat_bin. To see a com‐
plete list of stats, try the ggplot2 cheatsheet.

Exercises
1. What is the default geom associated with stat_summary()?

How could you rewrite the previous plot to use that geom func‐
tion instead of the stat function?

2. What does geom_col() do? How is it different to geom_bar()?
3. Most geoms and stats come in pairs that are almost always used

in concert. Read through the documentation and make a list of
all the pairs. What do they have in common?

4. What variables does stat_smooth() compute? What parame‐
ters control its behavior?

5. In our proportion bar chart, we need to set group = 1. Why? In
other words what is the problem with these two graphs?

ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, y = ..prop..))
ggplot(data = diamonds) +
 geom_bar(
 mapping = aes(x = cut, fill = color, y = ..prop..)
)

26 | Chapter 1: Data Visualization with ggplot2

Position Adjustments
There’s one more piece of magic associated with bar charts. You can
color a bar chart using either the color aesthetic, or more usefully,
fill:

ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, color = cut))
ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, fill = cut))

Note what happens if you map the fill aesthetic to another vari‐
able, like clarity: the bars are automatically stacked. Each colored
rectangle represents a combination of cut and clarity:

ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut, fill = clarity))

The stacking is performed automatically by the position adjustment
specified by the position argument. If you don’t want a stacked bar

Position Adjustments | 27

chart, you can use one of three other options: "identity", "dodge"
or "fill":

• position = "identity" will place each object exactly where it
falls in the context of the graph. This is not very useful for bars,
because it overlaps them. To see that overlapping we either need
to make the bars slightly transparent by setting alpha to a small
value, or completely transparent by setting fill = NA:

ggplot(
 data = diamonds,
 mapping = aes(x = cut, fill = clarity)
) +
 geom_bar(alpha = 1/5, position = "identity")
ggplot(
 data = diamonds,
 mapping = aes(x = cut, color = clarity)
) +
 geom_bar(fill = NA, position = "identity")

The identity position adjustment is more useful for 2D geoms,
like points, where it is the default.

• position = "fill" works like stacking, but makes each set of
stacked bars the same height. This makes it easier to compare
proportions across groups:

ggplot(data = diamonds) +
 geom_bar(
 mapping = aes(x = cut, fill = clarity),
 position = "fill"
)

28 | Chapter 1: Data Visualization with ggplot2

• position = "dodge" places overlapping objects directly beside
one another. This makes it easier to compare individual values:

ggplot(data = diamonds) +
 geom_bar(
 mapping = aes(x = cut, fill = clarity),
 position = "dodge"
)

There’s one other type of adjustment that’s not useful for bar charts,
but it can be very useful for scatterplots. Recall our first scatterplot.
Did you notice that the plot displays only 126 points, even though
there are 234 observations in the dataset?

Position Adjustments | 29

The values of hwy and displ are rounded so the points appear on a
grid and many points overlap each other. This problem is known as
overplotting. This arrangement makes it hard to see where the mass
of the data is. Are the data points spread equally throughout the
graph, or is there one special combination of hwy and displ that
contains 109 values?

You can avoid this gridding by setting the position adjustment to
“jitter.” position = "jitter" adds a small amount of random noise
to each point. This spreads the points out because no two points are
likely to receive the same amount of random noise:

ggplot(data = mpg) +
 geom_point(
 mapping = aes(x = displ, y = hwy),
 position = "jitter"
)

Adding randomness seems like a strange way to improve your plot,
but while it makes your graph less accurate at small scales, it makes
your graph more revealing at large scales. Because this is such a use‐
ful operation, ggplot2 comes with a shorthand for geom_point(posi
tion = "jitter"): geom_jitter().

To learn more about a position adjustment, look up the help page
associated with each adjustment: ?position_dodge, ?posi

tion_fill, ?position_identity, ?position_jitter, and ?posi
tion_stack.

30 | Chapter 1: Data Visualization with ggplot2

Exercises
1. What is the problem with this plot? How could you improve it?

ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
 geom_point()

2. What parameters to geom_jitter() control the amount of jit‐
tering?

3. Compare and contrast geom_jitter() with geom_count().
4. What’s the default position adjustment for geom_boxplot()?

Create a visualization of the mpg dataset that demonstrates it.

Coordinate Systems
Coordinate systems are probably the most complicated part of
ggplot2. The default coordinate system is the Cartesian coordinate
system where the x and y position act independently to find the
location of each point. There are a number of other coordinate sys‐
tems that are occasionally helpful:

• coord_flip() switches the x- and y-axes. This is useful (for
example) if you want horizontal boxplots. It’s also useful for
long labels—it’s hard to get them to fit without overlapping on
the x-axis:

ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
 geom_boxplot()
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
 geom_boxplot() +
 coord_flip()

Coordinate Systems | 31

• coord_quickmap() sets the aspect ratio correctly for maps. This
is very important if you’re plotting spatial data with ggplot2
(which unfortunately we don’t have the space to cover in this
book):

nz <- map_data("nz")

ggplot(nz, aes(long, lat, group = group)) +
 geom_polygon(fill = "white", color = "black")

ggplot(nz, aes(long, lat, group = group)) +
 geom_polygon(fill = "white", color = "black") +
 coord_quickmap()

• coord_polar() uses polar coordinates. Polar coordinates reveal
an interesting connection between a bar chart and a Coxcomb
chart:

bar <- ggplot(data = diamonds) +
 geom_bar(
 mapping = aes(x = cut, fill = cut),
 show.legend = FALSE,
 width = 1
) +
 theme(aspect.ratio = 1) +
 labs(x = NULL, y = NULL)

bar + coord_flip()
bar + coord_polar()

32 | Chapter 1: Data Visualization with ggplot2

Exercises
1. Turn a stacked bar chart into a pie chart using coord_polar().
2. What does labs() do? Read the documentation.
3. What’s the difference between coord_quickmap() and

coord_map()?
4. What does the following plot tell you about the relationship

between city and highway mpg? Why is coord_fixed() impor‐
tant? What does geom_abline() do?

ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
 geom_point() +
 geom_abline() +
 coord_fixed()

Coordinate Systems | 33

The Layered Grammar of Graphics
In the previous sections, you learned much more than how to make
scatterplots, bar charts, and boxplots. You learned a foundation that
you can use to make any type of plot with ggplot2. To see this, let’s
add position adjustments, stats, coordinate systems, and faceting to
our code template:

ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(
 mapping = aes(<MAPPINGS>),
 stat = <STAT>,
 position = <POSITION>
) +
 <COORDINATE_FUNCTION> +
 <FACET_FUNCTION>

Our new template takes seven parameters, the bracketed words that
appear in the template. In practice, you rarely need to supply all
seven parameters to make a graph because ggplot2 will provide use‐
ful defaults for everything except the data, the mappings, and the
geom function.

The seven parameters in the template compose the grammar of
graphics, a formal system for building plots. The grammar of graph‐
ics is based on the insight that you can uniquely describe any plot as
a combination of a dataset, a geom, a set of mappings, a stat, a posi‐
tion adjustment, a coordinate system, and a faceting scheme.

To see how this works, consider how you could build a basic plot
from scratch: you could start with a dataset and then transform it
into the information that you want to display (with a stat):

34 | Chapter 1: Data Visualization with ggplot2

Next, you could choose a geometric object to represent each obser‐
vation in the transformed data. You could then use the aesthetic
properties of the geoms to represent variables in the data. You would
map the values of each variable to the levels of an aesthetic:

You’d then select a coordinate system to place the geoms into. You’d
use the location of the objects (which is itself an aesthetic property)
to display the values of the x and y variables. At that point, you
would have a complete graph, but you could further adjust the posi‐
tions of the geoms within the coordinate system (a position adjust‐
ment) or split the graph into subplots (faceting). You could also
extend the plot by adding one or more additional layers, where each
additional layer uses a dataset, a geom, a set of mappings, a stat, and
a position adjustment:

You could use this method to build any plot that you imagine. In
other words, you can use the code template that you’ve learned in
this chapter to build hundreds of thousands of unique plots.

The Layered Grammar of Graphics | 35

CHAPTER 2

Workflow: Basics

You now have some experience running R code. I didn’t give you
many details, but you’ve obviously figured out the basics, or you
would’ve thrown this book away in frustration! Frustration is natu‐
ral when you start programming in R, because it is such a stickler
for punctuation, and even one character out of place will cause it to
complain. But while you should expect to be a little frustrated, take
comfort in that it’s both typical and temporary: it happens to every‐
one, and the only way to get over it is to keep trying.

Before we go any further, let’s make sure you’ve got a solid founda‐
tion in running R code, and that you know about some of the most
helpful RStudio features.

Coding Basics
Let’s review some basics we’ve so far omitted in the interests of get‐
ting you plotting as quickly as possible. You can use R as a calcula‐
tor:

1 / 200 * 30
#> [1] 0.15
(59 + 73 + 2) / 3
#> [1] 44.7
sin(pi / 2)
#> [1] 1

You can create new objects with <-:

x <- 3 * 4

37

All R statements where you create objects, assignment statements,
have the same form:

object_name <- value

When reading that code say “object name gets value” in your head.

You will make lots of assignments and <- is a pain to type. Don’t be
lazy and use =: it will work, but it will cause confusion later. Instead,
use RStudio’s keyboard shortcut: Alt-– (the minus sign). Notice that
RStudio automagically surrounds <- with spaces, which is a good
code formatting practice. Code is miserable to read on a good day,
so giveyoureyesabreak and use spaces.

What’s in a Name?
Object names must start with a letter, and can only contain letters,
numbers, _, and .. You want your object names to be descriptive, so
you’ll need a convention for multiple words. I recommend
snake_case where you separate lowercase words with _:

i_use_snake_case
otherPeopleUseCamelCase
some.people.use.periods
And_aFew.People_RENOUNCEconvention

We’ll come back to code style later, in Chapter 15.

You can inspect an object by typing its name:

x
#> [1] 12

Make another assignment:

this_is_a_really_long_name <- 2.5

To inspect this object, try out RStudio’s completion facility: type
“this,” press Tab, add characters until you have a unique prefix, then
press Return.

Oops, you made a mistake! this_is_a_really_long_name should
have value 3.5 not 2.5. Use another keyboard shortcut to help you fix
it. Type “this” then press Cmd/Ctrl-↑. That will list all the com‐
mands you’ve typed that start with those letters. Use the arrow keys
to navigate, then press Enter to retype the command. Change 2.5 to
3.5 and rerun.

38 | Chapter 2: Workflow: Basics

Make yet another assignment:

r_rocks <- 2 ^ 3

Let’s try to inspect it:

r_rock
#> Error: object 'r_rock' not found
R_rocks
#> Error: object 'R_rocks' not found

There’s an implied contract between you and R: it will do the tedious
computation for you, but in return, you must be completely precise
in your instructions. Typos matter. Case matters.

Calling Functions
R has a large collection of built-in functions that are called like this:

function_name(arg1 = val1, arg2 = val2, ...)

Let’s try using seq(), which makes regular *seq*uences of numbers
and, while we’re at it, learn more helpful features of RStudio. Type
se and hit Tab. A pop-up shows you possible completions. Specify
seq() by typing more (a “q”) to disambiguate, or by using ↑/↓
arrows to select. Notice the floating tooltip that pops up, reminding
you of the function’s arguments and purpose. If you want more help,
press F1 to get all the details in the help tab in the lower-right pane.

Press Tab once more when you’ve selected the function you want.
RStudio will add matching opening (() and closing ()) parentheses
for you. Type the arguments 1, 10 and hit Return:

seq(1, 10)
#> [1] 1 2 3 4 5 6 7 8 9 10

Type this code and notice similar assistance help with the paired
quotation marks:

x <- "hello world"

Quotation marks and parentheses must always come in a pair. RStu‐
dio does its best to help you, but it’s still possible to mess up and end
up with a mismatch. If this happens, R will show you the continua‐
tion character “+”:

> x <- "hello
+

Calling Functions | 39

The + tells you that R is waiting for more input; it doesn’t think
you’re done yet. Usually that means you’ve forgotten either a " or
a). Either add the missing pair, or press Esc to abort the expression
and try again.

If you make an assignment, you don’t get to see the value. You’re
then tempted to immediately double-check the result:

y <- seq(1, 10, length.out = 5)
y
#> [1] 1.00 3.25 5.50 7.75 10.00

This common action can be shortened by surrounding the assign‐
ment with parentheses, which causes assignment and “print to
screen” to happen:

(y <- seq(1, 10, length.out = 5))
#> [1] 1.00 3.25 5.50 7.75 10.00

Now look at your environment in the upper-right pane:

Here you can see all of the objects that you’ve created.

Exercises
1. Why does this code not work?

my_variable <- 10
my_varıable
#> Error in eval(expr, envir, enclos):
#> object 'my_varıable' not found

Look carefully! (This may seem like an exercise in pointlessness,
but training your brain to notice even the tiniest difference will
pay off when programming.)

2. Tweak each of the following R commands so that they run cor‐
rectly:

40 | Chapter 2: Workflow: Basics

library(tidyverse)

ggplot(dota = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy))

fliter(mpg, cyl = 8)
filter(diamond, carat > 3)

3. Press Alt-Shift-K. What happens? How can you get to the same
place using the menus?

Calling Functions | 41

CHAPTER 3

Data Transformation with dplyr

Introduction
Visualization is an important tool for insight generation, but it is
rare that you get the data in exactly the right form you need. Often
you’ll need to create some new variables or summaries, or maybe
you just want to rename the variables or reorder the observations in
order to make the data a little easier to work with. You’ll learn how
to do all that (and more!) in this chapter, which will teach you how
to transform your data using the dplyr package and a new dataset
on flights departing New York City in 2013.

Prerequisites
In this chapter we’re going to focus on how to use the dplyr package,
another core member of the tidyverse. We’ll illustrate the key ideas
using data from the nycflights13 package, and use ggplot2 to help
us understand the data.

library(nycflights13)
library(tidyverse)

Take careful note of the conflicts message that’s printed when you
load the tidyverse. It tells you that dplyr overwrites some functions
in base R. If you want to use the base version of these functions after
loading dplyr, you’ll need to use their full names: stats::filter()
and stats::lag().

43

nycflights13
To explore the basic data manipulation verbs of dplyr, we’ll use
nycflights13::flights. This data frame contains all 336,776
flights that departed from New York City in 2013. The data comes
from the US Bureau of Transportation Statistics, and is documented
in ?flights:

flights
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 517 515 2
#> 2 2013 1 1 533 529 4
#> 3 2013 1 1 542 540 2
#> 4 2013 1 1 544 545 -1
#> 5 2013 1 1 554 600 -6
#> 6 2013 1 1 554 558 -4
#> # ... with 336,776 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

You might notice that this data frame prints a little differently from
other data frames you might have used in the past: it only shows the
first few rows and all the columns that fit on one screen. (To see the
whole dataset, you can run View(flights), which will open the
dataset in the RStudio viewer.) It prints differently because it’s a tib‐
ble. Tibbles are data frames, but slightly tweaked to work better in
the tidyverse. For now, you don’t need to worry about the differ‐
ences; we’ll come back to tibbles in more detail in Part II.

You might also have noticed the row of three- (or four-) letter abbre‐
viations under the column names. These describe the type of each
variable:

• int stands for integers.
• dbl stands for doubles, or real numbers.
• chr stands for character vectors, or strings.
• dttm stands for date-times (a date + a time).

There are three other common types of variables that aren’t used in
this dataset but you’ll encounter later in the book:

44 | Chapter 3: Data Transformation with dplyr

http://bit.ly/transstats

• lgl stands for logical, vectors that contain only TRUE or FALSE.
• fctr stands for factors, which R uses to represent categorical

variables with fixed possible values.
• date stands for dates.

dplyr Basics
In this chapter you are going to learn the five key dplyr functions
that allow you to solve the vast majority of your data-manipulation
challenges:

• Pick observations by their values (filter()).
• Reorder the rows (arrange()).
• Pick variables by their names (select()).
• Create new variables with functions of existing variables

(mutate()).
• Collapse many values down to a single summary (summa
rize()).

These can all be used in conjunction with group_by(), which
changes the scope of each function from operating on the entire
dataset to operating on it group-by-group. These six functions pro‐
vide the verbs for a language of data manipulation.

All verbs work similarly:

1. The first argument is a data frame.
2. The subsequent arguments describe what to do with the data

frame, using the variable names (without quotes).
3. The result is a new data frame.

Together these properties make it easy to chain together multiple
simple steps to achieve a complex result. Let’s dive in and see how
these verbs work.

Filter Rows with filter()
filter() allows you to subset observations based on their values.
The first argument is the name of the data frame. The second and

Filter Rows with filter() | 45

subsequent arguments are the expressions that filter the data frame.
For example, we can select all flights on January 1st with:

filter(flights, month == 1, day == 1)
#> # A tibble: 842 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 517 515 2
#> 2 2013 1 1 533 529 4
#> 3 2013 1 1 542 540 2
#> 4 2013 1 1 544 545 -1
#> 5 2013 1 1 554 600 -6
#> 6 2013 1 1 554 558 -4
#> # ... with 836 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>,origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

When you run that line of code, dplyr executes the filtering opera‐
tion and returns a new data frame. dplyr functions never modify
their inputs, so if you want to save the result, you’ll need to use the
assignment operator, <-:

jan1 <- filter(flights, month == 1, day == 1)

R either prints out the results, or saves them to a variable. If you
want to do both, you can wrap the assignment in parentheses:

(dec25 <- filter(flights, month == 12, day == 25))
#> # A tibble: 719 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 12 25 456 500 -4
#> 2 2013 12 25 524 515 9
#> 3 2013 12 25 542 540 2
#> 4 2013 12 25 546 550 -4
#> 5 2013 12 25 556 600 -4
#> 6 2013 12 25 557 600 -3
#> # ... with 713 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>,origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

Comparisons
To use filtering effectively, you have to know how to select the obser‐
vations that you want using the comparison operators. R provides
the standard suite: >, >=, <, <=, != (not equal), and == (equal).

46 | Chapter 3: Data Transformation with dplyr

When you’re starting out with R, the easiest mistake to make is to
use = instead of == when testing for equality. When this happens
you’ll get an informative error:

filter(flights, month = 1)
#> Error: filter() takes unnamed arguments. Do you need `==`?

There’s another common problem you might encounter when using
==: floating-point numbers. These results might surprise you!

sqrt(2) ^ 2 == 2
#> [1] FALSE
1/49 * 49 == 1
#> [1] FALSE

Computers use finite precision arithmetic (they obviously can’t store
an infinite number of digits!) so remember that every number you
see is an approximation. Instead of relying on ==, use near():

near(sqrt(2) ^ 2, 2)
#> [1] TRUE
near(1 / 49 * 49, 1)
#> [1] TRUE

Logical Operators
Multiple arguments to filter() are combined with “and”: every
expression must be true in order for a row to be included in the out‐
put. For other types of combinations, you’ll need to use Boolean
operators yourself: & is “and,” | is “or,” and ! is “not.” The following
figure shows the complete set of Boolean operations.

The following code finds all flights that departed in November or
December:

Filter Rows with filter() | 47

filter(flights, month == 11 | month == 12)

The order of operations doesn’t work like English. You can’t write
filter(flights, month == 11 | 12), which you might literally
translate into “finds all flights that departed in November or Decem‐
ber.” Instead it finds all months that equal 11 | 12, an expression
that evaluates to TRUE. In a numeric context (like here), TRUE
becomes one, so this finds all flights in January, not November or
December. This is quite confusing!

A useful shorthand for this problem is x %in% y. This will select
every row where x is one of the values in y. We could use it to
rewrite the preceding code:

nov_dec <- filter(flights, month %in% c(11, 12))

Sometimes you can simplify complicated subsetting by remember‐
ing De Morgan’s law: !(x & y) is the same as !x | !y, and !(x |
y) is the same as !x & !y. For example, if you wanted to find flights
that weren’t delayed (on arrival or departure) by more than two
hours, you could use either of the following two filters:

filter(flights, !(arr_delay > 120 | dep_delay > 120))
filter(flights, arr_delay <= 120, dep_delay <= 120)

As well as & and |, R also has && and ||. Don’t use them here! You’ll
learn when you should use them in “Conditional Execution” on page
276.

Whenever you start using complicated, multipart expressions in fil
ter(), consider making them explicit variables instead. That makes
it much easier to check your work. You’ll learn how to create new
variables shortly.

Missing Values
One important feature of R that can make comparison tricky is
missing values, or NAs (“not availables”). NA represents an unknown
value so missing values are “contagious”; almost any operation
involving an unknown value will also be unknown:

NA > 5
#> [1] NA
10 == NA
#> [1] NA
NA + 10
#> [1] NA

48 | Chapter 3: Data Transformation with dplyr

NA / 2
#> [1] NA

The most confusing result is this one:

NA == NA
#> [1] NA

It’s easiest to understand why this is true with a bit more context:

Let x be Mary's age. We don't know how old she is.
x <- NA

Let y be John's age. We don't know how old he is.
y <- NA

Are John and Mary the same age?
x == y
#> [1] NA
We don't know!

If you want to determine if a value is missing, use is.na():

is.na(x)
#> [1] TRUE

filter() only includes rows where the condition is TRUE; it
excludes both FALSE and NA values. If you want to preserve missing
values, ask for them explicitly:

df <- tibble(x = c(1, NA, 3))
filter(df, x > 1)
#> # A tibble: 1 × 1
#> x
#> <dbl>
#> 1 3
filter(df, is.na(x) | x > 1)
#> # A tibble: 2 × 1
#> x
#> <dbl>
#> 1 NA
#> 2 3

Exercises
1. Find all flights that:

a. Had an arrival delay of two or more hours
b. Flew to Houston (IAH or HOU)
c. Were operated by United, American, or Delta

Filter Rows with filter() | 49

d. Departed in summer (July, August, and September)
e. Arrived more than two hours late, but didn’t leave late
f. Were delayed by at least an hour, but made up over 30

minutes in flight
g. Departed between midnight and 6 a.m. (inclusive)

2. Another useful dplyr filtering helper is between(). What does it
do? Can you use it to simplify the code needed to answer the
previous challenges?

3. How many flights have a missing dep_time? What other vari‐
ables are missing? What might these rows represent?

4. Why is NA ^ 0 not missing? Why is NA | TRUE not missing?
Why is FALSE & NA not missing? Can you figure out the general
rule? (NA * 0 is a tricky counterexample!)

Arrange Rows with arrange()
arrange() works similarly to filter() except that instead of select‐
ing rows, it changes their order. It takes a data frame and a set of col‐
umn names (or more complicated expressions) to order by. If you
provide more than one column name, each additional column will
be used to break ties in the values of preceding columns:

arrange(flights, year, month, day)
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 517 515 2
#> 2 2013 1 1 533 529 4
#> 3 2013 1 1 542 540 2
#> 4 2013 1 1 544 545 -1
#> 5 2013 1 1 554 600 -6
#> 6 2013 1 1 554 558 -4
#> # ... with 3.368e+05 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

Use desc() to reorder by a column in descending order:

arrange(flights, desc(arr_delay))
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay

50 | Chapter 3: Data Transformation with dplyr

#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 9 641 900 1301
#> 2 2013 6 15 1432 1935 1137
#> 3 2013 1 10 1121 1635 1126
#> 4 2013 9 20 1139 1845 1014
#> 5 2013 7 22 845 1600 1005
#> 6 2013 4 10 1100 1900 960
#> # ... with 3.368e+05 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>,

Missing values are always sorted at the end:

df <- tibble(x = c(5, 2, NA))
arrange(df, x)
#> # A tibble: 3 × 1
#> x
#> <dbl>
#> 1 2
#> 2 5
#> 3 NA
arrange(df, desc(x))
#> # A tibble: 3 × 1
#> x
#> <dbl>
#> 1 5
#> 2 2
#> 3 NA

Exercises
1. How could you use arrange() to sort all missing values to the

start? (Hint: use is.na().)
2. Sort flights to find the most delayed flights. Find the flights

that left earliest.
3. Sort flights to find the fastest flights.
4. Which flights traveled the longest? Which traveled the shortest?

Select Columns with select()
It’s not uncommon to get datasets with hundreds or even thousands
of variables. In this case, the first challenge is often narrowing in on
the variables you’re actually interested in. select() allows you to

Select Columns with select() | 51

rapidly zoom in on a useful subset using operations based on the
names of the variables.

select() is not terribly useful with the flight data because we only
have 19 variables, but you can still get the general idea:

Select columns by name
select(flights, year, month, day)
#> # A tibble: 336,776 × 3
#> year month day
#> <int> <int> <int>
#> 1 2013 1 1
#> 2 2013 1 1
#> 3 2013 1 1
#> 4 2013 1 1
#> 5 2013 1 1
#> 6 2013 1 1
#> # ... with 3.368e+05 more rows

Select all columns between year and day (inclusive)
select(flights, year:day)
#> # A tibble: 336,776 × 3
#> year month day
#> <int> <int> <int>
#> 1 2013 1 1
#> 2 2013 1 1
#> 3 2013 1 1
#> 4 2013 1 1
#> 5 2013 1 1
#> 6 2013 1 1
#> # ... with 3.368e+05 more rows

Select all columns except those from year to day (inclusive)
select(flights, -(year:day))
#> # A tibble: 336,776 × 16
#> dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <dbl> <int> <int>
#> 1 517 515 2 830 819
#> 2 533 529 4 850 830
#> 3 542 540 2 923 850
#> 4 544 545 -1 1004 1022
#> 5 554 600 -6 812 837
#> 6 554 558 -4 740 728
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>,
#> # time_hour <dttm>

There are a number of helper functions you can use within
select():

52 | Chapter 3: Data Transformation with dplyr

• starts_with("abc") matches names that begin with “abc”.
• ends_with("xyz") matches names that end with “xyz”.
• contains("ijk") matches names that contain “ijk”.
• matches("(.)\\1") selects variables that match a regular

expression. This one matches any variables that contain
repeated characters. You’ll learn more about regular expressions
in Chapter 11.

• num_range("x", 1:3) matches x1, x2, and x3.

See ?select for more details.

select() can be used to rename variables, but it’s rarely useful
because it drops all of the variables not explicitly mentioned.
Instead, use rename(), which is a variant of select() that keeps all
the variables that aren’t explicitly mentioned:

rename(flights, tail_num = tailnum)
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 517 515 2
#> 2 2013 1 1 533 529 4
#> 3 2013 1 1 542 540 2
#> 4 2013 1 1 544 545 -1
#> 5 2013 1 1 554 600 -6
#> 6 2013 1 1 554 558 -4
#> # ... with 3.368e+05 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tail_num <chr>,
#> # origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>,
#> # time_hour <dttm>

Another option is to use select() in conjunction with the every
thing() helper. This is useful if you have a handful of variables
you’d like to move to the start of the data frame:

select(flights, time_hour, air_time, everything())
#> # A tibble: 336,776 × 19
#> time_hour air_time year month day dep_time
#> <dttm> <dbl> <int> <int> <int> <int>
#> 1 2013-01-01 05:00:00 227 2013 1 1 517
#> 2 2013-01-01 05:00:00 227 2013 1 1 533
#> 3 2013-01-01 05:00:00 160 2013 1 1 542
#> 4 2013-01-01 05:00:00 183 2013 1 1 544
#> 5 2013-01-01 06:00:00 116 2013 1 1 554

Select Columns with select() | 53

#> 6 2013-01-01 05:00:00 150 2013 1 1 554
#> # ... with 3.368e+05 more rows, and 13 more variables:
#> # sched_dep_time <int>, dep_delay <dbl>, arr_time <int>,
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
#> # flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> # distance <dbl>, hour <dbl>, minute <dbl>

Exercises
1. Brainstorm as many ways as possible to select dep_time,

dep_delay, arr_time, and arr_delay from flights.
2. What happens if you include the name of a variable multiple

times in a select() call?
3. What does the one_of() function do? Why might it be helpful

in conjunction with this vector?
vars <- c(
 "year", "month", "day", "dep_delay", "arr_delay"
)

4. Does the result of running the following code surprise you?
How do the select helpers deal with case by default? How can
you change that default?

select(flights, contains("TIME"))

Add New Variables with mutate()
Besides selecting sets of existing columns, it’s often useful to add
new columns that are functions of existing columns. That’s the job
of mutate().

mutate() always adds new columns at the end of your dataset so
we’ll start by creating a narrower dataset so we can see the new vari‐
ables. Remember that when you’re in RStudio, the easiest way to see
all the columns is View():

flights_sml <- select(flights,
 year:day,
 ends_with("delay"),
 distance,
 air_time
)
mutate(flights_sml,
 gain = arr_delay - dep_delay,
 speed = distance / air_time * 60

54 | Chapter 3: Data Transformation with dplyr

)
#> # A tibble: 336,776 × 9
#> year month day dep_delay arr_delay distance air_time
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 2013 1 1 2 11 1400 227
#> 2 2013 1 1 4 20 1416 227
#> 3 2013 1 1 2 33 1089 160
#> 4 2013 1 1 -1 -18 1576 183
#> 5 2013 1 1 -6 -25 762 116
#> 6 2013 1 1 -4 12 719 150
#> # ... with 3.368e+05 more rows, and 2 more variables:
#> # gain <dbl>, speed <dbl>

Note that you can refer to columns that you’ve just created:

mutate(flights_sml,
 gain = arr_delay - dep_delay,
 hours = air_time / 60,
 gain_per_hour = gain / hours
)
#> # A tibble: 336,776 × 10
#> year month day dep_delay arr_delay distance air_time
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 2013 1 1 2 11 1400 227
#> 2 2013 1 1 4 20 1416 227
#> 3 2013 1 1 2 33 1089 160
#> 4 2013 1 1 -1 -18 1576 183
#> 5 2013 1 1 -6 -25 762 116
#> 6 2013 1 1 -4 12 719 150
#> # ... with 3.368e+05 more rows, and 3 more variables:
#> # gain <dbl>, hours <dbl>, gain_per_hour <dbl>

If you only want to keep the new variables, use transmute():

transmute(flights,
 gain = arr_delay - dep_delay,
 hours = air_time / 60,
 gain_per_hour = gain / hours
)
#> # A tibble: 336,776 × 3
#> gain hours gain_per_hour
#> <dbl> <dbl> <dbl>
#> 1 9 3.78 2.38
#> 2 16 3.78 4.23
#> 3 31 2.67 11.62
#> 4 -17 3.05 -5.57
#> 5 -19 1.93 -9.83
#> 6 16 2.50 6.40
#> # ... with 3.368e+05 more rows

Add New Variables with mutate() | 55

Useful Creation Functions
There are many functions for creating new variables that you can
use with mutate(). The key property is that the function must be
vectorized: it must take a vector of values as input, and return a vec‐
tor with the same number of values as output. There’s no way to list
every possible function that you might use, but here’s a selection of
functions that are frequently useful:

Arithmetic operators +, -, *, /, ^
These are all vectorized, using the so-called “recycling rules.” If
one parameter is shorter than the other, it will be automatically
extended to be the same length. This is most useful when one of
the arguments is a single number: air_time / 60, hours * 60
+ minute, etc.

Arithmetic operators are also useful in conjunction with the
aggregate functions you’ll learn about later. For example, x /
sum(x) calculates the proportion of a total, and y - mean(y)
computes the difference from the mean.

Modular arithmetic (%/% and %%)
%/% (integer division) and %% (remainder), where x == y * (x
%/% y) + (x %% y). Modular arithmetic is a handy tool
because it allows you to break integers into pieces. For example,
in the flights dataset, you can compute hour and minute from
dep_time with:

transmute(flights,
 dep_time,
 hour = dep_time %/% 100,
 minute = dep_time %% 100
)
#> # A tibble: 336,776 × 3
#> dep_time hour minute
#> <int> <dbl> <dbl>
#> 1 517 5 17
#> 2 533 5 33
#> 3 542 5 42
#> 4 544 5 44
#> 5 554 5 54
#> 6 554 5 54
#> # ... with 3.368e+05 more rows

56 | Chapter 3: Data Transformation with dplyr

Logs log(), log2(), log10()
Logarithms are an incredibly useful transformation for dealing
with data that ranges across multiple orders of magnitude. They
also convert multiplicative relationships to additive, a feature
we’ll come back to in Part IV.

All else being equal, I recommend using log2() because it’s easy
to interpret: a difference of 1 on the log scale corresponds to
doubling on the original scale and a difference of –1 corre‐
sponds to halving.

Offsets
lead() and lag() allow you to refer to leading or lagging val‐
ues. This allows you to compute running differences (e.g., x -
lag(x)) or find when values change (x != lag(x)). They are
most useful in conjunction with group_by(), which you’ll learn
about shortly:

(x <- 1:10)
#> [1] 1 2 3 4 5 6 7 8 9 10
lag(x)
#> [1] NA 1 2 3 4 5 6 7 8 9
lead(x)
#> [1] 2 3 4 5 6 7 8 9 10 NA

Cumulative and rolling aggregates
R provides functions for running sums, products, mins, and
maxes: cumsum(), cumprod(), cummin(), cummax(); and dplyr
provides cummean() for cumulative means. If you need rolling
aggregates (i.e., a sum computed over a rolling window), try the
RcppRoll package:

x
#> [1] 1 2 3 4 5 6 7 8 9 10
cumsum(x)
#> [1] 1 3 6 10 15 21 28 36 45 55
cummean(x)
#> [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Logical comparisons <, <=, >, >=, !=
If you’re doing a complex sequence of logical operations it’s
often a good idea to store the interim values in new variables so
you can check that each step is working as expected.

Add New Variables with mutate() | 57

Ranking
There are a number of ranking functions, but you should start
with min_rank(). It does the most usual type of ranking (e.g.,
first, second, third, fourth). The default gives the smallest values
the smallest ranks; use desc(x) to give the largest values the
smallest ranks:

y <- c(1, 2, 2, NA, 3, 4)
min_rank(y)
#> [1] 1 2 2 NA 4 5
min_rank(desc(y))
#> [1] 5 3 3 NA 2 1

If min_rank() doesn’t do what you need, look at the variants
row_number(), dense_rank(), percent_rank(), cume_dist(),
and ntile(). See their help pages for more details:

row_number(y)
#> [1] 1 2 3 NA 4 5
dense_rank(y)
#> [1] 1 2 2 NA 3 4
percent_rank(y)
#> [1] 0.00 0.25 0.25 NA 0.75 1.00
cume_dist(y)
#> [1] 0.2 0.6 0.6 NA 0.8 1.0

Exercises
1. Currently dep_time and sched_dep_time are convenient to look

at, but hard to compute with because they’re not really continu‐
ous numbers. Convert them to a more convenient representa‐
tion of number of minutes since midnight.

2. Compare air_time with arr_time - dep_time. What do you
expect to see? What do you see? What do you need to do to fix
it?

3. Compare dep_time, sched_dep_time, and dep_delay. How
would you expect those three numbers to be related?

4. Find the 10 most delayed flights using a ranking function. How
do you want to handle ties? Carefully read the documentation
for min_rank().

5. What does 1:3 + 1:10 return? Why?
6. What trigonometric functions does R provide?

58 | Chapter 3: Data Transformation with dplyr

Grouped Summaries with summarize()
The last key verb is summarize(). It collapses a data frame to a single
row:

summarize(flights, delay = mean(dep_delay, na.rm = TRUE))
#> # A tibble: 1 × 1
#> delay
#> <dbl>
#> 1 12.6

(We’ll come back to what that na.rm = TRUE means very shortly.)

summarize() is not terribly useful unless we pair it with group_by().
This changes the unit of analysis from the complete dataset to indi‐
vidual groups. Then, when you use the dplyr verbs on a grouped
data frame they’ll be automatically applied “by group.” For example,
if we applied exactly the same code to a data frame grouped by date,
we get the average delay per date:

by_day <- group_by(flights, year, month, day)
summarize(by_day, delay = mean(dep_delay, na.rm = TRUE))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]
#>
#> year month day delay
#> <int> <int> <int> <dbl>
#> 1 2013 1 1 11.55
#> 2 2013 1 2 13.86
#> 3 2013 1 3 10.99
#> 4 2013 1 4 8.95
#> 5 2013 1 5 5.73
#> 6 2013 1 6 7.15
#> # ... with 359 more rows

Together group_by() and summarize() provide one of the tools that
you’ll use most commonly when working with dplyr: grouped sum‐
maries. But before we go any further with this, we need to introduce
a powerful new idea: the pipe.

Combining Multiple Operations with the Pipe
Imagine that we want to explore the relationship between the dis‐
tance and average delay for each location. Using what you know
about dplyr, you might write code like this:

by_dest <- group_by(flights, dest)
delay <- summarize(by_dest,
 count = n(),

Grouped Summaries with summarize() | 59

 dist = mean(distance, na.rm = TRUE),
 delay = mean(arr_delay, na.rm = TRUE)
)
delay <- filter(delay, count > 20, dest != "HNL")

It looks like delays increase with distance up to ~750 miles
and then decrease. Maybe as flights get longer there's more
ability to make up delays in the air?
ggplot(data = delay, mapping = aes(x = dist, y = delay)) +
 geom_point(aes(size = count), alpha = 1/3) +
 geom_smooth(se = FALSE)
#> `geom_smooth()` using method = 'loess'

There are three steps to prepare this data:

1. Group flights by destination.
2. Summarize to compute distance, average delay, and number of

flights.
3. Filter to remove noisy points and Honolulu airport, which is

almost twice as far away as the next closest airport.

This code is a little frustrating to write because we have to give each
intermediate data frame a name, even though we don’t care about it.
Naming things is hard, so this slows down our analysis.

There’s another way to tackle the same problem with the pipe, %>%:

delays <- flights %>%
 group_by(dest) %>%
 summarize(
 count = n(),

60 | Chapter 3: Data Transformation with dplyr

 dist = mean(distance, na.rm = TRUE),
 delay = mean(arr_delay, na.rm = TRUE)
) %>%
 filter(count > 20, dest != "HNL")

This focuses on the transformations, not what’s being transformed,
which makes the code easier to read. You can read it as a series of
imperative statements: group, then summarize, then filter. As sug‐
gested by this reading, a good way to pronounce %>% when reading
code is “then.”

Behind the scenes, x %>% f(y) turns into f(x, y), and x %>% f(y)
%>% g(z) turns into g(f(x, y), z), and so on. You can use the pipe
to rewrite multiple operations in a way that you can read left-to-
right, top-to-bottom. We’ll use piping frequently from now on
because it considerably improves the readability of code, and we’ll
come back to it in more detail in Chapter 14.

Working with the pipe is one of the key criteria for belonging to the
tidyverse. The only exception is ggplot2: it was written before the
pipe was discovered. Unfortunately, the next iteration of ggplot2,
ggvis, which does use the pipe, isn’t ready for prime time yet.

Missing Values
You may have wondered about the na.rm argument we used earlier.
What happens if we don’t set it?

flights %>%
 group_by(year, month, day) %>%
 summarize(mean = mean(dep_delay))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]
#>
#> year month day mean
#> <int> <int> <int> <dbl>
#> 1 2013 1 1 NA
#> 2 2013 1 2 NA
#> 3 2013 1 3 NA
#> 4 2013 1 4 NA
#> 5 2013 1 5 NA
#> 6 2013 1 6 NA
#> # ... with 359 more rows

We get a lot of missing values! That’s because aggregation functions
obey the usual rule of missing values: if there’s any missing value in
the input, the output will be a missing value. Fortunately, all aggre‐

Grouped Summaries with summarize() | 61

gation functions have an na.rm argument, which removes the miss‐
ing values prior to computation:

flights %>%
 group_by(year, month, day) %>%
 summarize(mean = mean(dep_delay, na.rm = TRUE))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]
#>
#> year month day mean
#> <int> <int> <int> <dbl>
#> 1 2013 1 1 11.55
#> 2 2013 1 2 13.86
#> 3 2013 1 3 10.99
#> 4 2013 1 4 8.95
#> 5 2013 1 5 5.73
#> 6 2013 1 6 7.15
#> # ... with 359 more rows

In this case, where missing values represent cancelled flights, we
could also tackle the problem by first removing the cancelled flights.
We’ll save this dataset so we can reuse it in the next few examples:

not_cancelled <- flights %>%
 filter(!is.na(dep_delay), !is.na(arr_delay))

not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(mean = mean(dep_delay))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]
#>
#> year month day mean
#> <int> <int> <int> <dbl>
#> 1 2013 1 1 11.44
#> 2 2013 1 2 13.68
#> 3 2013 1 3 10.91
#> 4 2013 1 4 8.97
#> 5 2013 1 5 5.73
#> 6 2013 1 6 7.15
#> # ... with 359 more rows

Counts
Whenever you do any aggregation, it’s always a good idea to include
either a count (n()), or a count of nonmissing values
(sum(!is.na(x))). That way you can check that you’re not drawing
conclusions based on very small amounts of data. For example, let’s

62 | Chapter 3: Data Transformation with dplyr

look at the planes (identified by their tail number) that have the
highest average delays:

delays <- not_cancelled %>%
 group_by(tailnum) %>%
 summarize(
 delay = mean(arr_delay)
)

ggplot(data = delays, mapping = aes(x = delay)) +
 geom_freqpoly(binwidth = 10)

Wow, there are some planes that have an average delay of 5 hours
(300 minutes)!

The story is actually a little more nuanced. We can get more insight
if we draw a scatterplot of number of flights versus average delay:

delays <- not_cancelled %>%
 group_by(tailnum) %>%
 summarize(
 delay = mean(arr_delay, na.rm = TRUE),
 n = n()
)

ggplot(data = delays, mapping = aes(x = n, y = delay)) +
 geom_point(alpha = 1/10)

Grouped Summaries with summarize() | 63

Not surprisingly, there is much greater variation in the average delay
when there are few flights. The shape of this plot is very characteris‐
tic: whenever you plot a mean (or other summary) versus group
size, you’ll see that the variation decreases as the sample size increa‐
ses.

When looking at this sort of plot, it’s often useful to filter out the
groups with the smallest numbers of observations, so you can see
more of the pattern and less of the extreme variation in the smallest
groups. This is what the following code does, as well as showing you
a handy pattern for integrating ggplot2 into dplyr flows. It’s a bit
painful that you have to switch from %>% to +, but once you get the
hang of it, it’s quite convenient:

delays %>%
 filter(n > 25) %>%
 ggplot(mapping = aes(x = n, y = delay)) +
 geom_point(alpha = 1/10)

64 | Chapter 3: Data Transformation with dplyr

RStudio tip: a useful keyboard shortcut is Cmd/
Ctrl-Shift-P. This resends the previously sent
chunk from the editor to the console. This is
very convenient when you’re (e.g.) exploring the
value of n in the preceding example. You send
the whole block once with Cmd/Ctrl-Enter, then
you modify the value of n and press Cmd/Ctrl-
Shift-P to resend the complete block.

There’s another common variation of this type of pattern. Let’s look
at how the average performance of batters in baseball is related to
the number of times they’re at bat. Here I use data from the Lahman
package to compute the batting average (number of hits / number of
attempts) of every major league baseball player.

When I plot the skill of the batter (measured by the batting average,
ba) against the number of opportunities to hit the ball (measured by
at bat, ab), you see two patterns:

• As above, the variation in our aggregate decreases as we get
more data points.

• There’s a positive correlation between skill (ba) and opportuni‐
ties to hit the ball (ab). This is because teams control who gets to
play, and obviously they’ll pick their best players:

Convert to a tibble so it prints nicely
batting <- as_tibble(Lahman::Batting)

batters <- batting %>%
 group_by(playerID) %>%
 summarize(
 ba = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),
 ab = sum(AB, na.rm = TRUE)
)

batters %>%
 filter(ab > 100) %>%
 ggplot(mapping = aes(x = ab, y = ba)) +
 geom_point() +
 geom_smooth(se = FALSE)
#> `geom_smooth()` using method = 'gam'

Grouped Summaries with summarize() | 65

This also has important implications for ranking. If you naively sort
on desc(ba), the people with the best batting averages are clearly
lucky, not skilled:

batters %>%
 arrange(desc(ba))
#> # A tibble: 18,659 × 3
#> playerID ba ab
#> <chr> <dbl> <int>
#> 1 abramge01 1 1
#> 2 banisje01 1 1
#> 3 bartocl01 1 1
#> 4 bassdo01 1 1
#> 5 birasst01 1 2
#> 6 bruneju01 1 1
#> # ... with 1.865e+04 more rows

You can find a good explanation of this problem at http://bit.ly/
Bayesbbal and http://bit.ly/notsortavg.

Useful Summary Functions
Just using means, counts, and sum can get you a long way, but R
provides many other useful summary functions:

Measures of location
We’ve used mean(x), but median(x) is also useful. The mean is
the sum divided by the length; the median is a value where 50%
of x is above it, and 50% is below it.

66 | Chapter 3: Data Transformation with dplyr

http://bit.ly/Bayesbbal
http://bit.ly/Bayesbbal
http://bit.ly/notsortavg

It’s sometimes useful to combine aggregation with logical sub‐
setting. We haven’t talked about this sort of subsetting yet, but
you’ll learn more about it in “Subsetting” on page 304:

not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(
 # average delay:
 avg_delay1 = mean(arr_delay),
 # average positive delay:
 avg_delay2 = mean(arr_delay[arr_delay > 0])
)
#> Source: local data frame [365 x 5]
#> Groups: year, month [?]
#>
#> year month day avg_delay1 avg_delay2
#> <int> <int> <int> <dbl> <dbl>
#> 1 2013 1 1 12.65 32.5
#> 2 2013 1 2 12.69 32.0
#> 3 2013 1 3 5.73 27.7
#> 4 2013 1 4 -1.93 28.3
#> 5 2013 1 5 -1.53 22.6
#> 6 2013 1 6 4.24 24.4
#> # ... with 359 more rows

Measures of spread sd(x), IQR(x), mad(x)
The mean squared deviation, or standard deviation or sd for
short, is the standard measure of spread. The interquartile range
IQR() and median absolute deviation mad(x) are robust equiva‐
lents that may be more useful if you have outliers:

Why is distance to some destinations more variable
than to others?
not_cancelled %>%
 group_by(dest) %>%
 summarize(distance_sd = sd(distance)) %>%
 arrange(desc(distance_sd))
#> # A tibble: 104 × 2
#> dest distance_sd
#> <chr> <dbl>
#> 1 EGE 10.54
#> 2 SAN 10.35
#> 3 SFO 10.22
#> 4 HNL 10.00
#> 5 SEA 9.98
#> 6 LAS 9.91
#> # ... with 98 more rows

Grouped Summaries with summarize() | 67

Measures of rank min(x), quantile(x, 0.25), max(x)
Quantiles are a generalization of the median. For example, quan
tile(x, 0.25) will find a value of x that is greater than 25% of
the values, and less than the remaining 75%:

When do the first and last flights leave each day?
not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(
 first = min(dep_time),
 last = max(dep_time)
)
#> Source: local data frame [365 x 5]
#> Groups: year, month [?]
#>
#> year month day first last
#> <int> <int> <int> <int> <int>
#> 1 2013 1 1 517 2356
#> 2 2013 1 2 42 2354
#> 3 2013 1 3 32 2349
#> 4 2013 1 4 25 2358
#> 5 2013 1 5 14 2357
#> 6 2013 1 6 16 2355
#> # ... with 359 more rows

Measures of position first(x), nth(x, 2), last(x)
These work similarly to x[1], x[2], and x[length(x)] but let
you set a default value if that position does not exist (i.e., you’re
trying to get the third element from a group that only has two
elements). For example, we can find the first and last departure
for each day:

not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(
 first_dep = first(dep_time),
 last_dep = last(dep_time)
)
#> Source: local data frame [365 x 5]
#> Groups: year, month [?]
#>
#> year month day first_dep last_dep
#> <int> <int> <int> <int> <int>
#> 1 2013 1 1 517 2356
#> 2 2013 1 2 42 2354
#> 3 2013 1 3 32 2349
#> 4 2013 1 4 25 2358
#> 5 2013 1 5 14 2357

68 | Chapter 3: Data Transformation with dplyr

#> 6 2013 1 6 16 2355
#> # ... with 359 more rows

These functions are complementary to filtering on ranks. Filter‐
ing gives you all variables, with each observation in a separate
row:

not_cancelled %>%
 group_by(year, month, day) %>%
 mutate(r = min_rank(desc(dep_time))) %>%
 filter(r %in% range(r))
#> Source: local data frame [770 x 20]
#> Groups: year, month, day [365]
#>
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 517 515 2
#> 2 2013 1 1 2356 2359 -3
#> 3 2013 1 2 42 2359 43
#> 4 2013 1 2 2354 2359 -5
#> 5 2013 1 3 32 2359 33
#> 6 2013 1 3 2349 2359 -10
#> # ... with 764 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>,
#> # arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>,
#> # air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>, r <int>

Counts
You’ve seen n(), which takes no arguments, and returns the size
of the current group. To count the number of non-missing val‐
ues, use sum(!is.na(x)). To count the number of distinct
(unique) values, use n_distinct(x):

Which destinations have the most carriers?
not_cancelled %>%
 group_by(dest) %>%
 summarize(carriers = n_distinct(carrier)) %>%
 arrange(desc(carriers))
#> # A tibble: 104 × 2
#> dest carriers
#> <chr> <int>
#> 1 ATL 7
#> 2 BOS 7
#> 3 CLT 7
#> 4 ORD 7
#> 5 TPA 7

Grouped Summaries with summarize() | 69

#> 6 AUS 6
#> # ... with 98 more rows

Counts are so useful that dplyr provides a simple helper if all
you want is a count:

not_cancelled %>%
 count(dest)
#> # A tibble: 104 × 2
#> dest n
#> <chr> <int>
#> 1 ABQ 254
#> 2 ACK 264
#> 3 ALB 418
#> 4 ANC 8
#> 5 ATL 16837
#> 6 AUS 2411
#> # ... with 98 more rows

You can optionally provide a weight variable. For example, you
could use this to “count” (sum) the total number of miles a
plane flew:

not_cancelled %>%
 count(tailnum, wt = distance)
#> # A tibble: 4,037 × 2
#> tailnum n
#> <chr> <dbl>
#> 1 D942DN 3418
#> 2 N0EGMQ 239143
#> 3 N10156 109664
#> 4 N102UW 25722
#> 5 N103US 24619
#> 6 N104UW 24616
#> # ... with 4,031 more rows

Counts and proportions of logical values sum(x > 10), mean(y == 0)
When used with numeric functions, TRUE is converted to 1 and
FALSE to 0. This makes sum() and mean() very useful: sum(x)
gives the number of TRUEs in x, and mean(x) gives the propor‐
tion:

How many flights left before 5am? (these usually
indicate delayed flights from the previous day)
not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(n_early = sum(dep_time < 500))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]

70 | Chapter 3: Data Transformation with dplyr

#>
#> year month day n_early
#> <int> <int> <int> <int>
#> 1 2013 1 1 0
#> 2 2013 1 2 3
#> 3 2013 1 3 4
#> 4 2013 1 4 3
#> 5 2013 1 5 3
#> 6 2013 1 6 2
#> # ... with 359 more rows

What proportion of flights are delayed by more
than an hour?
not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(hour_perc = mean(arr_delay > 60))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]
#>
#> year month day hour_perc
#> <int> <int> <int> <dbl>
#> 1 2013 1 1 0.0722
#> 2 2013 1 2 0.0851
#> 3 2013 1 3 0.0567
#> 4 2013 1 4 0.0396
#> 5 2013 1 5 0.0349
#> 6 2013 1 6 0.0470
#> # ... with 359 more rows

Grouping by Multiple Variables
When you group by multiple variables, each summary peels off one
level of the grouping. That makes it easy to progressively roll up a
dataset:

daily <- group_by(flights, year, month, day)
(per_day <- summarize(daily, flights = n()))
#> Source: local data frame [365 x 4]
#> Groups: year, month [?]
#>
#> year month day flights
#> <int> <int> <int> <int>
#> 1 2013 1 1 842
#> 2 2013 1 2 943
#> 3 2013 1 3 914
#> 4 2013 1 4 915
#> 5 2013 1 5 720
#> 6 2013 1 6 832
#> # ... with 359 more rows

Grouped Summaries with summarize() | 71

(per_month <- summarize(per_day, flights = sum(flights)))
#> Source: local data frame [12 x 3]
#> Groups: year [?]
#>
#> year month flights
#> <int> <int> <int>
#> 1 2013 1 27004
#> 2 2013 2 24951
#> 3 2013 3 28834
#> 4 2013 4 28330
#> 5 2013 5 28796
#> 6 2013 6 28243
#> # ... with 6 more rows

(per_year <- summarize(per_month, flights = sum(flights)))
#> # A tibble: 1 × 2
#> year flights
#> <int> <int>
#> 1 2013 336776

Be careful when progressively rolling up summaries: it’s OK for
sums and counts, but you need to think about weighting means and
variances, and it’s not possible to do it exactly for rank-based statis‐
tics like the median. In other words, the sum of groupwise sums is
the overall sum, but the median of groupwise medians is not the
overall median.

Ungrouping
If you need to remove grouping, and return to operations on
ungrouped data, use ungroup():

daily %>%
 ungroup() %>% # no longer grouped by date
 summarize(flights = n()) # all flights
#> # A tibble: 1 × 1
#> flights
#> <int>
#> 1 336776

Exercises
1. Brainstorm at least five different ways to assess the typical delay

characteristics of a group of flights. Consider the following sce‐
narios:

72 | Chapter 3: Data Transformation with dplyr

• A flight is 15 minutes early 50% of the time, and 15 minutes
late 50% of the time.

• A flight is always 10 minutes late.
• A flight is 30 minutes early 50% of the time, and 30 minutes

late 50% of the time.
• 99% of the time a flight is on time. 1% of the time it’s 2 hours

late.

Which is more important: arrival delay or departure delay?
2. Come up with another approach that will give you the same

output as not_cancelled %>% count(dest) and not_cancel
led %>% count(tailnum, wt = distance) (without using
count()).

3. Our definition of cancelled flights (is.na(dep_delay) |

is.na(arr_delay)) is slightly suboptimal. Why? Which is the
most important column?

4. Look at the number of cancelled flights per day. Is there a pat‐
tern? Is the proportion of cancelled flights related to the average
delay?

5. Which carrier has the worst delays? Challenge: can you disen‐
tangle the effects of bad airports versus bad carriers? Why/why
not? (Hint: think about flights %>% group_by(carrier,

dest) %>% summarize(n()).)
6. For each plane, count the number of flights before the first delay

of greater than 1 hour.
7. What does the sort argument to count() do? When might you

use it?

Grouped Mutates (and Filters)
Grouping is most useful in conjunction with summarize(), but you
can also do convenient operations with mutate() and filter():

• Find the worst members of each group:
flights_sml %>%
 group_by(year, month, day) %>%
 filter(rank(desc(arr_delay)) < 10)

Grouped Mutates (and Filters) | 73

#> Source: local data frame [3,306 x 7]
#> Groups: year, month, day [365]
#>
#> year month day dep_delay arr_delay distance
#> <int> <int> <int> <dbl> <dbl> <dbl>
#> 1 2013 1 1 853 851 184
#> 2 2013 1 1 290 338 1134
#> 3 2013 1 1 260 263 266
#> 4 2013 1 1 157 174 213
#> 5 2013 1 1 216 222 708
#> 6 2013 1 1 255 250 589
#> # ... with 3,300 more rows, and 1 more variables:
#> # air_time <dbl>

• Find all groups bigger than a threshold:
popular_dests <- flights %>%
 group_by(dest) %>%
 filter(n() > 365)
popular_dests
#> Source: local data frame [332,577 x 19]
#> Groups: dest [77]
#>
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 517 515 2
#> 2 2013 1 1 533 529 4
#> 3 2013 1 1 542 540 2
#> 4 2013 1 1 544 545 -1
#> 5 2013 1 1 554 600 -6
#> 6 2013 1 1 554 558 -4
#> # ... with 3.326e+05 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>,
#> # arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>,
#> # air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

• Standardize to compute per group metrics:
popular_dests %>%
 filter(arr_delay > 0) %>%
 mutate(prop_delay = arr_delay / sum(arr_delay)) %>%
 select(year:day, dest, arr_delay, prop_delay)
#> Source: local data frame [131,106 x 6]
#> Groups: dest [77]
#>
#> year month day dest arr_delay prop_delay
#> <int> <int> <int> <chr> <dbl> <dbl>
#> 1 2013 1 1 IAH 11 1.11e-04

74 | Chapter 3: Data Transformation with dplyr

#> 2 2013 1 1 IAH 20 2.01e-04
#> 3 2013 1 1 MIA 33 2.35e-04
#> 4 2013 1 1 ORD 12 4.24e-05
#> 5 2013 1 1 FLL 19 9.38e-05
#> 6 2013 1 1 ORD 8 2.83e-05
#> # ... with 1.311e+05 more rows

A grouped filter is a grouped mutate followed by an ungrouped fil‐
ter. I generally avoid them except for quick-and-dirty manipula‐
tions: otherwise it’s hard to check that you’ve done the manipulation
correctly.

Functions that work most naturally in grouped mutates and filters
are known as window functions (versus the summary functions
used for summaries). You can learn more about useful window
functions in the corresponding vignette: vignette("window-

functions").

Exercises
1. Refer back to the table of useful mutate and filtering functions.

Describe how each operation changes when you combine it
with grouping.

2. Which plane (tailnum) has the worst on-time record?
3. What time of day should you fly if you want to avoid delays as

much as possible?
4. For each destination, compute the total minutes of delay. For

each flight, compute the proportion of the total delay for its
destination.

5. Delays are typically temporally correlated: even once the prob‐
lem that caused the initial delay has been resolved, later flights
are delayed to allow earlier flights to leave. Using lag() explores
how the delay of a flight is related to the delay of the immedi‐
ately preceding flight.

6. Look at each destination. Can you find flights that are suspi‐
ciously fast? (That is, flights that represent a potential data entry
error.) Compute the air time of a flight relative to the shortest
flight to that destination. Which flights were most delayed in the
air?

Grouped Mutates (and Filters) | 75

7. Find all destinations that are flown by at least two carriers. Use
that information to rank the carriers.

76 | Chapter 3: Data Transformation with dplyr

CHAPTER 4

Workflow: Scripts

So far you’ve been using the console to run code. That’s a great place
to start, but you’ll find it gets cramped pretty quickly as you create
more complex ggplot2 graphics and dplyr pipes. To give yourself
more room to work, it’s a great idea to use the script editor. Open it
up either by clicking the File menu and selecting New File, then R
script, or using the keyboard shortcut Cmd/Ctrl-Shift-N. Now you’ll
see four panes:

77

The script editor is a great place to put code you care about. Keep
experimenting in the console, but once you have written code that
works and does what you want, put it in the script editor. RStudio
will automatically save the contents of the editor when you quit
RStudio, and will automatically load it when you reopen. Neverthe‐
less, it’s a good idea to save your scripts regularly and to back them
up.

Running Code
The script editor is also a great place to build up complex ggplot2
plots or long sequences of dplyr manipulations. The key to using
the script editor effectively is to memorize one of the most impor‐
tant keyboard shortcuts: Cmd/Ctrl-Enter. This executes the current
R expression in the console. For example, take the following code. If
your cursor is at █, pressing Cmd/Ctrl-Enter will run the complete
command that generates not_cancelled. It will also move the cur‐
sor to the next statement (beginning with not_cancelled %>%).
That makes it easy to run your complete script by repeatedly press‐
ing Cmd/Ctrl-Enter:

library(dplyr)
library(nycflights13)

not_cancelled <- flights %>%
 filter(!is.na(dep_delay)█, !is.na(arr_delay))

not_cancelled %>%
 group_by(year, month, day) %>%
 summarize(mean = mean(dep_delay))

Instead of running expression-by-expression, you can also execute
the complete script in one step: Cmd/Ctrl-Shift-S. Doing this regu‐
larly is a great way to check that you’ve captured all the important
parts of your code in the script.

I recommend that you always start your script with the packages
that you need. That way, if you share your code with others, they can
easily see what packages they need to install. Note, however, that you
should never include install.packages() or setwd() in a script
that you share. It’s very antisocial to change settings on someone
else’s computer!

When working through future chapters, I highly recommend start‐
ing in the editor and practicing your keyboard shortcuts. Over time,

78 | Chapter 4: Workflow: Scripts

sending code to the console in this way will become so natural that
you won’t even think about it.

RStudio Diagnostics
The script editor will also highlight syntax errors with a red squiggly
line and a cross in the sidebar:

Hover over the cross to see what the problem is:

RStudio will also let you know about potential problems:

Exercises
1. Go to the RStudio Tips twitter account at @rstudiotips and find

one tip that looks interesting. Practice using it!
2. What other common mistakes will RStudio diagnostics report?

Read http://bit.ly/RStudiocodediag to find out.

RStudio Diagnostics | 79

https://twitter.com/rstudiotips
http://bit.ly/RStudiocodediag

CHAPTER 5

Exploratory Data Analysis

Introduction
This chapter will show you how to use visualization and transforma‐
tion to explore your data in a systematic way, a task that statisticians
call exploratory data analysis, or EDA for short. EDA is an iterative
cycle. You:

1. Generate questions about your data.
2. Search for answers by visualizing, transforming, and modeling

your data.
3. Use what you learn to refine your questions and/or generate

new questions.

EDA is not a formal process with a strict set of rules. More than any‐
thing, EDA is a state of mind. During the initial phases of EDA you
should feel free to investigate every idea that occurs to you. Some of
these ideas will pan out, and some will be dead ends. As your explo‐
ration continues, you will hone in on a few particularly productive
areas that you’ll eventually write up and communicate to others.

EDA is an important part of any data analysis, even if the questions
are handed to you on a platter, because you always need to investi‐
gate the quality of your data. Data cleaning is just one application of
EDA: you ask questions about whether or not your data meets your
expectations. To do data cleaning, you’ll need to deploy all the tools
of EDA: visualization, transformation, and modeling.

81

Prerequisites
In this chapter we’ll combine what you’ve learned about dplyr and
ggplot2 to interactively ask questions, answer them with data, and
then ask new questions.

library(tidyverse)

Questions
There are no routine statistical questions, only questionable statisti‐
cal routines.

—Sir David Cox

Far better an approximate answer to the right question, which is
often vague, than an exact answer to the wrong question, which can
always be made precise.

—John Tukey

Your goal during EDA is to develop an understanding of your data.
The easiest way to do this is to use questions as tools to guide your
investigation. When you ask a question, the question focuses your
attention on a specific part of your dataset and helps you decide
which graphs, models, or transformations to make.

EDA is fundamentally a creative process. And like most creative
processes, the key to asking quality questions is to generate a large
quantity of questions. It is difficult to ask revealing questions at the
start of your analysis because you do not know what insights are
contained in your dataset. On the other hand, each new question
that you ask will expose you to a new aspect of your data and
increase your chance of making a discovery. You can quickly drill
down into the most interesting parts of your data—and develop a set
of thought-provoking questions—if you follow up each question
with a new question based on what you find.

There is no rule about which questions you should ask to guide your
research. However, two types of questions will always be useful for
making discoveries within your data. You can loosely word these
questions as:

1. What type of variation occurs within my variables?
2. What type of covariation occurs between my variables?

82 | Chapter 5: Exploratory Data Analysis

The rest of this chapter will look at these two questions. I’ll explain
what variation and covariation are, and I’ll show you several ways to
answer each question. To make the discussion easier, let’s define
some terms:

• A variable is a quantity, quality, or property that you can meas‐
ure.

• A value is the state of a variable when you measure it. The value
of a variable may change from measurement to measurement.

• An observation, or a case, is a set of measurements made under
similar conditions (you usually make all of the measurements in
an observation at the same time and on the same object). An
observation will contain several values, each associated with a
different variable. I’ll sometimes refer to an observation as a
data point.

• Tabular data is a set of values, each associated with a variable
and an observation. Tabular data is tidy if each value is placed in
its own “cell,” each variable in its own column, and each obser‐
vation in its own row.

So far, all of the data that you’ve seen has been tidy. In real life, most
data isn’t tidy, so we’ll come back to these ideas again in Chapter 9.

Variation
Variation is the tendency of the values of a variable to change from
measurement to measurement. You can see variation easily in real
life; if you measure any continuous variable twice, you will get two
different results. This is true even if you measure quantities that are
constant, like the speed of light. Each of your measurements will
include a small amount of error that varies from measurement to
measurement. Categorical variables can also vary if you measure
across different subjects (e.g., the eye colors of different people), or
different times (e.g., the energy levels of an electron at different
moments). Every variable has its own pattern of variation, which
can reveal interesting information. The best way to understand that
pattern is to visualize the distribution of variables’ values.

Variation | 83

Visualizing Distributions
How you visualize the distribution of a variable will depend on
whether the variable is categorical or continuous. A variable is cate‐
gorical if it can only take one of a small set of values. In R, categori‐
cal variables are usually saved as factors or character vectors. To
examine the distribution of a categorical variable, use a bar chart:

ggplot(data = diamonds) +
 geom_bar(mapping = aes(x = cut))

The height of the bars displays how many observations occurred
with each x value. You can compute these values manually with
dplyr::count():

diamonds %>%
 count(cut)
#> # A tibble: 5 × 2
#> cut n
#> <ord> <int>
#> 1 Fair 1610
#> 2 Good 4906
#> 3 Very Good 12082
#> 4 Premium 13791
#> 5 Ideal 21551

A variable is continuous if it can take any of an infinite set of ordered
values. Numbers and date-times are two examples of continuous
variables. To examine the distribution of a continuous variable, use a
histogram:

84 | Chapter 5: Exploratory Data Analysis

ggplot(data = diamonds) +
 geom_histogram(mapping = aes(x = carat), binwidth = 0.5)

You can compute this by hand by combining dplyr::count() and
ggplot2::cut_width():

diamonds %>%
 count(cut_width(carat, 0.5))
#> # A tibble: 11 × 2
#> `cut_width(carat, 0.5)` n
#> <fctr> <int>
#> 1 [-0.25,0.25] 785
#> 2 (0.25,0.75] 29498
#> 3 (0.75,1.25] 15977
#> 4 (1.25,1.75] 5313
#> 5 (1.75,2.25] 2002
#> 6 (2.25,2.75] 322
#> # ... with 5 more rows

A histogram divides the x-axis into equally spaced bins and then
uses the height of each bar to display the number of observations
that fall in each bin. In the preceding graph, the tallest bar shows
that almost 30,000 observations have a carat value between 0.25
and 0.75, which are the left and right edges of the bar.

You can set the width of the intervals in a histogram with the bin
width argument, which is measured in the units of the x variable.
You should always explore a variety of binwidths when working
with histograms, as different binwidths can reveal different patterns.
For example, here is how the preceding graph looks when we zoom

Variation | 85

into just the diamonds with a size of less than three carats and
choose a smaller binwidth:

smaller <- diamonds %>%
 filter(carat < 3)

ggplot(data = smaller, mapping = aes(x = carat)) +
 geom_histogram(binwidth = 0.1)

If you wish to overlay multiple histograms in the same plot, I rec‐
ommend using geom_freqpoly() instead of geom_histogram().
geom_freqpoly() performs the same calculation as geom_histo
gram(), but instead of displaying the counts with bars, uses lines
instead. It’s much easier to understand overlapping lines than bars:

ggplot(data = smaller, mapping = aes(x = carat, color = cut)) +
 geom_freqpoly(binwidth = 0.1)

There are a few challenges with this type of plot, which we will come
back to in “A Categorical and Continuous Variable” on page 93.

86 | Chapter 5: Exploratory Data Analysis

Typical Values
In both bar charts and histograms, tall bars show the common val‐
ues of a variable, and shorter bars show less-common values. Places
that do not have bars reveal values that were not seen in your data.
To turn this information into useful questions, look for anything
unexpected:

• Which values are the most common? Why?
• Which values are rare? Why? Does that match your expecta‐

tions?
• Can you see any unusual patterns? What might explain them?

As an example, the following histogram suggests several interesting
questions:

• Why are there more diamonds at whole carats and common
fractions of carats?

• Why are there more diamonds slightly to the right of each peak
than there are slightly to the left of each peak?

• Why are there no diamonds bigger than 3 carats?

ggplot(data = smaller, mapping = aes(x = carat)) +
 geom_histogram(binwidth = 0.01)

In general, clusters of similar values suggest that subgroups exist in
your data. To understand the subgroups, ask:

Variation | 87

• How are the observations within each cluster similar to each
other?

• How are the observations in separate clusters different from
each other?

• How can you explain or describe the clusters?
• Why might the appearance of clusters be misleading?

The following histogram shows the length (in minutes) of 272 erup‐
tions of the Old Faithful Geyser in Yellowstone National Park. Erup‐
tion times appear to be clustered into two groups: there are short
eruptions (of around 2 minutes) and long eruptions (4–5 minutes),
but little in between:

ggplot(data = faithful, mapping = aes(x = eruptions)) +
 geom_histogram(binwidth = 0.25)

Many of the preceding questions will prompt you to explore a rela‐
tionship between variables, for example, to see if the values of one
variable can explain the behavior of another variable. We’ll get to
that shortly.

Unusual Values
Outliers are observations that are unusual; data points that don’t
seem to fit the pattern. Sometimes outliers are data entry errors;
other times outliers suggest important new science. When you have
a lot of data, outliers are sometimes difficult to see in a histogram.
For example, take the distribution of the y variable from the dia‐

88 | Chapter 5: Exploratory Data Analysis

monds dataset. The only evidence of outliers is the unusually wide
limits on the y-axis:

ggplot(diamonds) +
 geom_histogram(mapping = aes(x = y), binwidth = 0.5)

There are so many observations in the common bins that the rare
bins are so short that you can’t see them (although maybe if you
stare intently at 0 you’ll spot something). To make it easy to see the
unusual values, we need to zoom in to small values of the y-axis with
coord_cartesian():

ggplot(diamonds) +
 geom_histogram(mapping = aes(x = y), binwidth = 0.5) +
 coord_cartesian(ylim = c(0, 50))

Variation | 89

(coord_cartesian() also has an xlim() argument for when you
need to zoom into the x-axis. ggplot2 also has xlim() and ylim()
functions that work slightly differently: they throw away the data
outside the limits.)

This allows us to see that there are three unusual values: 0, ~30, and
~60. We pluck them out with dplyr:

unusual <- diamonds %>%
 filter(y < 3 | y > 20) %>%
 arrange(y)
unusual
#> # A tibble: 9 × 10
#> carat cut color clarity depth table price x
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl>
#> 1 1.00 Very Good H VS2 63.3 53 5139 0.00
#> 2 1.14 Fair G VS1 57.5 67 6381 0.00
#> 3 1.56 Ideal G VS2 62.2 54 12800 0.00
#> 4 1.20 Premium D VVS1 62.1 59 15686 0.00
#> 5 2.25 Premium H SI2 62.8 59 18034 0.00
#> 6 0.71 Good F SI2 64.1 60 2130 0.00
#> 7 0.71 Good F SI2 64.1 60 2130 0.00
#> 8 0.51 Ideal E VS1 61.8 55 2075 5.15
#> 9 2.00 Premium H SI2 58.9 57 12210 8.09
#> # ... with 2 more variables:
#> # y <dbl>, z <dbl>

The y variable measures one of the three dimensions of these dia‐
monds, in mm. We know that diamonds can’t have a width of 0mm,
so these values must be incorrect. We might also suspect that meas‐
urements of 32mm and 59mm are implausible: those diamonds are
over an inch long, but don’t cost hundreds of thousands of dollars!

It’s good practice to repeat your analysis with and without the outli‐
ers. If they have minimal effect on the results, and you can’t figure
out why they’re there, it’s reasonable to replace them with missing
values and move on. However, if they have a substantial effect on
your results, you shouldn’t drop them without justification. You’ll
need to figure out what caused them (e.g., a data entry error) and
disclose that you removed them in your write-up.

Exercises
1. Explore the distribution of each of the x, y, and z variables in

diamonds. What do you learn? Think about a diamond and how
you might decide which dimension is the length, width, and
depth.

90 | Chapter 5: Exploratory Data Analysis

2. Explore the distribution of price. Do you discover anything
unusual or surprising? (Hint: carefully think about the bin
width and make sure you try a wide range of values.)

3. How many diamonds are 0.99 carat? How many are 1 carat?
What do you think is the cause of the difference?

4. Compare and contrast coord_cartesian() versus xlim() or
ylim() when zooming in on a histogram. What happens if you
leave binwidth unset? What happens if you try and zoom so
only half a bar shows?

Missing Values
If you’ve encountered unusual values in your dataset, and simply
want to move on to the rest of your analysis, you have two options:

• Drop the entire row with the strange values:
diamonds2 <- diamonds %>%
 filter(between(y, 3, 20))

I don’t recommend this option as just because one measurement
is invalid, doesn’t mean all the measurements are. Additionally,
if you have low-quality data, by time that you’ve applied this
approach to every variable you might find that you don’t have
any data left!

• Instead, I recommend replacing the unusual values with miss‐
ing values. The easiest way to do this is to use mutate() to
replace the variable with a modified copy. You can use the
ifelse() function to replace unusual values with NA:

diamonds2 <- diamonds %>%
 mutate(y = ifelse(y < 3 | y > 20, NA, y))

ifelse() has three arguments. The first argument test should be a
logical vector. The result will contain the value of the second argu‐
ment, yes, when test is TRUE, and the value of the third argument,
no, when it is false.

Like R, ggplot2 subscribes to the philosophy that missing values
should never silently go missing. It’s not obvious where you should
plot missing values, so ggplot2 doesn’t include them in the plot, but
it does warn that they’ve been removed:

Missing Values | 91

ggplot(data = diamonds2, mapping = aes(x = x, y = y)) +
 geom_point()
#> Warning: Removed 9 rows containing missing values
#> (geom_point).

To suppress that warning, set na.rm = TRUE:

ggplot(data = diamonds2, mapping = aes(x = x, y = y)) +
 geom_point(na.rm = TRUE)

Other times you want to understand what makes observations with
missing values different from observations with recorded values. For
example, in nycflights13::flights, missing values in the
dep_time variable indicate that the flight was cancelled. So you
might want to compare the scheduled departure times for cancelled
and noncancelled times. You can do this by making a new variable
with is.na():

nycflights13::flights %>%
 mutate(
 cancelled = is.na(dep_time),
 sched_hour = sched_dep_time %/% 100,
 sched_min = sched_dep_time %% 100,
 sched_dep_time = sched_hour + sched_min / 60
) %>%
 ggplot(mapping = aes(sched_dep_time)) +
 geom_freqpoly(
 mapping = aes(color = cancelled),
 binwidth = 1/4
)

92 | Chapter 5: Exploratory Data Analysis

However, this plot isn’t great because there are many more non-
cancelled flights than cancelled flights. In the next section we’ll
explore some techniques for improving this comparison.

Exercises
1. What happens to missing values in a histogram? What happens

to missing values in a bar chart? Why is there a difference?
2. What does na.rm = TRUE do in mean() and sum()?

Covariation
If variation describes the behavior within a variable, covariation
describes the behavior between variables. Covariation is the ten‐
dency for the values of two or more variables to vary together in a
related way. The best way to spot covariation is to visualize the rela‐
tionship between two or more variables. How you do that should
again depend on the type of variables involved.

A Categorical and Continuous Variable
It’s common to want to explore the distribution of a continuous
variable broken down by a categorical variable, as in the previous
frequency polygon. The default appearance of geom_freqpoly() is
not that useful for that sort of comparison because the height is

Covariation | 93

given by the count. That means if one of the groups is much smaller
than the others, it’s hard to see the differences in shape. For example,
let’s explore how the price of a diamond varies with its quality:

ggplot(data = diamonds, mapping = aes(x = price)) +
 geom_freqpoly(mapping = aes(color = cut), binwidth = 500)

It’s hard to see the difference in distribution because the overall
counts differ so much:

ggplot(diamonds) +
 geom_bar(mapping = aes(x = cut))

94 | Chapter 5: Exploratory Data Analysis

To make the comparison easier we need to swap what is displayed
on the y-axis. Instead of displaying count, we’ll display density,
which is the count standardized so that the area under each fre‐
quency polygon is one:

ggplot(
 data = diamonds,
 mapping = aes(x = price, y = ..density..)
) +
 geom_freqpoly(mapping = aes(color = cut), binwidth = 500)

There’s something rather surprising about this plot—it appears that
fair diamonds (the lowest quality) have the highest average price!
But maybe that’s because frequency polygons are a little hard to
interpret—there’s a lot going on in this plot.

Another alternative to display the distribution of a continuous vari‐
able broken down by a categorical variable is the boxplot. A boxplot
is a type of visual shorthand for a distribution of values that is popu‐
lar among statisticians. Each boxplot consists of:

• A box that stretches from the 25th percentile of the distribution
to the 75th percentile, a distance known as the interquartile
range (IQR). In the middle of the box is a line that displays the
median, i.e., 50th percentile, of the distribution. These three
lines give you a sense of the spread of the distribution and
whether or not the distribution is symmetric about the median
or skewed to one side.

Covariation | 95

• Visual points that display observations that fall more than 1.5
times the IQR from either edge of the box. These outlying
points are unusual, so they are plotted individually.

• A line (or whisker) that extends from each end of the box and
goes to the farthest nonoutlier point in the distribution.

Let’s take a look at the distribution of price by cut using geom_box
plot():

ggplot(data = diamonds, mapping = aes(x = cut, y = price)) +
 geom_boxplot()

We see much less information about the distribution, but the box‐
plots are much more compact so we can more easily compare them
(and fit more on one plot). It supports the counterintuitive finding

96 | Chapter 5: Exploratory Data Analysis

that better quality diamonds are cheaper on average! In the exerci‐
ses, you’ll be challenged to figure out why.

cut is an ordered factor: fair is worse than good, which is worse
than very good, and so on. Many categorical variables don’t have
such an intrinsic order, so you might want to reorder them to make
a more informative display. One way to do that is with the
reorder() function.

For example, take the class variable in the mpg dataset. You might
be interested to know how highway mileage varies across classes:

ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
 geom_boxplot()

To make the trend easier to see, we can reorder class based on the
median value of hwy:

ggplot(data = mpg) +
 geom_boxplot(
 mapping = aes(
 x = reorder(class, hwy, FUN = median),
 y = hwy
)
)

Covariation | 97

If you have long variable names, geom_boxplot() will work better if
you flip it 90°. You can do that with coord_flip():

ggplot(data = mpg) +
 geom_boxplot(
 mapping = aes(
 x = reorder(class, hwy, FUN = median),
 y = hwy
)
) +
 coord_flip()

98 | Chapter 5: Exploratory Data Analysis

Exercises
1. Use what you’ve learned to improve the visualization of the

departure times of cancelled versus noncancelled flights.
2. What variable in the diamonds dataset is most important for

predicting the price of a diamond? How is that variable correla‐
ted with cut? Why does the combination of those two relation‐
ships lead to lower quality diamonds being more expensive?

3. Install the ggstance package, and create a horizontal boxplot.
How does this compare to using coord_flip()?

4. One problem with boxplots is that they were developed in an
era of much smaller datasets and tend to display a prohibitively
large number of “outlying values.” One approach to remedy this
problem is the letter value plot. Install the lvplot package, and
try using geom_lv() to display the distribution of price versus
cut. What do you learn? How do you interpret the plots?

5. Compare and contrast geom_violin() with a faceted geom_his
togram(), or a colored geom_freqpoly(). What are the pros
and cons of each method?

6. If you have a small dataset, it’s sometimes useful to use
geom_jitter() to see the relationship between a continuous
and categorical variable. The ggbeeswarm package provides a
number of methods similar to geom_jitter(). List them and
briefly describe what each one does.

Two Categorical Variables
To visualize the covariation between categorical variables, you’ll
need to count the number of observations for each combination.
One way to do that is to rely on the built-in geom_count():

ggplot(data = diamonds) +
 geom_count(mapping = aes(x = cut, y = color))

Covariation | 99

The size of each circle in the plot displays how many observations
occurred at each combination of values. Covariation will appear as a
strong correlation between specific x values and specific y values.

Another approach is to compute the count with dplyr:

diamonds %>%
 count(color, cut)
#> Source: local data frame [35 x 3]
#> Groups: color [?]
#>
#> color cut n
#> <ord> <ord> <int>
#> 1 D Fair 163
#> 2 D Good 662
#> 3 D Very Good 1513
#> 4 D Premium 1603
#> 5 D Ideal 2834
#> 6 E Fair 224
#> # ... with 29 more rows

Then visualize with geom_tile() and the fill aesthetic:

diamonds %>%
 count(color, cut) %>%
 ggplot(mapping = aes(x = color, y = cut)) +
 geom_tile(mapping = aes(fill = n))

100 | Chapter 5: Exploratory Data Analysis

If the categorical variables are unordered, you might want to use the
seriation package to simultaneously reorder the rows and columns
in order to more clearly reveal interesting patterns. For larger plots,
you might want to try the d3heatmap or heatmaply packages,
which create interactive plots.

Exercises
1. How could you rescale the count dataset to more clearly show

the distribution of cut within color, or color within cut?
2. Use geom_tile() together with dplyr to explore how average

flight delays vary by destination and month of year. What makes
the plot difficult to read? How could you improve it?

3. Why is it slightly better to use aes(x = color, y = cut) rather
than aes(x = cut, y = color) in the previous example?

Two Continuous Variables
You’ve already seen one great way to visualize the covariation
between two continuous variables: draw a scatterplot with
geom_point(). You can see covariation as a pattern in the points.
For example, you can see an exponential relationship between the
carat size and price of a diamond:

ggplot(data = diamonds) +
 geom_point(mapping = aes(x = carat, y = price))

Covariation | 101

Scatterplots become less useful as the size of your dataset grows,
because points begin to overplot, and pile up into areas of uniform
black (as in the preceding scatterplot). You’ve already seen one way
to fix the problem, using the alpha aesthetic to add transparency:

ggplot(data = diamonds) +
 geom_point(
 mapping = aes(x = carat, y = price),
 alpha = 1 / 100
)

But using transparency can be challenging for very large datasets.
Another solution is to use bin. Previously you used geom_histo

102 | Chapter 5: Exploratory Data Analysis

gram() and geom_freqpoly() to bin in one dimension. Now you’ll
learn how to use geom_bin2d() and geom_hex() to bin in two
dimensions.

geom_bin2d() and geom_hex() divide the coordinate plane into 2D
bins and then use a fill color to display how many points fall into
each bin. geom_bin2d() creates rectangular bins. geom_hex() creates
hexagonal bins. You will need to install the hexbin package to use
geom_hex():

ggplot(data = smaller) +
 geom_bin2d(mapping = aes(x = carat, y = price))

install.packages("hexbin")
ggplot(data = smaller) +
 geom_hex(mapping = aes(x = carat, y = price))
#> Loading required package: methods

Another option is to bin one continuous variable so it acts like a cat‐
egorical variable. Then you can use one of the techniques for visual‐
izing the combination of a categorical and a continuous variable that
you learned about. For example, you could bin carat and then for
each group, display a boxplot:

ggplot(data = smaller, mapping = aes(x = carat, y = price)) +
 geom_boxplot(mapping = aes(group = cut_width(carat, 0.1)))

cut_width(x, width), as used here, divides x into bins of width
width. By default, boxplots look roughly the same (apart from the
number of outliers) regardless of how many observations there are,

Covariation | 103

so it’s difficult to tell that each boxplot summarizes a different num‐
ber of points. One way to show that is to make the width of the box‐
plot proportional to the number of points with varwidth = TRUE.

Another approach is to display approximately the same number of
points in each bin. That’s the job of cut_number():

ggplot(data = smaller, mapping = aes(x = carat, y = price)) +
 geom_boxplot(mapping = aes(group = cut_number(carat, 20)))

Exercises
1. Instead of summarizing the conditional distribution with a box‐

plot, you could use a frequency polygon. What do you need to
consider when using cut_width() versus cut_number()? How
does that impact a visualization of the 2D distribution of carat
and price?

2. Visualize the distribution of carat, partitioned by price.
3. How does the price distribution of very large diamonds com‐

pare to small diamonds. Is it as you expect, or does it surprise
you?

4. Combine two of the techniques you’ve learned to visualize the
combined distribution of cut, carat, and price.

5. Two-dimensional plots reveal outliers that are not visible in
one-dimensional plots. For example, some points in the follow‐
ing plot have an unusual combination of x and y values, which

104 | Chapter 5: Exploratory Data Analysis

makes the points outliers even though their x and y values
appear normal when examined separately:

ggplot(data = diamonds) +
 geom_point(mapping = aes(x = x, y = y)) +
 coord_cartesian(xlim = c(4, 11), ylim = c(4, 11))

Why is a scatterplot a better display than a binned plot for this
case?

Patterns and Models
Patterns in your data provide clues about relationships. If a system‐
atic relationship exists between two variables it will appear as a pat‐
tern in the data. If you spot a pattern, ask yourself:

• Could this pattern be due to coincidence (i.e., random chance)?
• How can you describe the relationship implied by the pattern?
• How strong is the relationship implied by the pattern?
• What other variables might affect the relationship?
• Does the relationship change if you look at individual sub‐

groups of the data?

A scatterplot of Old Faithful eruption lengths versus the wait time
between eruptions shows a pattern: longer wait times are associated
with longer eruptions. The scatterplot also displays the two clusters
that we noticed earlier:

ggplot(data = faithful) +
 geom_point(mapping = aes(x = eruptions, y = waiting))

Patterns and Models | 105

Patterns provide one of the most useful tools for data scientists
because they reveal covariation. If you think of variation as a phe‐
nomenon that creates uncertainty, covariation is a phenomenon that
reduces it. If two variables covary, you can use the values of one
variable to make better predictions about the values of the second. If
the covariation is due to a causal relationship (a special case), then
you can use the value of one variable to control the value of the sec‐
ond.

Models are a tool for extracting patterns out of data. For example,
consider the diamonds data. It’s hard to understand the relationship
between cut and price, because cut and carat, and carat and price,
are tightly related. It’s possible to use a model to remove the very
strong relationship between price and carat so we can explore the
subtleties that remain. The following code fits a model that predicts
price from carat and then computes the residuals (the difference
between the predicted value and the actual value). The residuals give
us a view of the price of the diamond, once the effect of carat has
been removed:

library(modelr)

mod <- lm(log(price) ~ log(carat), data = diamonds)

diamonds2 <- diamonds %>%
 add_residuals(mod) %>%
 mutate(resid = exp(resid))

106 | Chapter 5: Exploratory Data Analysis

ggplot(data = diamonds2) +
 geom_point(mapping = aes(x = carat, y = resid))

Once you’ve removed the strong relationship between carat and
price, you can see what you expect in the relationship between cut
and price—relative to their size, better quality diamonds are more
expensive:

ggplot(data = diamonds2) +
 geom_boxplot(mapping = aes(x = cut, y = resid))

You’ll learn how models, and the modelr package, work in the final
part of the book, Part IV. We’re saving modeling for later because

Patterns and Models | 107

understanding what models are and how they work is easiest once
you have the tools of data wrangling and programming in hand.

ggplot2 Calls
As we move on from these introductory chapters, we’ll transition to
a more concise expression of ggplot2 code. So far we’ve been very
explicit, which is helpful when you are learning:

ggplot(data = faithful, mapping = aes(x = eruptions)) +
 geom_freqpoly(binwidth = 0.25)

Typically, the first one or two arguments to a function are so impor‐
tant that you should know them by heart. The first two arguments
to ggplot() are data and mapping, and the first two arguments to
aes() are x and y. In the remainder of the book, we won’t supply
those names. That saves typing, and, by reducing the amount of
boilerplate, makes it easier to see what’s different between plots.
That’s a really important programming concern that we’ll come back
to in Chapter 15.

Rewriting the previous plot more concisely yields:

ggplot(faithful, aes(eruptions)) +
 geom_freqpoly(binwidth = 0.25)

Sometimes we’ll turn the end of a pipeline of data transformation
into a plot. Watch for the transition from %>% to +. I wish this transi‐
tion wasn’t necessary but unfortunately ggplot2 was created before
the pipe was discovered:

diamonds %>%
 count(cut, clarity) %>%
 ggplot(aes(clarity, cut, fill = n)) +
 geom_tile()

Learning More
If you want learn more about the mechanics of ggplot2, I’d highly
recommend grabbing a copy of the ggplot2 book. It’s been recently
updated, so it includes dplyr and tidyr code, and has much more
space to explore all the facets of visualization. Unfortunately the
book isn’t generally available for free, but if you have a connection to
a university you can probably get an electronic version for free
through SpringerLink.

108 | Chapter 5: Exploratory Data Analysis

http://ggplot2.org/book/

Another useful resource is the R Graphics Cookbook by Winston
Chang. Much of the contents are available online at http://
www.cookbook-r.com/Graphs/.

I also recommend Graphical Data Analysis with R, by Antony
Unwin. This is a book-length treatment similar to the material cov‐
ered in this chapter, but has the space to go into much greater depth.

Learning More | 109

http://shop.oreilly.com/product/0636920023135.do
http://www.cookbook-r.com/Graphs/
http://www.cookbook-r.com/Graphs/

CHAPTER 6

Workflow: Projects

One day you will need to quit R, go do something else, and return to
your analysis the next day. One day you will be working on multiple
analyses simultaneously that all use R and you want to keep them
separate. One day you will need to bring data from the outside
world into R and send numerical results and figures from R back
out into the world. To handle these real-life situations, you need to
make two decisions:

1. What about your analysis is “real,” i.e., what will you save as
your lasting record of what happened?

2. Where does your analysis “live”?

What Is Real?
As a beginning R user, it’s OK to consider your environment (i.e.,
the objects listed in the environment pane) “real.” However, in the
long run, you’ll be much better off if you consider your R scripts as
“real.”

With your R scripts (and your data files), you can re-create the envi‐
ronment. It’s much harder to re-create your R scripts from your
environment! You’ll either have to retype a lot of code from memory
(making mistakes all the way) or you’ll have to carefully mine your
R history.

111

To foster this behavior, I highly recommend that you instruct RStu‐
dio not to preserve your workspace between sessions:

This will cause you some short-term pain, because now when you
restart RStudio it will not remember the results of the code that you
ran last time. But this short-term pain will save you long-term agony
because it forces you to capture all important interactions in your
code. There’s nothing worse than discovering three months after the
fact that you’ve only stored the results of an important calculation in
your workspace, not the calculation itself in your code.

There is a great pair of keyboard shortcuts that will work together to
make sure you’ve captured the important parts of your code in the
editor:

• Press Cmd/Ctrl-Shift-F10 to restart RStudio.
• Press Cmd/Ctrl-Shift-S to rerun the current script.

I use this pattern hundreds of times a week.

112 | Chapter 6: Workflow: Projects

Where Does Your Analysis Live?
R has a powerful notion of the working directory. This is where R
looks for files that you ask it to load, and where it will put any files
that you ask it to save. RStudio shows your current working direc‐
tory at the top of the console:

And you can print this out in R code by running getwd():

getwd()
#> [1] "/Users/hadley/Documents/r4ds/r4ds"

As a beginning R user, it’s OK to let your home directory, docu‐
ments directory, or any other weird directory on your computer be
R’s working directory. But you’re six chapters into this book, and
you’re no longer a rank beginner. Very soon now you should evolve
to organizing your analytical projects into directories and, when
working on a project, setting R’s working directory to the associated
directory.

I do not recommend it, but you can also set the working directory
from within R:

setwd("/path/to/my/CoolProject")

But you should never do this because there’s a better way; a way that
also puts you on the path to managing your R work like an expert.

Paths and Directories
Paths and directories are a little complicated because there are two
basic styles of paths: Mac/Linux and Windows. There are three chief
ways in which they differ:

• The most important difference is how you separate the compo‐
nents of the path. Mac and Linux use slashes (e.g., plots/
diamonds.pdf) and Windows uses backslashes (e.g., plots\dia
monds.pdf). R can work with either type (no matter what plat‐
form you’re currently using), but unfortunately, backslashes
mean something special to R, and to get a single backslash in
the path, you need to type two backslashes! That makes life frus‐

Where Does Your Analysis Live? | 113

trating, so I recommend always using the Linux/Max style with
forward slashes.

• Absolute paths (i.e., paths that point to the same place regard‐
less of your working directory) look different. In Windows they
start with a drive letter (e.g., C:) or two backslashes (e.g., \\serv
ername) and in Mac/Linux they start with a slash “/”
(e.g., /users/hadley). You should never use absolute paths in
your scripts, because they hinder sharing: no one else will have
exactly the same directory configuration as you.

• The last minor difference is the place that ~ points to. ~ is a con‐
venient shortcut to your home directory. Windows doesn’t
really have the notion of a home directory, so it instead points
to your documents directory.

RStudio Projects
R experts keep all the files associated with a project together—input
data, R scripts, analytical results, figures. This is such a wise and
common practice that RStudio has built-in support for this via
projects.

Let’s make a project for you to use while you’re working through the
rest of this book. Click File → New Project, then:

114 | Chapter 6: Workflow: Projects

Call your project r4ds and think carefully about which subdirectory
you put the project in. If you don’t store it somewhere sensible, it
will be hard to find it in the future!

Once this process is complete, you’ll get a new RStudio project just
for this book. Check that the “home” directory of your project is the
current working directory:

getwd()
#> [1] /Users/hadley/Documents/r4ds/r4ds

Whenever you refer to a file with a relative path it will look for it
here.

Now enter the following commands in the script editor, and save the
file, calling it diamonds.R. Next, run the complete script, which will

RStudio Projects | 115

save a PDF and CSV file into your project directory. Don’t worry
about the details, you’ll learn them later in the book:

library(tidyverse)

ggplot(diamonds, aes(carat, price)) +
 geom_hex()
ggsave("diamonds.pdf")

write_csv(diamonds, "diamonds.csv")

Quit RStudio. Inspect the folder associated with your project—
notice the .Rproj file. Double-click that file to reopen the project.
Notice you get back to where you left off: it’s the same working
directory and command history, and all the files you were working
on are still open. Because you followed my instructions above, you
will, however, have a completely fresh environment, guaranteeing
that you’re starting with a clean slate.

In your favorite OS-specific way, search your computer for dia‐
monds.pdf and you will find the PDF (no surprise) but also the script
that created it (diamonds.r). This is huge win! One day you will want
to remake a figure or just understand where it came from. If you rig‐
orously save figures to files with R code and never with the mouse or
the clipboard, you will be able to reproduce old work with ease!

Summary
In summary, RStudio projects give you a solid workflow that will
serve you well in the future:

• Create an RStudio project for each data analyis project.
• Keep data files there; we’ll talk about loading them into R in

Chapter 8.
• Keep scripts there; edit them, and run them in bits or as a

whole.
• Save your outputs (plots and cleaned data) there.
• Only ever use relative paths, not absolute paths.

Everything you need is in one place, and cleanly separated from all
the other projects that you are working on.

116 | Chapter 6: Workflow: Projects

PART II

Wrangle

In this part of the book, you’ll learn about data wrangling, the art of
getting your data into R in a useful form for visualization and mod‐
eling. Data wrangling is very important: without it you can’t work
with your own data! There are three main parts to data wrangling:

This part of the book proceeds as follows:

• In Chapter 7, you’ll learn about the variant of the data frame
that we use in this book: the tibble. You’ll learn what makes
them different from regular data frames, and how you can con‐
struct them “by hand.”

• In Chapter 8, you’ll learn how to get your data from disk and
into R. We’ll focus on plain-text rectangular formats, but will
give you pointers to packages that help with other types of data.

• In Chapter 9, you’ll learn about tidy data, a consistent way of
storing your data that makes transformation, visualization, and
modeling easier. You’ll learn the underlying principles, and how
to get your data into a tidy form.

Data wrangling also encompasses data transformation, which you’ve
already learned a little about. Now we’ll focus on new skills for three
specific types of data you will frequently encounter in practice:

• Chapter 10 will give you tools for working with multiple inter‐
related datasets.

• Chapter 11 will introduce regular expressions, a powerful tool
for manipulating strings.

• Chapter 12 will show you how R stores categorical data. They
are used when a variable has a fixed set of possible values, or
when you want to use a nonalphabetical ordering of a string.

• Chapter 13 will give you the key tools for working with dates
and date-times.

CHAPTER 7

Tibbles with tibble

Introduction
Throughout this book we work with “tibbles” instead of R’s tradi‐
tional data.frame. Tibbles are data frames, but they tweak some
older behaviors to make life a little easier. R is an old language, and
some things that were useful 10 or 20 years ago now get in your way.
It’s difficult to change base R without breaking existing code, so
most innovation occurs in packages. Here we will describe the tibble
package, which provides opinionated data frames that make work‐
ing in the tidyverse a little easier. In most places, I’ll use the terms
tibble and data frame interchangeably; when I want to draw particu‐
lar attention to R’s built-in data frame, I’ll call them data.frames.

If this chapter leaves you wanting to learn more about tibbles, you
might enjoy vignette("tibble").

Prerequisites
In this chapter we’ll explore the tibble package, part of the core tidy‐
verse.

library(tidyverse)

Creating Tibbles
Almost all of the functions that you’ll use in this book produce tib‐
bles, as tibbles are one of the unifying features of the tidyverse. Most

119

other R packages use regular data frames, so you might want to
coerce a data frame to a tibble. You can do that with as_tibble():

as_tibble(iris)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fctr>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> # ... with 144 more rows

You can create a new tibble from individual vectors with tibble().
tibble() will automatically recycle inputs of length 1, and allows
you to refer to variables that you just created, as shown here:

tibble(
 x = 1:5,
 y = 1,
 z = x ^ 2 + y
)
#> # A tibble: 5 × 3
#> x y z
#> <int> <dbl> <dbl>
#> 1 1 1 2
#> 2 2 1 5
#> 3 3 1 10
#> 4 4 1 17
#> 5 5 1 26

If you’re already familiar with data.frame(), note that tibble()
does much less: it never changes the type of the inputs (e.g., it never
converts strings to factors!), it never changes the names of variables,
and it never creates row names.

It’s possible for a tibble to have column names that are not valid R
variable names, aka nonsyntactic names. For example, they might
not start with a letter, or they might contain unusual characters like
a space. To refer to these variables, you need to surround them with
backticks, `:

tb <- tibble(
 `:)` = "smile",
 ` ` = "space",
 `2000` = "number"
)
tb

120 | Chapter 7: Tibbles with tibble

#> # A tibble: 1 × 3
#> `:)` ` ` `2000`
#> <chr> <chr> <chr>
#> 1 smile space number

You’ll also need the backticks when working with these variables in
other packages, like ggplot2, dplyr, and tidyr.

Another way to create a tibble is with tribble(), short for trans‐
posed tibble. tribble() is customized for data entry in code: column
headings are defined by formulas (i.e., they start with ~), and entries
are separated by commas. This makes it possible to lay out small
amounts of data in easy-to-read form:

tribble(
 ~x, ~y, ~z,
 #--|--|----
 "a", 2, 3.6,
 "b", 1, 8.5
)
#> # A tibble: 2 × 3
#> x y z
#> <chr> <dbl> <dbl>
#> 1 a 2 3.6
#> 2 b 1 8.5

I often add a comment (the line starting with #) to make it really
clear where the header is.

Tibbles Versus data.frame
There are two main differences in the usage of a tibble versus a clas‐
sic data.frame: printing and subsetting.

Printing
Tibbles have a refined print method that shows only the first 10
rows, and all the columns that fit on screen. This makes it much eas‐
ier to work with large data. In addition to its name, each column
reports its type, a nice feature borrowed from str():

tibble(
 a = lubridate::now() + runif(1e3) * 86400,
 b = lubridate::today() + runif(1e3) * 30,
 c = 1:1e3,
 d = runif(1e3),
 e = sample(letters, 1e3, replace = TRUE)
)

Tibbles Versus data.frame | 121

#> # A tibble: 1,000 × 5
#> a b c d e
#> <dttm> <date> <int> <dbl> <chr>
#> 1 2016-10-10 17:14:14 2016-10-17 1 0.368 h
#> 2 2016-10-11 11:19:24 2016-10-22 2 0.612 n
#> 3 2016-10-11 05:43:03 2016-11-01 3 0.415 l
#> 4 2016-10-10 19:04:20 2016-10-31 4 0.212 x
#> 5 2016-10-10 15:28:37 2016-10-28 5 0.733 a
#> 6 2016-10-11 02:29:34 2016-10-24 6 0.460 v
#> # ... with 994 more rows

Tibbles are designed so that you don’t accidentally overwhelm your
console when you print large data frames. But sometimes you need
more output than the default display. There are a few options that
can help.

First, you can explicitly print() the data frame and control the
number of rows (n) and the width of the display. width = Inf will
display all columns:

nycflights13::flights %>%
 print(n = 10, width = Inf)

You can also control the default print behavior by setting options:

• options(tibble.print_max = n, tibble.print_min = m):
if more than m rows, print only n rows. Use
options(dplyr.print_min = Inf) to always show all rows.

• Use options(tibble.width = Inf) to always print all col‐
umns, regardless of the width of the screen.

You can see a complete list of options by looking at the package help
with package?tibble.

A final option is to use RStudio’s built-in data viewer to get a scrolla‐
ble view of the complete dataset. This is also often useful at the end
of a long chain of manipulations:

nycflights13::flights %>%
 View()

Subsetting
So far all the tools you’ve learned have worked with complete data
frames. If you want to pull out a single variable, you need some new
tools, $ and [[. [[can extract by name or position; $ only extracts
by name but is a little less typing:

122 | Chapter 7: Tibbles with tibble

df <- tibble(
 x = runif(5),
 y = rnorm(5)
)

Extract by name
df$x
#> [1] 0.434 0.395 0.548 0.762 0.254
df[["x"]]
#> [1] 0.434 0.395 0.548 0.762 0.254

Extract by position
df[[1]]
#> [1] 0.434 0.395 0.548 0.762 0.254

To use these in a pipe, you’ll need to use the special placeholder .:

df %>% .$x
#> [1] 0.434 0.395 0.548 0.762 0.254
df %>% .[["x"]]
#> [1] 0.434 0.395 0.548 0.762 0.254

Compared to a data.frame, tibbles are more strict: they never do
partial matching, and they will generate a warning if the column you
are trying to access does not exist.

Interacting with Older Code
Some older functions don’t work with tibbles. If you encounter one
of these functions, use as.data.frame() to turn a tibble back to a
data.frame:

class(as.data.frame(tb))
#> [1] "data.frame"

The main reason that some older functions don’t work with tibbles
is the [function. We don’t use [much in this book because
dplyr::filter() and dplyr::select() allow you to solve the same
problems with clearer code (but you will learn a little about it in
“Subsetting” on page 300). With base R data frames, [sometimes
returns a data frame, and sometimes returns a vector. With tibbles,
[always returns another tibble.

Exercises
1. How can you tell if an object is a tibble? (Hint: try printing

mtcars, which is a regular data frame.)

Interacting with Older Code | 123

2. Compare and contrast the following operations on a
data.frame and equivalent tibble. What is different? Why
might the default data frame behaviors cause you frustration?

df <- data.frame(abc = 1, xyz = "a")
df$x
df[, "xyz"]
df[, c("abc", "xyz")]

3. If you have the name of a variable stored in an object, e.g., var
<- "mpg", how can you extract the reference variable from a tib‐
ble?

4. Practice referring to nonsyntactic names in the following data
frame by:
a. Extracting the variable called 1.
b. Plotting a scatterplot of 1 versus 2.
c. Creating a new column called 3, which is 2 divided by 1.
d. Renaming the columns to one, two, and three:

annoying <- tibble(
 `1` = 1:10,
 `2` = `1` * 2 + rnorm(length(`1`))
)

5. What does tibble::enframe() do? When might you use it?
6. What option controls how many additional column names are

printed at the footer of a tibble?

124 | Chapter 7: Tibbles with tibble

CHAPTER 8

Data Import with readr

Introduction
Working with data provided by R packages is a great way to learn
the tools of data science, but at some point you want to stop learning
and start working with your own data. In this chapter, you’ll learn
how to read plain-text rectangular files into R. Here, we’ll only
scratch the surface of data import, but many of the principles will
translate to other forms of data. We’ll finish with a few pointers to
packages that are useful for other types of data.

Prerequisites
In this chapter, you’ll learn how to load flat files in R with the readr
package, which is part of the core tidyverse.

library(tidyverse)

Getting Started
Most of readr’s functions are concerned with turning flat files into
data frames:

• read_csv() reads comma-delimited files, read_csv2() reads
semicolon-separated files (common in countries where , is used
as the decimal place), read_tsv() reads tab-delimited files, and
read_delim() reads in files with any delimiter.

125

• read_fwf() reads fixed-width files. You can specify fields either
by their widths with fwf_widths() or their position with
fwf_positions(). read_table() reads a common variation of
fixed-width files where columns are separated by white space.

• read_log() reads Apache style log files. (But also check out
webreadr, which is built on top of read_log() and provides
many more helpful tools.)

These functions all have similar syntax: once you’ve mastered one,
you can use the others with ease. For the rest of this chapter we’ll
focus on read_csv(). Not only are CSV files one of the most com‐
mon forms of data storage, but once you understand read_csv(),
you can easily apply your knowledge to all the other functions in
readr.

The first argument to read_csv() is the most important; it’s the path
to the file to read:

heights <- read_csv("data/heights.csv")
#> Parsed with column specification:
#> cols(
#> earn = col_double(),
#> height = col_double(),
#> sex = col_character(),
#> ed = col_integer(),
#> age = col_integer(),
#> race = col_character()
#>)

When you run read_csv() it prints out a column specification that
gives the name and type of each column. That’s an important part of
readr, which we’ll come back to in “Parsing a File” on page 137.

You can also supply an inline CSV file. This is useful for experi‐
menting with readr and for creating reproducible examples to share
with others:

read_csv("a,b,c
1,2,3
4,5,6")
#> # A tibble: 2 × 3
#> a b c
#> <int> <int> <int>
#> 1 1 2 3
#> 2 4 5 6

126 | Chapter 8: Data Import with readr

https://github.com/Ironholds/webreadr

In both cases read_csv() uses the first line of the data for the col‐
umn names, which is a very common convention. There are two
cases where you might want to tweak this behavior:

• Sometimes there are a few lines of metadata at the top of
the file. You can use skip = n to skip the first n lines; or use
comment = "#" to drop all lines that start with (e.g.) #:

read_csv("The first line of metadata
 The second line of metadata
 x,y,z
 1,2,3", skip = 2)
#> # A tibble: 1 × 3
#> x y z
#> <int> <int> <int>
#> 1 1 2 3

read_csv("# A comment I want to skip
 x,y,z
 1,2,3", comment = "#")
#> # A tibble: 1 × 3
#> x y z
#> <int> <int> <int>
#> 1 1 2 3

• The data might not have column names. You can use col_names
= FALSE to tell read_csv() not to treat the first row as headings,
and instead label them sequentially from X1 to Xn:

read_csv("1,2,3\n4,5,6", col_names = FALSE)
#> # A tibble: 2 × 3
#> X1 X2 X3
#> <int> <int> <int>
#> 1 1 2 3
#> 2 4 5 6

("\n" is a convenient shortcut for adding a new line. You’ll learn
more about it and other types of string escape in “String Basics”
on page 195.)
Alternatively you can pass col_names a character vector, which
will be used as the column names:

read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
#> # A tibble: 2 × 3
#> x y z
#> <int> <int> <int>

Getting Started | 127

#> 1 1 2 3
#> 2 4 5 6

Another option that commonly needs tweaking is na. This specifies
the value (or values) that are used to represent missing values in
your file:

read_csv("a,b,c\n1,2,.", na = ".")
#> # A tibble: 1 × 3
#> a b c
#> <int> <int> <chr>
#> 1 1 2 <NA>

This is all you need to know to read ~75% of CSV files that you’ll
encounter in practice. You can also easily adapt what you’ve learned
to read tab-separated files with read_tsv() and fixed-width files
with read_fwf(). To read in more challenging files, you’ll need to
learn more about how readr parses each column, turning them into
R vectors.

Compared to Base R
If you’ve used R before, you might wonder why we’re not using
read.csv(). There are a few good reasons to favor readr functions
over the base equivalents:

• They are typically much faster (~10x) than their base equiva‐
lents. Long-running jobs have a progress bar, so you can see
what’s happening. If you’re looking for raw speed, try
data.table::fread(). It doesn’t fit quite so well into the tidy‐
verse, but it can be quite a bit faster.

• They produce tibbles, and they don’t convert character vectors
to factors, use row names, or munge the column names. These
are common sources of frustration with the base R functions.

• They are more reproducible. Base R functions inherit some
behavior from your operating system and environment vari‐
ables, so import code that works on your computer might not
work on someone else’s.

Exercises
1. What function would you use to read a file where fields are sep‐

arated with “|”?

128 | Chapter 8: Data Import with readr

2. Apart from file, skip, and comment, what other arguments do
read_csv() and read_tsv() have in common?

3. What are the most important arguments to read_fwf()?
4. Sometimes strings in a CSV file contain commas. To prevent

them from causing problems they need to be surrounded by a
quoting character, like " or '. By convention, read_csv()
assumes that the quoting character will be ", and if you want to
change it you’ll need to use read_delim() instead. What argu‐
ments do you need to specify to read the following text into a
data frame?

"x,y\n1,'a,b'"

5. Identify what is wrong with each of the following inline CSV
files. What happens when you run the code?

read_csv("a,b\n1,2,3\n4,5,6")
read_csv("a,b,c\n1,2\n1,2,3,4")
read_csv("a,b\n\"1")
read_csv("a,b\n1,2\na,b")
read_csv("a;b\n1;3")

Parsing a Vector
Before we get into the details of how readr reads files from disk, we
need to take a little detour to talk about the parse_*() functions.
These functions take a character vector and return a more special‐
ized vector like a logical, integer, or date:

str(parse_logical(c("TRUE", "FALSE", "NA")))
#> logi [1:3] TRUE FALSE NA
str(parse_integer(c("1", "2", "3")))
#> int [1:3] 1 2 3
str(parse_date(c("2010-01-01", "1979-10-14")))
#> Date[1:2], format: "2010-01-01" "1979-10-14"

These functions are useful in their own right, but are also an impor‐
tant building block for readr. Once you’ve learned how the individ‐
ual parsers work in this section, we’ll circle back and see how they fit
together to parse a complete file in the next section.

Like all functions in the tidyverse, the parse_*() functions are uni‐
form; the first argument is a character vector to parse, and the na
argument specifies which strings should be treated as missing:

Parsing a Vector | 129

parse_integer(c("1", "231", ".", "456"), na = ".")
#> [1] 1 231 NA 456

If parsing fails, you’ll get a warning:

x <- parse_integer(c("123", "345", "abc", "123.45"))
#> Warning: 2 parsing failures.
#> row col expected actual
#> 3 -- an integer abc
#> 4 -- no trailing characters .45

And the failures will be missing in the output:

x
#> [1] 123 345 NA NA
#> attr(,"problems")
#> # A tibble: 2 × 4
#> row col expected actual
#> <int> <int> <chr> <chr>
#> 1 3 NA an integer abc
#> 2 4 NA no trailing characters .45

If there are many parsing failures, you’ll need to use problems() to
get the complete set. This returns a tibble, which you can then
manipulate with dplyr:

problems(x)
#> # A tibble: 2 × 4
#> row col expected actual
#> <int> <int> <chr> <chr>
#> 1 3 NA an integer abc
#> 2 4 NA no trailing characters .45

Using parsers is mostly a matter of understanding what’s available
and how they deal with different types of input. There are eight par‐
ticularly important parsers:

• parse_logical() and parse_integer() parse logicals and inte‐
gers, respectively. There’s basically nothing that can go wrong
with these parsers so I won’t describe them here further.

• parse_double() is a strict numeric parser, and parse_number()
is a flexible numeric parser. These are more complicated than
you might expect because different parts of the world write
numbers in different ways.

• parse_character() seems so simple that it shouldn’t be neces‐
sary. But one complication makes it quite important: character
encodings.

130 | Chapter 8: Data Import with readr

• parse_factor() creates factors, the data structure that R uses to
represent categorical variables with fixed and known values.

• parse_datetime(), parse_date(), and parse_time() allow
you to parse various date and time specifications. These are the
most complicated because there are so many different ways of
writing dates.

The following sections describe these parsers in more detail.

Numbers
It seems like it should be straightforward to parse a number, but
three problems make it tricky:

• People write numbers differently in different parts of the world.
For example, some countries use . in between the integer and
fractional parts of a real number, while others use ,.

• Numbers are often surrounded by other characters that provide
some context, like “$1000” or “10%”.

• Numbers often contain “grouping” characters to make them
easier to read, like “1,000,000”, and these grouping characters
vary around the world.

To address the first problem, readr has the notion of a “locale,” an
object that specifies parsing options that differ from place to place.
When parsing numbers, the most important option is the character
you use for the decimal mark. You can override the default value
of . by creating a new locale and setting the decimal_mark argu‐
ment:

parse_double("1.23")
#> [1] 1.23
parse_double("1,23", locale = locale(decimal_mark = ","))
#> [1] 1.23

readr’s default locale is US-centric, because generally R is US-centric
(i.e., the documentation of base R is written in American English).
An alternative approach would be to try and guess the defaults from
your operating system. This is hard to do well, and, more impor‐
tantly, makes your code fragile: even if it works on your computer, it
might fail when you email it to a colleague in another country.

Parsing a Vector | 131

parse_number() addresses the second problem: it ignores non-
numeric characters before and after the number. This is particularly
useful for currencies and percentages, but also works to extract
numbers embedded in text:

parse_number("$100")
#> [1] 100
parse_number("20%")
#> [1] 20
parse_number("It cost $123.45")
#> [1] 123

The final problem is addressed by the combination of parse_num
ber() and the locale as parse_number() will ignore the “grouping
mark”:

Used in America
parse_number("$123,456,789")
#> [1] 1.23e+08

Used in many parts of Europe
parse_number(
 "123.456.789",
 locale = locale(grouping_mark = ".")
)
#> [1] 1.23e+08

Used in Switzerland
parse_number(
 "123'456'789",
 locale = locale(grouping_mark = "'")
)
#> [1] 1.23e+08

Strings
It seems like parse_character() should be really simple—it could
just return its input. Unfortunately life isn’t so simple, as there are
multiple ways to represent the same string. To understand what’s
going on, we need to dive into the details of how computers repre‐
sent strings. In R, we can get at the underlying representation of a
string using charToRaw():

charToRaw("Hadley")
#> [1] 48 61 64 6c 65 79

Each hexadecimal number represents a byte of information: 48 is H,
61 is a, and so on. The mapping from hexadecimal number to char‐
acter is called the encoding, and in this case the encoding is called

132 | Chapter 8: Data Import with readr

ASCII. ASCII does a great job of representing English characters,
because it’s the American Standard Code for Information Inter‐
change.

Things get more complicated for languages other than English. In
the early days of computing there were many competing standards
for encoding non-English characters, and to correctly interpret a
string you needed to know both the values and the encoding. For
example, two common encodings are Latin1 (aka ISO-8859-1, used
for Western European languages) and Latin2 (aka ISO-8859-2, used
for Eastern European languages). In Latin1, the byte b1 is “±”, but in
Latin2, it’s “ą”! Fortunately, today there is one standard that is sup‐
ported almost everywhere: UTF-8. UTF-8 can encode just about
every character used by humans today, as well as many extra sym‐
bols (like emoji!).

readr uses UTF-8 everywhere: it assumes your data is UTF-8 enco‐
ded when you read it, and always uses it when writing. This is a
good default, but will fail for data produced by older systems that
don’t understand UTF-8. If this happens to you, your strings will
look weird when you print them. Sometimes just one or two charac‐
ters might be messed up; other times you’ll get complete gibberish.
For example:

x1 <- "El Ni\xf1o was particularly bad this year"
x2 <- "\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"

To fix the problem you need to specify the encoding in parse_char
acter():

parse_character(x1, locale = locale(encoding = "Latin1"))
#> [1] "El Niño was particularly bad this year"
parse_character(x2, locale = locale(encoding = "Shift-JIS"))
#> [1] "こんにちは"

How do you find the correct encoding? If you’re lucky, it’ll be
included somewhere in the data documentation. Unfortunately,
that’s rarely the case, so readr provides guess_encoding() to help
you figure it out. It’s not foolproof, and it works better when you
have lots of text (unlike here), but it’s a reasonable place to start.
Expect to try a few different encodings before you find the right one:

guess_encoding(charToRaw(x1))
#> encoding confidence
#> 1 ISO-8859-1 0.46
#> 2 ISO-8859-9 0.23
guess_encoding(charToRaw(x2))

Parsing a Vector | 133

#> encoding confidence
#> 1 KOI8-R 0.42

The first argument to guess_encoding() can either be a path to a
file, or, as in this case, a raw vector (useful if the strings are already
in R).

Encodings are a rich and complex topic, and I’ve only scratched the
surface here. If you’d like to learn more I’d recommend reading the
detailed explanation at http://kunststube.net/encoding/.

Factors
R uses factors to represent categorical variables that have a known
set of possible values. Give parse_factor() a vector of known
levels to generate a warning whenever an unexpected value is
present:

fruit <- c("apple", "banana")
parse_factor(c("apple", "banana", "bananana"), levels = fruit)
#> Warning: 1 parsing failure.
#> row col expected actual
#> 3 -- value in level set bananana
#> [1] apple banana <NA>
#> attr(,"problems")
#> # A tibble: 1 × 4
#> row col expected actual
#> <int> <int> <chr> <chr>
#> 1 3 NA value in level set bananana
#> Levels: apple banana

But if you have many problematic entries, it’s often easier to leave
them as character vectors and then use the tools you’ll learn about in
Chapter 11 and Chapter 12 to clean them up.

Dates, Date-Times, and Times
You pick between three parsers depending on whether you want a
date (the number of days since 1970-01-01), a date-time (the num‐
ber of seconds since midnight 1970-01-01), or a time (the number of
seconds since midnight). When called without any additional argu‐
ments:

• parse_datetime() expects an ISO8601 date-time. ISO8601 is
an international standard in which the components of a date are
organized from biggest to smallest: year, month, day, hour,
minute, second:

134 | Chapter 8: Data Import with readr

http://kunststube.net/encoding/

parse_datetime("2010-10-01T2010")
#> [1] "2010-10-01 20:10:00 UTC"

If time is omitted, it will be set to midnight
parse_datetime("20101010")
#> [1] "2010-10-10 UTC"

This is the most important date/time standard, and if you work
with dates and times frequently, I recommend reading https://
en.wikipedia.org/wiki/ISO_8601.

• parse_date() expects a four-digit year, a - or /, the month, a -
or /, then the day:

parse_date("2010-10-01")
#> [1] "2010-10-01"

• parse_time() expects the hour, :, minutes, optionally : and
seconds, and an optional a.m./p.m. specifier:

library(hms)
parse_time("01:10 am")
#> 01:10:00
parse_time("20:10:01")
#> 20:10:01

Base R doesn’t have a great built-in class for time data, so we use
the one provided in the hms package.

If these defaults don’t work for your data you can supply your own
date-time format, built up of the following pieces:

Year
%Y (4 digits).

%y (2 digits; 00-69 → 2000-2069, 70-99 → 1970-1999).

Month
%m (2 digits).

%b (abbreviated name, like “Jan”).

%B (full name, “January”).

Day
%d (2 digits).

%e (optional leading space).

Parsing a Vector | 135

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Time
%H (0-23 hour format).

%I (0-12, must be used with %p).

%p (a.m./p.m. indicator).

%M (minutes).

%S (integer seconds).

%OS (real seconds).

%Z (time zone [a name, e.g., America/Chicago]). Note: beware
of abbreviations. If you’re American, note that “EST” is a Cana‐
dian time zone that does not have daylight saving time. It is
Eastern Standard Time! We’ll come back to this in “Time
Zones” on page 254.

%z (as offset from UTC, e.g., +0800).

Nondigits
%. (skips one nondigit character).

%* (skips any number of nondigits).

The best way to figure out the correct format is to create a few
examples in a character vector, and test with one of the parsing
functions. For example:

parse_date("01/02/15", "%m/%d/%y")
#> [1] "2015-01-02"
parse_date("01/02/15", "%d/%m/%y")
#> [1] "2015-02-01"
parse_date("01/02/15", "%y/%m/%d")
#> [1] "2001-02-15"

If you’re using %b or %B with non-English month names, you’ll need
to set the lang argument to locale(). See the list of built-in lan‐
guages in date_names_langs(), or if your language is not already
included, create your own with date_names():

parse_date("1 janvier 2015", "%d %B %Y", locale = locale("fr"))
#> [1] "2015-01-01"

Exercises
1. What are the most important arguments to locale()?

136 | Chapter 8: Data Import with readr

2. What happens if you try and set decimal_mark and group
ing_mark to the same character? What happens to the default
value of grouping_mark when you set decimal_mark to ",“?
What happens to the default value of decimal_mark when you
set the grouping_mark to ".“?

3. I didn’t discuss the date_format and time_format options to
locale(). What do they do? Construct an example that shows
when they might be useful.

4. If you live outside the US, create a new locale object that encap‐
sulates the settings for the types of files you read most com‐
monly.

5. What’s the difference between read_csv() and read_csv2()?
6. What are the most common encodings used in Europe? What

are the most common encodings used in Asia? Do some goo‐
gling to find out.

7. Generate the correct format string to parse each of the following
dates and times:

d1 <- "January 1, 2010"
d2 <- "2015-Mar-07"
d3 <- "06-Jun-2017"
d4 <- c("August 19 (2015)", "July 1 (2015)")
d5 <- "12/30/14" # Dec 30, 2014
t1 <- "1705"
t2 <- "11:15:10.12 PM"

Parsing a File
Now that you’ve learned how to parse an individual vector, it’s time
to return to the beginning and explore how readr parses a file.
There are two new things that you’ll learn about in this section:

• How readr automatically guesses the type of each column.
• How to override the default specification.

Strategy
readr uses a heuristic to figure out the type of each column: it reads
the first 1000 rows and uses some (moderately conservative) heuris‐
tics to figure out the type of each column. You can emulate this pro‐

Parsing a File | 137

cess with a character vector using guess_parser(), which returns
readr’s best guess, and parse_guess(), which uses that guess to
parse the column:

guess_parser("2010-10-01")
#> [1] "date"
guess_parser("15:01")
#> [1] "time"
guess_parser(c("TRUE", "FALSE"))
#> [1] "logical"
guess_parser(c("1", "5", "9"))
#> [1] "integer"
guess_parser(c("12,352,561"))
#> [1] "number"

str(parse_guess("2010-10-10"))
#> Date[1:1], format: "2010-10-10"

The heuristic tries each of the following types, stopping when it
finds a match:

logical
Contains only “F”, “T”, “FALSE”, or “TRUE”.

integer
Contains only numeric characters (and -).

double
Contains only valid doubles (including numbers like 4.5e-5).

number
Contains valid doubles with the grouping mark inside.

time
Matches the default time_format.

date
Matches the default date_format.

date-time
Any ISO8601 date.

If none of these rules apply, then the column will stay as a vector of
strings.

138 | Chapter 8: Data Import with readr

Problems
These defaults don’t always work for larger files. There are two basic
problems:

• The first thousand rows might be a special case, and readr
guesses a type that is not sufficiently general. For example, you
might have a column of doubles that only contains integers in
the first 1000 rows.

• The column might contain a lot of missing values. If the first
1000 rows contain only NAs, readr will guess that it’s a character
vector, whereas you probably want to parse it as something
more specific.

readr contains a challenging CSV that illustrates both of these prob‐
lems:

challenge <- read_csv(readr_example("challenge.csv"))
#> Parsed with column specification:
#> cols(
#> x = col_integer(),
#> y = col_character()
#>)
#> Warning: 1000 parsing failures.
#> row col expected actual
#> 1001 x no trailing characters .23837975086644292
#> 1002 x no trailing characters .41167997173033655
#> 1003 x no trailing characters .7460716762579978
#> 1004 x no trailing characters .723450553836301
#> 1005 x no trailing characters .614524137461558
#>
#> See problems(...) for more details.

(Note the use of readr_example(), which finds the path to one of
the files included with the package.)

There are two printed outputs: the column specification generated
by looking at the first 1000 rows, and the first five parsing failures.
It’s always a good idea to explicitly pull out the problems(), so you
can explore them in more depth:

problems(challenge)
#> # A tibble: 1,000 × 4
#> row col expected actual
#> <int> <chr> <chr> <chr>
#> 1 1001 x no trailing characters .23837975086644292
#> 2 1002 x no trailing characters .41167997173033655
#> 3 1003 x no trailing characters .7460716762579978

Parsing a File | 139

#> 4 1004 x no trailing characters .723450553836301
#> 5 1005 x no trailing characters .614524137461558
#> 6 1006 x no trailing characters .473980569280684
#> # ... with 994 more rows

A good strategy is to work column by column until there are no
problems remaining. Here we can see that there are a lot of parsing
problems with the x column—there are trailing characters after the
integer value. That suggests we need to use a double parser instead.

To fix the call, start by copying and pasting the column specification
into your original call:

challenge <- read_csv(
 readr_example("challenge.csv"),
 col_types = cols(
 x = col_integer(),
 y = col_character()
)
)

Then you can tweak the type of the x column:

challenge <- read_csv(
 readr_example("challenge.csv"),
 col_types = cols(
 x = col_double(),
 y = col_character()
)
)

That fixes the first problem, but if we look at the last few rows, you’ll
see that they’re dates stored in a character vector:

tail(challenge)
#> # A tibble: 6 × 2
#> x y
#> <dbl> <chr>
#> 1 0.805 2019-11-21
#> 2 0.164 2018-03-29
#> 3 0.472 2014-08-04
#> 4 0.718 2015-08-16
#> 5 0.270 2020-02-04
#> 6 0.608 2019-01-06

You can fix that by specifying that y is a date column:

challenge <- read_csv(
 readr_example("challenge.csv"),
 col_types = cols(
 x = col_double(),
 y = col_date()

140 | Chapter 8: Data Import with readr

)
)
tail(challenge)
#> # A tibble: 6 × 2
#> x y
#> <dbl> <date>
#> 1 0.805 2019-11-21
#> 2 0.164 2018-03-29
#> 3 0.472 2014-08-04
#> 4 0.718 2015-08-16
#> 5 0.270 2020-02-04
#> 6 0.608 2019-01-06

Every parse_xyz() function has a corresponding col_xyz() func‐
tion. You use parse_xyz() when the data is in a character vector in
R already; you use col_xyz() when you want to tell readr how to
load the data.

I highly recommend always supplying col_types, building up from
the printout provided by readr. This ensures that you have a consis‐
tent and reproducible data import script. If you rely on the default
guesses and your data changes, readr will continue to read it in. If
you want to be really strict, use stop_for_problems(): that will
throw an error and stop your script if there are any parsing prob‐
lems.

Other Strategies
There are a few other general strategies to help you parse files:

• In the previous example, we just got unlucky: if we look at just
one more row than the default, we can correctly parse in one
shot:

challenge2 <- read_csv(
 readr_example("challenge.csv"),
 guess_max = 1001
)
#> Parsed with column specification:
#> cols(
#> x = col_double(),
#> y = col_date(format = "")
#>)
challenge2
#> # A tibble: 2,000 × 2
#> x y
#> <dbl> <date>
#> 1 404 <NA>

Parsing a File | 141

#> 2 4172 <NA>
#> 3 3004 <NA>
#> 4 787 <NA>
#> 5 37 <NA>
#> 6 2332 <NA>
#> # ... with 1,994 more rows

• Sometimes it’s easier to diagnose problems if you just read in all
the columns as character vectors:

challenge2 <- read_csv(readr_example("challenge.csv"),
 col_types = cols(.default = col_character())
)

This is particularly useful in conjunction with type_convert(),
which applies the parsing heuristics to the character columns in
a data frame:

df <- tribble(
 ~x, ~y,
 "1", "1.21",
 "2", "2.32",
 "3", "4.56"
)
df
#> # A tibble: 3 × 2
#> x y
#> <chr> <chr>
#> 1 1 1.21
#> 2 2 2.32
#> 3 3 4.56

Note the column types
type_convert(df)
#> Parsed with column specification:
#> cols(
#> x = col_integer(),
#> y = col_double()
#>)
#> # A tibble: 3 × 2
#> x y
#> <int> <dbl>
#> 1 1 1.21
#> 2 2 2.32
#> 3 3 4.56

• If you’re reading a very large file, you might want to set n_max to
a smallish number like 10,000 or 100,000. That will accelerate
your iterations while you eliminate common problems.

142 | Chapter 8: Data Import with readr

• If you’re having major parsing problems, sometimes it’s easier to
just read into a character vector of lines with read_lines(), or
even a character vector of length 1 with read_file(). Then you
can use the string parsing skills you’ll learn later to parse more
exotic formats.

Writing to a File
readr also comes with two useful functions for writing data back to
disk: write_csv() and write_tsv(). Both functions increase the
chances of the output file being read back in correctly by:

• Always encoding strings in UTF-8.
• Saving dates and date-times in ISO8601 format so they are

easily parsed elsewhere.

If you want to export a CSV file to Excel, use write_excel_csv()—
this writes a special character (a “byte order mark”) at the start of
the file, which tells Excel that you’re using the UTF-8 encoding.

The most important arguments are x (the data frame to save) and
path (the location to save it). You can also specify how missing val‐
ues are written with na, and if you want to append to an existing file:

write_csv(challenge, "challenge.csv")

Note that the type information is lost when you save to CSV:

challenge
#> # A tibble: 2,000 × 2
#> x y
#> <dbl> <date>
#> 1 404 <NA>
#> 2 4172 <NA>
#> 3 3004 <NA>
#> 4 787 <NA>
#> 5 37 <NA>
#> 6 2332 <NA>
#> # ... with 1,994 more rows
write_csv(challenge, "challenge-2.csv")
read_csv("challenge-2.csv")
#> Parsed with column specification:
#> cols(
#> x = col_double(),
#> y = col_character()
#>)

Writing to a File | 143

#> # A tibble: 2,000 × 2
#> x y
#> <dbl> <chr>
#> 1 404 <NA>
#> 2 4172 <NA>
#> 3 3004 <NA>
#> 4 787 <NA>
#> 5 37 <NA>
#> 6 2332 <NA>
#> # ... with 1,994 more rows

This makes CSVs a little unreliable for caching interim results—you
need to re-create the column specification every time you load in.
There are two alternatives:

• write_rds() and read_rds() are uniform wrappers around the
base functions readRDS() and saveRDS(). These store data in
R’s custom binary format called RDS:

write_rds(challenge, "challenge.rds")
read_rds("challenge.rds")
#> # A tibble: 2,000 × 2
#> x y
#> <dbl> <date>
#> 1 404 <NA>
#> 2 4172 <NA>
#> 3 3004 <NA>
#> 4 787 <NA>
#> 5 37 <NA>
#> 6 2332 <NA>
#> # ... with 1,994 more rows

• The feather package implements a fast binary file format that
can be shared across programming languages:

library(feather)
write_feather(challenge, "challenge.feather")
read_feather("challenge.feather")
#> # A tibble: 2,000 x 2
#> x y
#> <dbl> <date>
#> 1 404 <NA>
#> 2 4172 <NA>
#> 3 3004 <NA>
#> 4 787 <NA>
#> 5 37 <NA>
#> 6 2332 <NA>
#> # ... with 1,994 more rows

144 | Chapter 8: Data Import with readr

feather tends to be faster than RDS and is usable outside of R. RDS
supports list-columns (which you’ll learn about in Chapter 20);
feather currently does not.

Other Types of Data
To get other types of data into R, we recommend starting with the
tidyverse packages listed next. They’re certainly not perfect, but they
are a good place to start. For rectangular data:

• haven reads SPSS, Stata, and SAS files.
• readxl reads Excel files (both .xls and .xlsx).
• DBI, along with a database-specific backend (e.g., RMySQL,

RSQLite, RPostgreSQL, etc.) allows you to run SQL queries
against a database and return a data frame.

For hierarchical data: use jsonlite (by Jeroen Ooms) for JSON, and
xml2 for XML. Jenny Bryan has some excellent worked examples at
https://jennybc.github.io/purrr-tutorial/.

For other file types, try the R data import/export manual and the rio
package.

Other Types of Data | 145

https://jennybc.github.io/purrr-tutorial/
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://github.com/leeper/rio

CHAPTER 9

Tidy Data with tidyr

Introduction
Happy families are all alike; every unhappy family is unhappy in its
own way.

—Leo Tolstoy

Tidy datasets are all alike, but every messy dataset is messy in its
own way.

—Hadley Wickham

In this chapter, you will learn a consistent way to organize your data
in R, an organization called tidy data. Getting your data into this
format requires some up-front work, but that work pays off in the
long term. Once you have tidy data and the tidy tools provided by
packages in the tidyverse, you will spend much less time munging
data from one representation to another, allowing you to spend
more time on the analytic questions at hand.

This chapter will give you a practical introduction to tidy data and
the accompanying tools in the tidyr package. If you’d like to learn
more about the underlying theory, you might enjoy the Tidy Data
paper published in the Journal of Statistical Software.

Prerequisites
In this chapter we’ll focus on tidyr, a package that provides a bunch
of tools to help tidy up your messy datasets. tidyr is a member of the
core tidyverse.

147

http://www.jstatsoft.org/v59/i10/paper
http://www.jstatsoft.org/v59/i10/paper

library(tidyverse)

Tidy Data
You can represent the same underlying data in multiple ways. The
following example shows the same data organized in four different
ways. Each dataset shows the same values of four variables, country,
year, population, and cases, but each dataset organizes the values in a
different way:

table1
#> # A tibble: 6 × 4
#> country year cases population
#> <chr> <int> <int> <int>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583
table2
#> # A tibble: 12 × 4
#> country year type count
#> <chr> <int> <chr> <int>
#> 1 Afghanistan 1999 cases 745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases 2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil 1999 cases 37737
#> 6 Brazil 1999 population 172006362
#> # ... with 6 more rows
table3
#> # A tibble: 6 × 3
#> country year rate
#> * <chr> <int> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

Spread across two tibbles
table4a # cases
#> # A tibble: 3 × 3
#> country `1999` `2000`
#> * <chr> <int> <int>
#> 1 Afghanistan 745 2666
#> 2 Brazil 37737 80488
#> 3 China 212258 213766

148 | Chapter 9: Tidy Data with tidyr

table4b # population
#> # A tibble: 3 × 3
#> country `1999` `2000`
#> * <chr> <int> <int>
#> 1 Afghanistan 19987071 20595360
#> 2 Brazil 172006362 174504898
#> 3 China 1272915272 1280428583

These are all representations of the same underlying data, but they
are not equally easy to use. One dataset, the tidy dataset, will be
much easier to work with inside the tidyverse.

There are three interrelated rules which make a dataset tidy:

1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.

Figure 9-1 shows the rules visually.

Figure 9-1. The following three rules make a dataset tidy: variables are
in columns, observations are in rows, and values are in cells

These three rules are interrelated because it’s impossible to only sat‐
isfy two of the three. That interrelationship leads to an even simpler
set of practical instructions:

1. Put each dataset in a tibble.
2. Put each variable in a column.

In this example, only table1 is tidy. It’s the only representation
where each column is a variable.

Why ensure that your data is tidy? There are two main advantages:

• There’s a general advantage to picking one consistent way of
storing data. If you have a consistent data structure, it’s easier to

Tidy Data | 149

learn the tools that work with it because they have an underly‐
ing uniformity.

• There’s a specific advantage to placing variables in columns
because it allows R’s vectorized nature to shine. As you learned
in “Useful Creation Functions” on page 56 and “Useful Sum‐
mary Functions” on page 66, most built-in R functions work
with vectors of values. That makes transforming tidy data feel
particularly natural.

dplyr, ggplot2, and all the other packages in the tidyverse are
designed to work with tidy data. Here are a couple of small examples
showing how you might work with table1:

Compute rate per 10,000
table1 %>%
 mutate(rate = cases / population * 10000)
#> # A tibble: 6 × 5
#> country year cases population rate
#> <chr> <int> <int> <int> <dbl>
#> 1 Afghanistan 1999 745 19987071 0.373
#> 2 Afghanistan 2000 2666 20595360 1.294
#> 3 Brazil 1999 37737 172006362 2.194
#> 4 Brazil 2000 80488 174504898 4.612
#> 5 China 1999 212258 1272915272 1.667
#> 6 China 2000 213766 1280428583 1.669

Compute cases per year
table1 %>%
 count(year, wt = cases)
#> # A tibble: 2 × 2
#> year n
#> <int> <int>
#> 1 1999 250740
#> 2 2000 296920

Visualize changes over time
library(ggplot2)
ggplot(table1, aes(year, cases)) +
 geom_line(aes(group = country), color = "grey50") +
 geom_point(aes(color = country))

150 | Chapter 9: Tidy Data with tidyr

Exercises
1. Using prose, describe how the variables and observations are

organized in each of the sample tables.
2. Compute the rate for table2, and table4a + table4b. You will

need to perform four operations:
a. Extract the number of TB cases per country per year.
b. Extract the matching population per country per year.
c. Divide cases by population, and multiply by 10,000.
d. Store back in the appropriate place.
Which representation is easiest to work with? Which is hardest?
Why?

3. Re-create the plot showing change in cases over time using
table2 instead of table1. What do you need to do first?

Spreading and Gathering
The principles of tidy data seem so obvious that you might wonder
if you’ll ever encounter a dataset that isn’t tidy. Unfortunately, how‐
ever, most data that you will encounter will be untidy. There are two
main reasons:

Spreading and Gathering | 151

• Most people aren’t familiar with the principles of tidy data, and
it’s hard to derive them yourself unless you spend a lot of time
working with data.

• Data is often organized to facilitate some use other than analy‐
sis. For example, data is often organized to make entry as easy as
possible.

This means for most real analyses, you’ll need to do some tidying.
The first step is always to figure out what the variables and observa‐
tions are. Sometimes this is easy; other times you’ll need to consult
with the people who originally generated the data. The second step
is to resolve one of two common problems:

• One variable might be spread across multiple columns.
• One observation might be scattered across multiple rows.

Typically a dataset will only suffer from one of these problems; it’ll
only suffer from both if you’re really unlucky! To fix these problems,
you’ll need the two most important functions in tidyr: gather()
and spread().

Gathering
A common problem is a dataset where some of the column names
are not names of variables, but values of a variable. Take table4a;
the column names 1999 and 2000 represent values of the year vari‐
able, and each row represents two observations, not one:

table4a
#> # A tibble: 3 × 3
#> country `1999` `2000`
#> * <chr> <int> <int>
#> 1 Afghanistan 745 2666
#> 2 Brazil 37737 80488
#> 3 China 212258 213766

To tidy a dataset like this, we need to gather those columns into a
new pair of variables. To describe that operation we need three
parameters:

• The set of columns that represent values, not variables. In this
example, those are the columns 1999 and 2000.

152 | Chapter 9: Tidy Data with tidyr

• The name of the variable whose values form the column names.
I call that the key, and here it is year.

• The name of the variable whose values are spread over the cells.
I call that value, and here it’s the number of cases.

Together those parameters generate the call to gather():

table4a %>%
 gather(`1999`, `2000`, key = "year", value = "cases")
#> # A tibble: 6 × 3
#> country year cases
#> <chr> <chr> <int>
#> 1 Afghanistan 1999 745
#> 2 Brazil 1999 37737
#> 3 China 1999 212258
#> 4 Afghanistan 2000 2666
#> 5 Brazil 2000 80488
#> 6 China 2000 213766

The columns to gather are specified with dplyr::select() style
notation. Here there are only two columns, so we list them individu‐
ally. Note that “1999” and “2000” are nonsyntactic names so we have
to surround them in backticks. To refresh your memory of the other
ways to select columns, see “Select Columns with select()” on page
51.

In the final result, the gathered columns are dropped, and we get
new key and value columns. Otherwise, the relationships between
the original variables are preserved. Visually, this is shown in
Figure 9-2. We can use gather() to tidy table4b in a similar fash‐
ion. The only difference is the variable stored in the cell values:

table4b %>%
 gather(`1999`, `2000`, key = "year", value = "population")
#> # A tibble: 6 × 3
#> country year population
#> <chr> <chr> <int>
#> 1 Afghanistan 1999 19987071
#> 2 Brazil 1999 172006362
#> 3 China 1999 1272915272
#> 4 Afghanistan 2000 20595360
#> 5 Brazil 2000 174504898
#> 6 China 2000 1280428583

Spreading and Gathering | 153

Figure 9-2. Gathering table4 into a tidy form

To combine the tidied versions of table4a and table4b into a single
tibble, we need to use dplyr::left_join(), which you’ll learn
about in Chapter 10:

tidy4a <- table4a %>%
 gather(`1999`, `2000`, key = "year", value = "cases")
tidy4b <- table4b %>%
 gather(`1999`, `2000`, key = "year", value = "population")
left_join(tidy4a, tidy4b)
#> Joining, by = c("country", "year")
#> # A tibble: 6 × 4
#> country year cases population
#> <chr> <chr> <int> <int>
#> 1 Afghanistan 1999 745 19987071
#> 2 Brazil 1999 37737 172006362
#> 3 China 1999 212258 1272915272
#> 4 Afghanistan 2000 2666 20595360
#> 5 Brazil 2000 80488 174504898
#> 6 China 2000 213766 1280428583

Spreading
Spreading is the opposite of gathering. You use it when an observa‐
tion is scattered across multiple rows. For example, take table2—an
observation is a country in a year, but each observation is spread
across two rows:

table2
#> # A tibble: 12 × 4
#> country year type count
#> <chr> <int> <chr> <int>
#> 1 Afghanistan 1999 cases 745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases 2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil 1999 cases 37737

154 | Chapter 9: Tidy Data with tidyr

#> 6 Brazil 1999 population 172006362
#> # ... with 6 more rows

To tidy this up, we first analyze the representation in a similar way
to gather(). This time, however, we only need two parameters:

• The column that contains variable names, the key column.
Here, it’s type.

• The column that contains values forms multiple variables, the
value column. Here, it’s count.

Once we’ve figured that out, we can use spread(), as shown pro‐
grammatically here, and visually in Figure 9-3:

spread(table2, key = type, value = count)
#> # A tibble: 6 × 4
#> country year cases population
#> * <chr> <int> <int> <int>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

Figure 9-3. Spreading table2 makes it tidy

As you might have guessed from the common key and value argu‐
ments, spread() and gather() are complements. gather() makes
wide tables narrower and longer; spread() makes long tables
shorter and wider.

Spreading and Gathering | 155

Exercises
1. Why are gather() and spread() not perfectly symmetrical?

Carefully consider the following example:
stocks <- tibble(
 year = c(2015, 2015, 2016, 2016),
 half = c(1, 2, 1, 2),
 return = c(1.88, 0.59, 0.92, 0.17)
)
stocks %>%
 spread(year, return) %>%
 gather("year", "return", `2015`:`2016`)

(Hint: look at the variable types and think about column
names.)
Both spread() and gather() have a convert argument. What
does it do?

2. Why does this code fail?
table4a %>%
 gather(1999, 2000, key = "year", value = "cases")
#> Error in eval(expr, envir, enclos):
#> Position must be between 0 and n

3. Why does spreading this tibble fail? How could you add a new
column to fix the problem?

people <- tribble(
 ~name, ~key, ~value,
 #-----------------|--------|------
 "Phillip Woods", "age", 45,
 "Phillip Woods", "height", 186,
 "Phillip Woods", "age", 50,
 "Jessica Cordero", "age", 37,
 "Jessica Cordero", "height", 156
)

4. Tidy this simple tibble. Do you need to spread or gather it?
What are the variables?

preg <- tribble(
 ~pregnant, ~male, ~female,
 "yes", NA, 10,
 "no", 20, 12
)

156 | Chapter 9: Tidy Data with tidyr

Separating and Pull
So far you’ve learned how to tidy table2 and table4, but not
table3. table3 has a different problem: we have one column (rate)
that contains two variables (cases and population). To fix this
problem, we’ll need the separate() function. You’ll also learn about
the complement of separate(): unite(), which you use if a single
variable is spread across multiple columns.

Separate
separate() pulls apart one column into multiple columns, by split‐
ting wherever a separator character appears. Take table3:

table3
#> # A tibble: 6 × 3
#> country year rate
#> * <chr> <int> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

The rate column contains both cases and population variables,
and we need to split it into two variables. separate() takes the
name of the column to separate, and the names of the columns to
separate into, as shown in Figure 9-4 and the following code:

table3 %>%
 separate(rate, into = c("cases", "population"))
#> # A tibble: 6 × 4
#> country year cases population
#> * <chr> <int> <chr> <chr>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

Separating and Pull | 157

Figure 9-4. Separating table3 makes it tidy

By default, separate() will split values wherever it sees a non-
alphanumeric character (i.e., a character that isn’t a number or let‐
ter). For example, in the preceding code, separate() split the values
of rate at the forward slash characters. If you wish to use a specific
character to separate a column, you can pass the character to the sep
argument of separate(). For example, we could rewrite the preced‐
ing code as:

table3 %>%
 separate(rate, into = c("cases", "population"), sep = "/")

(Formally, sep is a regular expression, which you’ll learn more about
in Chapter 11.)

Look carefully at the column types: you’ll notice that case and popu
lation are character columns. This is the default behavior in sepa
rate(): it leaves the type of the column as is. Here, however, it’s not
very useful as those really are numbers. We can ask separate() to
try and convert to better types using convert = TRUE:

table3 %>%
 separate(
 rate,
 into = c("cases", "population"),
 convert = TRUE
)
#> # A tibble: 6 × 4
#> country year cases population
#> * <chr> <int> <int> <int>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898

158 | Chapter 9: Tidy Data with tidyr

#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

You can also pass a vector of integers to sep. separate() will inter‐
pret the integers as positions to split at. Positive values start at 1 on
the far left of the strings; negative values start at –1 on the far right
of the strings. When using integers to separate strings, the length of
sep should be one less than the number of names in into.

You can use this arrangement to separate the last two digits of each
year. This makes this data less tidy, but is useful in other cases, as
you’ll see in a little bit:

table3 %>%
 separate(year, into = c("century", "year"), sep = 2)
#> # A tibble: 6 × 4
#> country century year rate
#> * <chr> <chr> <chr> <chr>
#> 1 Afghanistan 19 99 745/19987071
#> 2 Afghanistan 20 00 2666/20595360
#> 3 Brazil 19 99 37737/172006362
#> 4 Brazil 20 00 80488/174504898
#> 5 China 19 99 212258/1272915272
#> 6 China 20 00 213766/1280428583

Unite
unite() is the inverse of separate(): it combines multiple columns
into a single column. You’ll need it much less frequently than sepa
rate(), but it’s still a useful tool to have in your back pocket.

We can use unite() to rejoin the century and year columns that we
created in the last example. That data is saved as tidyr::table5.
unite() takes a data frame, the name of the new variable to create,
and a set of columns to combine, again specified in
dplyr::select() . The result is shown in Figure 9-5 and in the fol‐
lowing code:

table5 %>%
 unite(new, century, year)
#> # A tibble: 6 × 3
#> country new rate
#> * <chr> <chr> <chr>
#> 1 Afghanistan 19_99 745/19987071
#> 2 Afghanistan 20_00 2666/20595360
#> 3 Brazil 19_99 37737/172006362
#> 4 Brazil 20_00 80488/174504898

Separating and Pull | 159

#> 5 China 19_99 212258/1272915272
#> 6 China 20_00 213766/1280428583

Figure 9-5. Uniting table5 makes it tidy

In this case we also need to use the sep argument. The default will
place an underscore (_) between the values from different columns.
Here we don’t want any separator so we use "":

table5 %>%
 unite(new, century, year, sep = "")
#> # A tibble: 6 × 3
#> country new rate
#> * <chr> <chr> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

Exercises
1. What do the extra and fill arguments do in separate()?

Experiment with the various options for the following two toy
datasets:

tibble(x = c("a,b,c", "d,e,f,g", "h,i,j")) %>%
 separate(x, c("one", "two", "three"))

tibble(x = c("a,b,c", "d,e", "f,g,i")) %>%
 separate(x, c("one", "two", "three"))

2. Both unite() and separate() have a remove argument. What
does it do? Why would you set it to FALSE?

160 | Chapter 9: Tidy Data with tidyr

3. Compare and contrast separate() and extract(). Why are
there three variations of separation (by position, by separator,
and with groups), but only one unite?

Missing Values
Changing the representation of a dataset brings up an important
subtlety of missing values. Surprisingly, a value can be missing in
one of two possible ways:

• Explicitly, i.e., flagged with NA.
• Implicitly, i.e., simply not present in the data.

Let’s illustrate this idea with a very simple dataset:

stocks <- tibble(
 year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
 qtr = c(1, 2, 3, 4, 2, 3, 4),
 return = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66)
)

There are two missing values in this dataset:

• The return for the fourth quarter of 2015 is explicitly missing,
because the cell where its value should be instead contains NA.

• The return for the first quarter of 2016 is implicitly missing,
because it simply does not appear in the dataset.

One way to think about the difference is with this Zen-like koan: an
explicit missing value is the presence of an absence; an implicit
missing value is the absence of a presence.

The way that a dataset is represented can make implicit values
explicit. For example, we can make the implicit missing value
explicit by putting years in the columns:

stocks %>%
 spread(year, return)
#> # A tibble: 4 × 3
#> qtr `2015` `2016`
#> * <dbl> <dbl> <dbl>
#> 1 1 1.88 NA
#> 2 2 0.59 0.92
#> 3 3 0.35 0.17
#> 4 4 NA 2.66

Missing Values | 161

Because these explicit missing values may not be important in other
representations of the data, you can set na.rm = TRUE in gather()
to turn explicit missing values implicit:

stocks %>%
 spread(year, return) %>%
 gather(year, return, `2015`:`2016`, na.rm = TRUE)
#> # A tibble: 6 × 3
#> qtr year return
#> * <dbl> <chr> <dbl>
#> 1 1 2015 1.88
#> 2 2 2015 0.59
#> 3 3 2015 0.35
#> 4 2 2016 0.92
#> 5 3 2016 0.17
#> 6 4 2016 2.66

Another important tool for making missing values explicit in tidy
data is complete():

stocks %>%
 complete(year, qtr)
#> # A tibble: 8 × 3
#> year qtr return
#> <dbl> <dbl> <dbl>
#> 1 2015 1 1.88
#> 2 2015 2 0.59
#> 3 2015 3 0.35
#> 4 2015 4 NA
#> 5 2016 1 NA
#> 6 2016 2 0.92
#> # ... with 2 more rows

complete() takes a set of columns, and finds all unique combina‐
tions. It then ensures the original dataset contains all those values,
filling in explicit NAs where necessary.

There’s one other important tool that you should know for working
with missing values. Sometimes when a data source has primarily
been used for data entry, missing values indicate that the previous
value should be carried forward:

treatment <- tribble(
 ~ person, ~ treatment, ~response,
 "Derrick Whitmore", 1, 7,
 NA, 2, 10,
 NA, 3, 9,
 "Katherine Burke", 1, 4
)

162 | Chapter 9: Tidy Data with tidyr

You can fill in these missing values with fill(). It takes a set of col‐
umns where you want missing values to be replaced by the most
recent nonmissing value (sometimes called last observation carried
forward):

treatment %>%
 fill(person)
#> # A tibble: 4 × 3
#> person treatment response
#> <chr> <dbl> <dbl>
#> 1 Derrick Whitmore 1 7
#> 2 Derrick Whitmore 2 10
#> 3 Derrick Whitmore 3 9
#> 4 Katherine Burke 1 4

Exercises
1. Compare and contrast the fill arguments to spread() and com

plete().
2. What does the direction argument to fill() do?

Case Study
To finish off the chapter, let’s pull together everything you’ve learned
to tackle a realistic data tidying problem. The tidyr::who dataset
contains tuberculosis (TB) cases broken down by year, country, age,
gender, and diagnosis method. The data comes from the 2014 World
Health Organization Global Tuberculosis Report, available at http://
www.who.int/tb/country/data/download/en/.

There’s a wealth of epidemiological information in this dataset, but
it’s challenging to work with the data in the form that it’s provided:

who
#> # A tibble: 7,240 × 60
#> country iso2 iso3 year new_sp_m014 new_sp_m1524
#> <chr> <chr> <chr> <int> <int> <int>
#> 1 Afghanistan AF AFG 1980 NA NA
#> 2 Afghanistan AF AFG 1981 NA NA
#> 3 Afghanistan AF AFG 1982 NA NA
#> 4 Afghanistan AF AFG 1983 NA NA
#> 5 Afghanistan AF AFG 1984 NA NA
#> 6 Afghanistan AF AFG 1985 NA NA
#> # ... with 7,234 more rows, and 54 more variables:
#> # new_sp_m2534 <int>, new_sp_m3544 <int>,
#> # new_sp_m4554 <int>, new_sp_m5564 <int>,

Case Study | 163

http://www.who.int/tb/country/data/download/en/
http://www.who.int/tb/country/data/download/en/

#> # new_sp_m65 <int>, new_sp_f014 <int>,
#> # new_sp_f1524 <int>, new_sp_f2534 <int>,
#> # new_sp_f3544 <int>, new_sp_f4554 <int>,
#> # new_sp_f5564 <int>, new_sp_f65 <int>,
#> # new_sn_m014 <int>, new_sn_m1524 <int>,
#> # new_sn_m2534 <int>, new_sn_m3544 <int>,
#> # new_sn_m4554 <int>, new_sn_m5564 <int>,
#> # new_sn_m65 <int>, new_sn_f014 <int>,
#> # new_sn_f1524 <int>, new_sn_f2534 <int>,
#> # new_sn_f3544 <int>, new_sn_f4554 <int>,
#> # new_sn_f5564 <int>, new_sn_f65 <int>,
#> # new_ep_m014 <int>, new_ep_m1524 <int>,
#> # new_ep_m2534 <int>, new_ep_m3544 <int>,
#> # new_ep_m4554 <int>, new_ep_m5564 <int>,
#> # new_ep_m65 <int>, new_ep_f014 <int>,
#> # new_ep_f1524 <int>, new_ep_f2534 <int>,
#> # new_ep_f3544 <int>, new_ep_f4554 <int>,
#> # new_ep_f5564 <int>, new_ep_f65 <int>,
#> # newrel_m014 <int>, newrel_m1524 <int>,
#> # newrel_m2534 <int>, newrel_m3544 <int>,
#> # newrel_m4554 <int>, newrel_m5564 <int>,
#> # newrel_m65 <int>, newrel_f014 <int>,
#> # newrel_f1524 <int>, newrel_f2534 <int>,
#> # newrel_f3544 <int>, newrel_f4554 <int>,
#> # newrel_f5564 <int>, newrel_f65 <int>

This is a very typical real-life dataset. It contains redundant col‐
umns, odd variable codes, and many missing values. In short, who is
messy, and we’ll need multiple steps to tidy it. Like dplyr, tidyr is
designed so that each function does one thing well. That means in
real-life situations you’ll usually need to string together multiple
verbs into a pipeline.

The best place to start is almost always to gather together the col‐
umns that are not variables. Let’s have a look at what we’ve got:

• It looks like country, iso2, and iso3 are three variables that
redundantly specify the country.

• year is clearly also a variable.
• We don’t know what all the other columns are yet, but given

the structure in the variable names (e.g., new_sp_m014,
new_ep_m014, new_ep_f014) these are likely to be values, not
variables.

So we need to gather together all the columns from new_sp_m014 to
newrel_f65. We don’t know what those values represent yet, so we’ll

164 | Chapter 9: Tidy Data with tidyr

give them the generic name "key". We know the cells represent the
count of cases, so we’ll use the variable cases. There are a lot of
missing values in the current representation, so for now we’ll use
na.rm just so we can focus on the values that are present:

who1 <- who %>%
 gather(
 new_sp_m014:newrel_f65, key = "key",
 value = "cases",
 na.rm = TRUE
)
who1
#> # A tibble: 76,046 × 6
#> country iso2 iso3 year key cases
#> * <chr> <chr> <chr> <int> <chr> <int>
#> 1 Afghanistan AF AFG 1997 new_sp_m014 0
#> 2 Afghanistan AF AFG 1998 new_sp_m014 30
#> 3 Afghanistan AF AFG 1999 new_sp_m014 8
#> 4 Afghanistan AF AFG 2000 new_sp_m014 52
#> 5 Afghanistan AF AFG 2001 new_sp_m014 129
#> 6 Afghanistan AF AFG 2002 new_sp_m014 90
#> # ... with 7.604e+04 more rows

We can get some hint of the structure of the values in the new key
column by counting them:

who1 %>%
 count(key)
#> # A tibble: 56 × 2
#> key n
#> <chr> <int>
#> 1 new_ep_f014 1032
#> 2 new_ep_f1524 1021
#> 3 new_ep_f2534 1021
#> 4 new_ep_f3544 1021
#> 5 new_ep_f4554 1017
#> 6 new_ep_f5564 1017
#> # ... with 50 more rows

You might be able to parse this out by yourself with a little thought
and some experimentation, but luckily we have the data dictionary
handy. It tells us:

1. The first three letters of each column denote whether the col‐
umn contains new or old cases of TB. In this dataset, each col‐
umn contains new cases.

2. The next two letters describe the type of TB:

• rel stands for cases of relapse.

Case Study | 165

• ep stands for cases of extrapulmonary TB.
• sn stands for cases of pulmonary TB that could not be diag‐

nosed by a pulmonary smear (smear negative).
• sp stands for cases of pulmonary TB that could be diagnosed

be a pulmonary smear (smear positive).

3. The sixth letter gives the sex of TB patients. The dataset groups
cases by males (m) and females (f).

4. The remaining numbers give the age group. The dataset groups
cases into seven age groups:

• 014 = 0–14 years old
• 1524 = 15–24 years old
• 2534 = 25–34 years old
• 3544 = 35–44 years old
• 4554 = 45–54 years old
• 5564 = 55–64 years old
• 65 = 65 or older

We need to make a minor fix to the format of the column names:
unfortunately the names are slightly inconsistent because instead of
new_rel we have newrel (it’s hard to spot this here but if you don’t
fix it we’ll get errors in subsequent steps). You’ll learn about
str_replace() in Chapter 11, but the basic idea is pretty simple:
replace the characters “newrel” with “new_rel”. This makes all vari‐
able names consistent:

who2 <- who1 %>%
 mutate(key = stringr::str_replace(key, "newrel", "new_rel"))
who2
#> # A tibble: 76,046 × 6
#> country iso2 iso3 year key cases
#> <chr> <chr> <chr> <int> <chr> <int>
#> 1 Afghanistan AF AFG 1997 new_sp_m014 0
#> 2 Afghanistan AF AFG 1998 new_sp_m014 30
#> 3 Afghanistan AF AFG 1999 new_sp_m014 8
#> 4 Afghanistan AF AFG 2000 new_sp_m014 52
#> 5 Afghanistan AF AFG 2001 new_sp_m014 129
#> 6 Afghanistan AF AFG 2002 new_sp_m014 90
#> # ... with 7.604e+04 more rows

166 | Chapter 9: Tidy Data with tidyr

We can separate the values in each code with two passes of sepa
rate(). The first pass will split the codes at each underscore:

who3 <- who2 %>%
 separate(key, c("new", "type", "sexage"), sep = "_")
who3
#> # A tibble: 76,046 × 8
#> country iso2 iso3 year new type sexage cases
#> * <chr> <chr> <chr> <int> <chr> <chr> <chr> <int>
#> 1 Afghanistan AF AFG 1997 new sp m014 0
#> 2 Afghanistan AF AFG 1998 new sp m014 30
#> 3 Afghanistan AF AFG 1999 new sp m014 8
#> 4 Afghanistan AF AFG 2000 new sp m014 52
#> 5 Afghanistan AF AFG 2001 new sp m014 129
#> 6 Afghanistan AF AFG 2002 new sp m014 90
#> # ... with 7.604e+04 more rows

Then we might as well drop the new column because it’s constant in
this dataset. While we’re dropping columns, let’s also drop iso2 and
iso3 since they’re redundant:

who3 %>%
 count(new)
#> # A tibble: 1 × 2
#> new n
#> <chr> <int>
#> 1 new 76046
who4 <- who3 %>%
 select(-new, -iso2, -iso3)

Next we’ll separate sexage into sex and age by splitting after the
first character:

who5 <- who4 %>%
 separate(sexage, c("sex", "age"), sep = 1)
who5
#> # A tibble: 76,046 × 6
#> country year type sex age cases
#> * <chr> <int> <chr> <chr> <chr> <int>
#> 1 Afghanistan 1997 sp m 014 0
#> 2 Afghanistan 1998 sp m 014 30
#> 3 Afghanistan 1999 sp m 014 8
#> 4 Afghanistan 2000 sp m 014 52
#> 5 Afghanistan 2001 sp m 014 129
#> 6 Afghanistan 2002 sp m 014 90
#> # ... with 7.604e+04 more rows

The who dataset is now tidy!

Case Study | 167

I’ve shown you the code a piece at a time, assigning each interim
result to a new variable. This typically isn’t how you’d work interac‐
tively. Instead, you’d gradually build up a complex pipe:

who %>%
 gather(code, value, new_sp_m014:newrel_f65, na.rm = TRUE) %>%
 mutate(
 code = stringr::str_replace(code, "newrel", "new_rel")
) %>%
 separate(code, c("new", "var", "sexage")) %>%
 select(-new, -iso2, -iso3) %>%
 separate(sexage, c("sex", "age"), sep = 1)

Exercises
1. In this case study I set na.rm = TRUE just to make it easier to

check that we had the correct values. Is this reasonable? Think
about how missing values are represented in this dataset. Are
there implicit missing values? What’s the difference between an
NA and zero?

2. What happens if you neglect the mutate() step? (mutate(key =
stringr::str_replace(key, "newrel", "new_rel"))).

3. I claimed that iso2 and iso3 were redundant with country.
Confirm this claim.

4. For each country, year, and sex compute the total number of
cases of TB. Make an informative visualization of the data.

Nontidy Data
Before we continue on to other topics, it’s worth talking briefly
about nontidy data. Earlier in the chapter, I used the pejorative term
“messy” to refer to nontidy data. That’s an oversimplification: there
are lots of useful and well-founded data structures that are not tidy
data. There are two main reasons to use other data structures:

• Alternative representations may have substantial performance
or space advantages.

• Specialized fields have evolved their own conventions for stor‐
ing data that may be quite different to the conventions of tidy
data.

168 | Chapter 9: Tidy Data with tidyr

Either of these reasons means you’ll need something other than a
tibble (or data frame). If your data does fit naturally into a rectangu‐
lar structure composed of observations and variables, I think tidy
data should be your default choice. But there are good reasons to use
other structures; tidy data is not the only way. If you’d like to learn
more about nontidy data, I’d highly recommend this thoughtful blog
post by Jeff Leek.

Nontidy Data | 169

http://simplystatistics.org/2016/02/17/non-tidy-data/
http://simplystatistics.org/2016/02/17/non-tidy-data/

CHAPTER 10

Relational Data with dplyr

Introduction
It’s rare that a data analysis involves only a single table of data. Typi‐
cally you have many tables of data, and you must combine them to
answer the questions that you’re interested in. Collectively, multiple
tables of data are called relational data because it is the relations, not
just the individual datasets, that are important.

Relations are always defined between a pair of tables. All other rela‐
tions are built up from this simple idea: the relations of three or
more tables are always a property of the relations between each pair.
Sometimes both elements of a pair can be the same table! This is
needed if, for example, you have a table of people, and each person
has a reference to their parents.

To work with relational data you need verbs that work with pairs of
tables. There are three families of verbs designed to work with rela‐
tional data:

• Mutating joins, which add new variables to one data frame from
matching observations in another.

• Filtering joins, which filter observations from one data frame
based on whether or not they match an observation in the other
table.

• Set operations, which treat observations as if they were set
elements.

171

The most common place to find relational data is in a relational
database management system (or RDBMS), a term that encom‐
passes almost all modern databases. If you’ve used a database before,
you’ve almost certainly used SQL. If so, you should find the con‐
cepts in this chapter familiar, although their expression in dplyr is a
little different. Generally, dplyr is a little easier to use than SQL
because dplyr is specialized to do data analysis: it makes common
data analysis operations easier, at the expense of making it more dif‐
ficult to do other things that aren’t commonly needed for data
analysis.

Prerequisites
We will explore relational data from nycflights13 using the two-
table verbs from dplyr.

library(tidyverse)
library(nycflights13)

nycflights13
We will use the nycflights13 package to learn about relational data.
nycflights13 contains four tibbles that are related to the flights
table that you used in Chapter 3:

• airlines lets you look up the full carrier name from its abbre‐
viated code:

airlines
#> # A tibble: 16 × 2
#> carrier name
#> <chr> <chr>
#> 1 9E Endeavor Air Inc.
#> 2 AA American Airlines Inc.
#> 3 AS Alaska Airlines Inc.
#> 4 B6 JetBlue Airways
#> 5 DL Delta Air Lines Inc.
#> 6 EV ExpressJet Airlines Inc.
#> # ... with 10 more rows

• airports gives information about each airport, identified by the
faa airport code:

172 | Chapter 10: Relational Data with dplyr

airports
#> # A tibble: 1,396 × 7
#> faa name lat lon
#> <chr> <chr> <dbl> <dbl>
#> 1 04G Lansdowne Airport 41.1 -80.6
#> 2 06A Moton Field Municipal Airport 32.5 -85.7
#> 3 06C Schaumburg Regional 42.0 -88.1
#> 4 06N Randall Airport 41.4 -74.4
#> 5 09J Jekyll Island Airport 31.1 -81.4
#> 6 0A9 Elizabethton Municipal Airport 36.4 -82.2
#> # ... with 1,390 more rows, and 3 more variables:
#> # alt <int>, tz <dbl>, dst <chr>

• planes gives information about each plane, identified by its
tailnum:

planes
#> # A tibble: 3,322 × 9
#> tailnum year type
#> <chr> <int> <chr>
#> 1 N10156 2004 Fixed wing multi engine
#> 2 N102UW 1998 Fixed wing multi engine
#> 3 N103US 1999 Fixed wing multi engine
#> 4 N104UW 1999 Fixed wing multi engine
#> 5 N10575 2002 Fixed wing multi engine
#> 6 N105UW 1999 Fixed wing multi engine
#> # ... with 3,316 more rows, and 6 more variables:
#> # manufacturer <chr>, model <chr>, engines <int>,
#> # seats <int>, speed <int>, engine <chr>

• weather gives the weather at each NYC airport for each hour:
weather
#> # A tibble: 26,130 × 15
#> origin year month day hour temp dewp humid
#> <chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>
#> 1 EWR 2013 1 1 0 37.0 21.9 54.0
#> 2 EWR 2013 1 1 1 37.0 21.9 54.0
#> 3 EWR 2013 1 1 2 37.9 21.9 52.1
#> 4 EWR 2013 1 1 3 37.9 23.0 54.5
#> 5 EWR 2013 1 1 4 37.9 24.1 57.0
#> 6 EWR 2013 1 1 6 39.0 26.1 59.4
#> # ... with 2.612e+04 more rows, and 7 more variables:
#> # wind_dir <dbl>, wind_speed <dbl>, wind_gust <dbl>,
#> # precip <dbl>, pressure <dbl>, visib <dbl>,
#> # time_hour <dttm>

One way to show the relationships between the different tables is
with a drawing:

nycflights13 | 173

This diagram is a little overwhelming, but it’s simple compared to
some you’ll see in the wild! The key to understanding diagrams like
this is to remember each relation always concerns a pair of tables.
You don’t need to understand the whole thing; you just need to
understand the chain of relations between the tables that you are
interested in.

For nycflights13:

• flights connects to planes via a single variable, tailnum.
• flights connects to airlines through the carrier variable.
• flights connects to airports in two ways: via the origin and
dest variables.

• flights connects to weather via origin (the location), and
year, month, day, and hour (the time).

Exercises
1. Imagine you wanted to draw (approximately) the route each

plane flies from its origin to its destination. What variables
would you need? What tables would you need to combine?

2. I forgot to draw the relationship between weather and air
ports. What is the relationship and how should it appear in the
diagram?

174 | Chapter 10: Relational Data with dplyr

3. weather only contains information for the origin (NYC) air‐
ports. If it contained weather records for all airports in the USA,
what additional relation would it define with flights?

4. We know that some days of the year are “special,” and fewer
people than usual fly on them. How might you represent that
data as a data frame? What would be the primary keys of that
table? How would it connect to the existing tables?

Keys
The variables used to connect each pair of tables are called keys. A
key is a variable (or set of variables) that uniquely identifies an
observation. In simple cases, a single variable is sufficient to identify
an observation. For example, each plane is uniquely identified by its
tailnum. In other cases, multiple variables may be needed. For
example, to identify an observation in weather you need five vari‐
ables: year, month, day, hour, and origin.

There are two types of keys:

• A primary key uniquely identifies an observation in its own
table. For example, planes$tailnum is a primary key because it
uniquely identifies each plane in the planes table.

• A foreign key uniquely identifies an observation in another
table. For example, flights$tailnum is a foreign key because it
appears in the flights table where it matches each flight to a
unique plane.

A variable can be both a primary key and a foreign key. For exam‐
ple, origin is part of the weather primary key, and is also a foreign
key for the airport table.

Once you’ve identified the primary keys in your tables, it’s good
practice to verify that they do indeed uniquely identify each obser‐
vation. One way to do that is to count() the primary keys and look
for entries where n is greater than one:

planes %>%
 count(tailnum) %>%
 filter(n > 1)
#> # A tibble: 0 × 2
#> # ... with 2 variables: tailnum <chr>, n <int>

Keys | 175

weather %>%
 count(year, month, day, hour, origin) %>%
 filter(n > 1)
#> Source: local data frame [0 x 6]
#> Groups: year, month, day, hour [0]
#>
#> # ... with 6 variables: year <dbl>, month <dbl>, day <int>,
#> # hour <int>, origin <chr>, n <int>

Sometimes a table doesn’t have an explicit primary key: each row is
an observation, but no combination of variables reliably identifies it.
For example, what’s the primary key in the flights table? You
might think it would be the date plus the flight or tail number, but
neither of those are unique:

flights %>%
 count(year, month, day, flight) %>%
 filter(n > 1)
#> Source: local data frame [29,768 x 5]
#> Groups: year, month, day [365]
#>
#> year month day flight n
#> <int> <int> <int> <int> <int>
#> 1 2013 1 1 1 2
#> 2 2013 1 1 3 2
#> 3 2013 1 1 4 2
#> 4 2013 1 1 11 3
#> 5 2013 1 1 15 2
#> 6 2013 1 1 21 2
#> # ... with 2.976e+04 more rows

flights %>%
 count(year, month, day, tailnum) %>%
 filter(n > 1)
#> Source: local data frame [64,928 x 5]
#> Groups: year, month, day [365]
#>
#> year month day tailnum n
#> <int> <int> <int> <chr> <int>
#> 1 2013 1 1 N0EGMQ 2
#> 2 2013 1 1 N11189 2
#> 3 2013 1 1 N11536 2
#> 4 2013 1 1 N11544 3
#> 5 2013 1 1 N11551 2
#> 6 2013 1 1 N12540 2
#> # ... with 6.492e+04 more rows

176 | Chapter 10: Relational Data with dplyr

When starting to work with this data, I had naively assumed that
each flight number would be only used once per day: that would
make it much easier to communicate problems with a specific flight.
Unfortunately that is not the case! If a table lacks a primary key, it’s
sometimes useful to add one with mutate() and row_number().
That makes it easier to match observations if you’ve done some fil‐
tering and want to check back in with the original data. This is
called a surrogate key.

A primary key and the corresponding foreign key in another table
form a relation. Relations are typically one-to-many. For example,
each flight has one plane, but each plane has many flights. In other
data, you’ll occasionally see a 1-to-1 relationship. You can think of
this as a special case of 1-to-many. You can model many-to-many
relations with a many-to-1 relation plus a 1-to-many relation. For
example, in this data there’s a many-to-many relationship between
airlines and airports: each airline flies to many airports; each airport
hosts many airlines.

Exercises
1. Add a surrogate key to flights.
2. Identify the keys in the following datasets:

a. Lahman::Batting

b. babynames::babynames

c. nasaweather::atmos

d. fueleconomy::vehicles

e. ggplot2::diamonds

(You might need to install some packages and read some docu‐
mentation.)

3. Draw a diagram illustrating the connections between the Bat
ting, Master, and Salaries tables in the Lahman package.
Draw another diagram that shows the relationship between Mas
ter, Managers, and AwardsManagers.
How would you characterize the relationship between the Bat
ting, Pitching, and Fielding tables?

Keys | 177

Mutating Joins
The first tool we’ll look at for combining a pair of tables is the
mutating join. A mutating join allows you to combine variables from
two tables. It first matches observations by their keys, then copies
across variables from one table to the other.

Like mutate(), the join functions add variables to the right, so if you
have a lot of variables already, the new variables won’t get printed
out. For these examples, we’ll make it easier to see what’s going on in
the examples by creating a narrower dataset:

flights2 <- flights %>%
 select(year:day, hour, origin, dest, tailnum, carrier)
flights2
#> # A tibble: 336,776 × 8
#> year month day hour origin dest tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA
#> 2 2013 1 1 5 LGA IAH N24211 UA
#> 3 2013 1 1 5 JFK MIA N619AA AA
#> 4 2013 1 1 5 JFK BQN N804JB B6
#> 5 2013 1 1 6 LGA ATL N668DN DL
#> 6 2013 1 1 5 EWR ORD N39463 UA
#> # ... with 3.368e+05 more rows

(Remember, when you’re in RStudio, you can also use View() to
avoid this problem.)

Imagine you want to add the full airline name to the flights2 data.
You can combine the airlines and flights2 data frames with
left_join():

flights2 %>%
 select(-origin, -dest) %>%
 left_join(airlines, by = "carrier")
#> # A tibble: 336,776 × 7
#> year month day hour tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr>
#> 1 2013 1 1 5 N14228 UA
#> 2 2013 1 1 5 N24211 UA
#> 3 2013 1 1 5 N619AA AA
#> 4 2013 1 1 5 N804JB B6
#> 5 2013 1 1 6 N668DN DL
#> 6 2013 1 1 5 N39463 UA
#> # ... with 3.368e+05 more rows, and 1 more variable:
#> # name <chr>

178 | Chapter 10: Relational Data with dplyr

The result of joining airlines to flights2 is an additional variable:
name. This is why I call this type of join a mutating join. In this case,
you could have got to the same place using mutate() and R’s base
subsetting:

flights2 %>%
 select(-origin, -dest) %>%
 mutate(name = airlines$name[match(carrier, airlines$carrier)])
#> # A tibble: 336,776 × 7
#> year month day hour tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr>
#> 1 2013 1 1 5 N14228 UA
#> 2 2013 1 1 5 N24211 UA
#> 3 2013 1 1 5 N619AA AA
#> 4 2013 1 1 5 N804JB B6
#> 5 2013 1 1 6 N668DN DL
#> 6 2013 1 1 5 N39463 UA
#> # ... with 3.368e+05 more rows, and 1 more variable:
#> # name <chr>

But this is hard to generalize when you need to match multiple vari‐
ables, and takes close reading to figure out the overall intent.

The following sections explain, in detail, how mutating joins work.
You’ll start by learning a useful visual representation of joins. We’ll
then use that to explain the four mutating join functions: the inner
join, and the three outer joins. When working with real data, keys
don’t always uniquely identify observations, so next we’ll talk about
what happens when there isn’t a unique match. Finally, you’ll learn
how to tell dplyr which variables are the keys for a given join.

Understanding Joins
To help you learn how joins work, I’m going to use a visual repre‐
sentation:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)

Mutating Joins | 179

y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)

The colored column represents the “key” variable: these are used to
match the rows between the tables. The gray column represents the
“value” column that is carried along for the ride. In these examples
I’ll show a single key variable and single value variable, but the idea
generalizes in a straightforward way to multiple keys and multiple
values.

A join is a way of connecting each row in x to zero, one, or more
rows in y. The following diagram shows each potential match as an
intersection of a pair of lines:

(If you look closely, you might notice that we’ve switched the order
of the key and value columns in x. This is to emphasize that joins
match based on the key; the value is just carried along for the ride.)

In an actual join, matches will be indicated with dots. The number
of dots = the number of matches = the number of rows in the out‐
put.

Inner Join
The simplest type of join is the inner join. An inner join matches
pairs of observations whenever their keys are equal:

180 | Chapter 10: Relational Data with dplyr

(To be precise, this is an inner equijoin because the keys are matched
using the equality operator. Since most joins are equijoins we usu‐
ally drop that specification.)

The output of an inner join is a new data frame that contains the
key, the x values, and the y values. We use by to tell dplyr which
variable is the key:

x %>%
 inner_join(y, by = "key")
#> # A tibble: 2 × 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2

The most important property of an inner join is that unmatched
rows are not included in the result. This means that generally inner
joins are usually not appropriate for use in analysis because it’s too
easy to lose observations.

Outer Joins
An inner join keeps observations that appear in both tables. An
outer join keeps observations that appear in at least one of the tables.
There are three types of outer joins:

• A left join keeps all observations in x.
• A right join keeps all observations in y.
• A full join keeps all observations in x and y.

These joins work by adding an additional “virtual” observation to
each table. This observation has a key that always matches (if no
other key matches), and a value filled with NA.

Mutating Joins | 181

Graphically, that looks like:

The most commonly used join is the left join: you use this whenever
you look up additional data from another table, because it preserves
the original observations even when there isn’t a match. The left join
should be your default join: use it unless you have a strong reason to
prefer one of the others.

Another way to depict the different types of joins is with a Venn dia‐
gram:

However, this is not a great representation. It might jog your mem‐
ory about which join preserves the observations in which table, but
it suffers from a major limitation: a Venn diagram can’t show what
happens when keys don’t uniquely identify an observation.

182 | Chapter 10: Relational Data with dplyr

Duplicate Keys
So far all the diagrams have assumed that the keys are unique. But
that’s not always the case. This section explains what happens when
the keys are not unique. There are two possibilities:

• One table has duplicate keys. This is useful when you want to
add in additional information as there is typically a one-to-
many relationship:

Note that I’ve put the key column in a slightly different position
in the output. This reflects that the key is a primary key in y and
a foreign key in x:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 2, "x3",
 1, "x4"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2"
)
left_join(x, y, by = "key")
#> # A tibble: 4 × 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 2 x3 y2
#> 4 1 x4 y1

• Both tables have duplicate keys. This is usually an error because
in neither table do the keys uniquely identify an observation.
When you join duplicated keys, you get all possible combina‐
tions, the Cartesian product:

Mutating Joins | 183

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 2, "x3",
 3, "x4"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 2, "y3",
 3, "y4"
)
left_join(x, y, by = "key")
#> # A tibble: 6 × 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 2 x2 y3
#> 4 2 x3 y2
#> 5 2 x3 y3
#> 6 3 x4 y4

Defining the Key Columns
So far, the pairs of tables have always been joined by a single vari‐
able, and that variable has the same name in both tables. That con‐
straint was encoded by by = "key". You can use other values for by
to connect the tables in other ways:

• The default, by = NULL, uses all variables that appear in both
tables, the so-called natural join. For example, the flights and
weather tables match on their common variables: year, month,
day, hour, and origin:

184 | Chapter 10: Relational Data with dplyr

flights2 %>%
 left_join(weather)
#> Joining, by = c("year", "month", "day", "hour",
#> "origin")
#> # A tibble: 336,776 × 18
#> year month day hour origin dest tailnum
#> <dbl> <dbl> <int> <dbl> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228
#> 2 2013 1 1 5 LGA IAH N24211
#> 3 2013 1 1 5 JFK MIA N619AA
#> 4 2013 1 1 5 JFK BQN N804JB
#> 5 2013 1 1 6 LGA ATL N668DN
#> 6 2013 1 1 5 EWR ORD N39463
#> # ... with 3.368e+05 more rows, and 11 more variables:
#> # carrier <chr>, temp <dbl>, dewp <dbl>,
#> # humid <dbl>, wind_dir <dbl>, wind_speed <dbl>,
#> # wind_gust <dbl>, precip <dbl>, pressure <dbl>,
#> # visib <dbl>, time_hour <dttm>

• A character vector, by = "x". This is like a natural join, but uses
only some of the common variables. For example, flights and
planes have year variables, but they mean different things so
we only want to join by tailnum:

flights2 %>%
 left_join(planes, by = "tailnum")
#> # A tibble: 336,776 × 16
#> year.x month day hour origin dest tailnum
#> <int> <int> <int> <dbl> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228
#> 2 2013 1 1 5 LGA IAH N24211
#> 3 2013 1 1 5 JFK MIA N619AA
#> 4 2013 1 1 5 JFK BQN N804JB
#> 5 2013 1 1 6 LGA ATL N668DN
#> 6 2013 1 1 5 EWR ORD N39463
#> # ... with 3.368e+05 more rows, and 9 more variables:
#> # carrier <chr>, year.y <int>, type <chr>,
#> # manufacturer <chr>, model <chr>, engines <int>,
#> # seats <int>, speed <int>, engine <chr>

Note that the year variables (which appear in both input data
frames, but are not constrained to be equal) are disambiguated
in the output with a suffix.

• A named character vector: by = c("a" = "b"). This will match
variable a in table x to variable b in table y. The variables from x
will be used in the output.

Mutating Joins | 185

For example, if we want to draw a map we need to combine the
flights data with the airports data, which contains the location
(lat and long) of each airport. Each flight has an origin and
destination airport, so we need to specify which one we want
to join to:

flights2 %>%
 left_join(airports, c("dest" = "faa"))
#> # A tibble: 336,776 × 14
#> year month day hour origin dest tailnum
#> <int> <int> <int> <dbl> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228
#> 2 2013 1 1 5 LGA IAH N24211
#> 3 2013 1 1 5 JFK MIA N619AA
#> 4 2013 1 1 5 JFK BQN N804JB
#> 5 2013 1 1 6 LGA ATL N668DN
#> 6 2013 1 1 5 EWR ORD N39463
#> # ... with 3.368e+05 more rows, and 7 more variables:
#> # carrier <chr>, name <chr>, lat <dbl>, lon <dbl>,
#> # alt <int>, tz <dbl>, dst <chr>

flights2 %>%
 left_join(airports, c("origin" = "faa"))
#> # A tibble: 336,776 × 14
#> year month day hour origin dest tailnum
#> <int> <int> <int> <dbl> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228
#> 2 2013 1 1 5 LGA IAH N24211
#> 3 2013 1 1 5 JFK MIA N619AA
#> 4 2013 1 1 5 JFK BQN N804JB
#> 5 2013 1 1 6 LGA ATL N668DN
#> 6 2013 1 1 5 EWR ORD N39463
#> # ... with 3.368e+05 more rows, and 7 more variables:
#> # carrier <chr>, name <chr>, lat <dbl>, lon <dbl>,
#> # alt <int>, tz <dbl>, dst <chr>

Exercises
1. Compute the average delay by destination, then join on the air

ports data frame so you can show the spatial distribution of
delays. Here’s an easy way to draw a map of the United States:

airports %>%
 semi_join(flights, c("faa" = "dest")) %>%
 ggplot(aes(lon, lat)) +
 borders("state") +

186 | Chapter 10: Relational Data with dplyr

 geom_point() +
 coord_quickmap()

(Don’t worry if you don’t understand what semi_join() does—
you’ll learn about it next.)
You might want to use the size or color of the points to display
the average delay for each airport.

2. Add the location of the origin and destination (i.e., the lat and
lon) to flights.

3. Is there a relationship between the age of a plane and its delays?
4. What weather conditions make it more likely to see a delay?
5. What happened on June 13, 2013? Display the spatial pattern of

delays, and then use Google to cross-reference with the weather.

Other Implementations
base::merge() can perform all four types of mutating join:

dplyr merge

inner_join(x, y) merge(x, y)

left_join(x, y) merge(x, y, all.x = TRUE)

right_join(x, y) merge(x, y, all.y = TRUE),

full_join(x, y) merge(x, y, all.x = TRUE, all.y = TRUE)

The advantages of the specific dplyr verbs is that they more clearly
convey the intent of your code: the difference between the joins is
really important but concealed in the arguments of merge(). dplyr’s
joins are considerably faster and don’t mess with the order of the
rows.

SQL is the inspiration for dplyr’s conventions, so the translation is
straightforward:

dplyr SQL

inner_join(x, y, by = "z") SELECT * FROM x INNER JOIN y USING
(z)

left_join(x, y, by = "z") SELECT * FROM x LEFT OUTER JOIN y
USING (z)

Mutating Joins | 187

dplyr SQL

right_join(x, y, by = "z") SELECT * FROM x RIGHT OUTER JOIN y
USING (z)

full_join(x, y, by = "z") SELECT * FROM x FULL OUTER JOIN y
USING (z)

Note that "INNER" and "OUTER" are optional, and often omitted.

Joining different variables between the tables, e.g., inner_join(x,
y, by = c("a" = "b")), uses a slightly different syntax in SQL:
SELECT * FROM x INNER JOIN y ON x.a = y.b. As this syntax
suggests, SQL supports a wider range of join types than dplyr
because you can connect the tables using constraints other than
equality (sometimes called non-equijoins).

Filtering Joins
Filtering joins match observations in the same way as mutating
joins, but affect the observations, not the variables. There are two
types:

• semi_join(x, y) keeps all observations in x that have a match
in y.

• anti_join(x, y) drops all observations in x that have a match
in y.

Semi-joins are useful for matching filtered summary tables back to
the original rows. For example, imagine you’ve found the top-10
most popular destinations:

top_dest <- flights %>%
 count(dest, sort = TRUE) %>%
 head(10)
top_dest
#> # A tibble: 10 × 2
#> dest n
#> <chr> <int>
#> 1 ORD 17283
#> 2 ATL 17215
#> 3 LAX 16174
#> 4 BOS 15508
#> 5 MCO 14082
#> 6 CLT 14064
#> # ... with 4 more rows

188 | Chapter 10: Relational Data with dplyr

Now you want to find each flight that went to one of those destina‐
tions. You could construct a filter yourself:

flights %>%
 filter(dest %in% top_dest$dest)
#> # A tibble: 141,145 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 542 540 2
#> 2 2013 1 1 554 600 -6
#> 3 2013 1 1 554 558 -4
#> 4 2013 1 1 555 600 -5
#> 5 2013 1 1 557 600 -3
#> 6 2013 1 1 558 600 -2
#> # ... with 1.411e+05 more rows, and 12 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

But it’s difficult to extend that approach to multiple variables. For
example, imagine that you’d found the 10 days with the highest aver‐
age delays. How would you construct the filter statement that used
year, month, and day to match it back to flights?

Instead you can use a semi-join, which connects the two tables like a
mutating join, but instead of adding new columns, only keeps the
rows in x that have a match in y:

flights %>%
 semi_join(top_dest)
#> Joining, by = "dest"
#> # A tibble: 141,145 × 19
#> year month day dep_time sched_dep_time dep_delay
#> <int> <int> <int> <int> <int> <dbl>
#> 1 2013 1 1 554 558 -4
#> 2 2013 1 1 558 600 -2
#> 3 2013 1 1 608 600 8
#> 4 2013 1 1 629 630 -1
#> 5 2013 1 1 656 700 -4
#> 6 2013 1 1 709 700 9
#> # ... with 1.411e+05 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

Graphically, a semi-join looks like this:

Filtering Joins | 189

Only the existence of a match is important; it doesn’t matter which
observation is matched. This means that filtering joins never dupli‐
cate rows like mutating joins do:

The inverse of a semi-join is an anti-join. An anti-join keeps the
rows that don’t have a match:

Anti-joins are useful for diagnosing join mismatches. For example,
when connecting flights and planes, you might be interested to
know that there are many flights that don’t have a match in
planes:

flights %>%
 anti_join(planes, by = "tailnum") %>%
 count(tailnum, sort = TRUE)
#> # A tibble: 722 × 2
#> tailnum n
#> <chr> <int>
#> 1 <NA> 2512
#> 2 N725MQ 575
#> 3 N722MQ 513
#> 4 N723MQ 507
#> 5 N713MQ 483

190 | Chapter 10: Relational Data with dplyr

#> 6 N735MQ 396
#> # ... with 716 more rows

Exercises
1. What does it mean for a flight to have a missing tailnum? What

do the tail numbers that don’t have a matching record in planes
have in common? (Hint: one variable explains ~90% of the
problems.)

2. Filter flights to only show flights with planes that have flown at
least 100 flights.

3. Combine fueleconomy::vehicles and fueleconomy::common
to find only the records for the most common models.

4. Find the 48 hours (over the course of the whole year) that have
the worst delays. Cross-reference it with the weather data. Can
you see any patterns?

5. What does anti_join(flights, airports, by = c("dest" =
"faa")) tell you? What does anti_join(airports, flights,
by = c("faa" = "dest")) tell you?

6. You might expect that there’s an implicit relationship between
plane and airline, because each plane is flown by a single airline.
Confirm or reject this hypothesis using the tools you’ve learned
in the preceding section.

Join Problems
The data you’ve been working with in this chapter has been cleaned
up so that you’ll have as few problems as possible. Your own data is
unlikely to be so nice, so there are a few things that you should do
with your own data to make your joins go smoothly:

1. Start by identifying the variables that form the primary key in
each table. You should usually do this based on your under‐
standing of the data, not empirically by looking for a combina‐
tion of variables that give a unique identifier. If you just look for
variables without thinking about what they mean, you might get
(un)lucky and find a combination that’s unique in your current
data but the relationship might not be true in general.

Join Problems | 191

For example, the altitude and longitude uniquely identify each
airport, but they are not good identifiers!

airports %>% count(alt, lon) %>% filter(n > 1)
#> Source: local data frame [0 x 3]
#> Groups: alt [0]
#>
#> # ... with 3 variables: alt <int>, lon <dbl>, n <int>

2. Check that none of the variables in the primary key are missing.
If a value is missing then it can’t identify an observation!

3. Check that your foreign keys match primary keys in another
table. The best way to do this is with an anti_join(). It’s com‐
mon for keys not to match because of data entry errors. Fixing
these is often a lot of work.
If you do have missing keys, you’ll need to be thoughtful about
your use of inner versus outer joins, carefully considering
whether or not you want to drop rows that don’t have a match.

Be aware that simply checking the number of rows before and after
the join is not sufficient to ensure that your join has gone smoothly.
If you have an inner join with duplicate keys in both tables, you
might get unlucky as the number of dropped rows might exactly
equal the number of duplicated rows!

Set Operations
The final type of two-table verb are the set operations. Generally, I
use these the least frequently, but they are occasionally useful when
you want to break a single complex filter into simpler pieces. All
these operations work with a complete row, comparing the values of
every variable. These expect the x and y inputs to have the same
variables, and treat the observations like sets:

intersect(x, y)

Return only observations in both x and y.

union(x, y)

Return unique observations in x and y.

setdiff(x, y)

Return observations in x, but not in y.

192 | Chapter 10: Relational Data with dplyr

Given this simple data:

df1 <- tribble(
 ~x, ~y,
 1, 1,
 2, 1
)
df2 <- tribble(
 ~x, ~y,
 1, 1,
 1, 2
)

The four possibilities are:

intersect(df1, df2)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1

Note that we get 3 rows, not 4
union(df1, df2)
#> # A tibble: 3 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 2
#> 2 2 1
#> 3 1 1

setdiff(df1, df2)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 2 1

setdiff(df2, df1)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 2

Set Operations | 193

CHAPTER 11

Strings with stringr

Introduction
This chapter introduces you to string manipulation in R. You’ll learn
the basics of how strings work and how to create them by hand, but
the focus of this chapter will be on regular expressions, or regexps
for short. Regular expressions are useful because strings usually con‐
tain unstructured or semi-structured data, and regexps are a concise
language for describing patterns in strings. When you first look at a
regexp, you’ll think a cat walked across your keyboard, but as your
understanding improves they will soon start to make sense.

Prerequisites
This chapter will focus on the stringr package for string manipula‐
tion. stringr is not part of the core tidyverse because you don’t
always have textual data, so we need to load it explicitly.

library(tidyverse)
library(stringr)

String Basics
You can create strings with either single quotes or double quotes.
Unlike other languages, there is no difference in behavior. I recom‐
mend always using ", unless you want to create a string that contains
multiple ":

195

string1 <- "This is a string"
string2 <- 'To put a "quote" inside a string, use single quotes'

If you forget to close a quote, you’ll see +, the continuation charac‐
ter:

> "This is a string without a closing quote
+
+
+ HELP I'M STUCK

If this happens to you, press Esc and try again!

To include a literal single or double quote in a string you can use \
to “escape” it:

double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'"

That means if you want to include a literal backslash, you’ll need to
double it up: "\\".

Beware that the printed representation of a string is not the same as
string itself, because the printed representation shows the escapes.
To see the raw contents of the string, use writeLines():

x <- c("\"", "\\")
x
#> [1] "\"" "\\"
writeLines(x)
#> "
#> \

There are a handful of other special characters. The most common
are "\n", newline, and "\t", tab, but you can see the complete list by
requesting help on ?'"', or ?"'". You’ll also sometimes see strings
like "\u00b5", which is a way of writing non-English characters that
works on all platforms:

x <- "\u00b5"
x
#> [1] "µ"

Multiple strings are often stored in a character vector, which you
can create with c():

c("one", "two", "three")
#> [1] "one" "two" "three"

196 | Chapter 11: Strings with stringr

String Length
Base R contains many functions to work with strings but we’ll avoid
them because they can be inconsistent, which makes them hard to
remember. Instead we’ll use functions from stringr. These have
more intuitive names, and all start with str_. For example,
str_length() tells you the number of characters in a string:

str_length(c("a", "R for data science", NA))
#> [1] 1 18 NA

The common str_ prefix is particularly useful if you use RStudio,
because typing str_ will trigger autocomplete, allowing you to see
all stringr functions:

Combining Strings
To combine two or more strings, use str_c():

str_c("x", "y")
#> [1] "xy"
str_c("x", "y", "z")
#> [1] "xyz"

Use the sep argument to control how they’re separated:

str_c("x", "y", sep = ", ")
#> [1] "x, y"

Like most other functions in R, missing values are contagious. If you
want them to print as "NA", use str_replace_na():

x <- c("abc", NA)
str_c("|-", x, "-|")
#> [1] "|-abc-|" NA
str_c("|-", str_replace_na(x), "-|")
#> [1] "|-abc-|" "|-NA-|"

As shown in the preceding code, str_c() is vectorized, and it auto‐
matically recycles shorter vectors to the same length as the longest:

String Basics | 197

str_c("prefix-", c("a", "b", "c"), "-suffix")
#> [1] "prefix-a-suffix" "prefix-b-suffix" "prefix-c-suffix"

Objects of length 0 are silently dropped. This is particularly useful in
conjunction with if:

name <- "Hadley"
time_of_day <- "morning"
birthday <- FALSE

str_c(
 "Good ", time_of_day, " ", name,
 if (birthday) " and HAPPY BIRTHDAY",
 "."
)
#> [1] "Good morning Hadley."

To collapse a vector of strings into a single string, use collapse:

str_c(c("x", "y", "z"), collapse = ", ")
#> [1] "x, y, z"

Subsetting Strings
You can extract parts of a string using str_sub(). As well as the
string, str_sub() takes start and end arguments that give the
(inclusive) position of the substring:

x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
#> [1] "App" "Ban" "Pea"

negative numbers count backwards from end
str_sub(x, -3, -1)
#> [1] "ple" "ana" "ear"

Note that str_sub() won’t fail if the string is too short; it will just
return as much as possible:

str_sub("a", 1, 5)
#> [1] "a"

You can also use the assignment form of str_sub() to modify
strings:

str_sub(x, 1, 1) <- str_to_lower(str_sub(x, 1, 1))
x
#> [1] "apple" "banana" "pear"

198 | Chapter 11: Strings with stringr

Locales
Earlier I used str_to_lower() to change the text to lowercase. You
can also use str_to_upper() or str_to_title(). However, chang‐
ing case is more complicated than it might at first appear because
different languages have different rules for changing case. You can
pick which set of rules to use by specifying a locale:

Turkish has two i's: with and without a dot, and it
has a different rule for capitalizing them:
str_to_upper(c("i", "ı"))
#> [1] "I" "I"
str_to_upper(c("i", "ı"), locale = "tr")
#> [1] "İ" "I"

The locale is specified as an ISO 639 language code, which is a two-
or three-letter abbreviation. If you don’t already know the code for
your language, Wikipedia has a good list. If you leave the locale
blank, it will use the current locale, as provided by your operating
system.

Another important operation that’s affected by the locale is sorting.
The base R order() and sort() functions sort strings using the cur‐
rent locale. If you want robust behavior across different computers,
you may want to use str_sort() and str_order(), which take an
additional locale argument:

x <- c("apple", "eggplant", "banana")

str_sort(x, locale = "en") # English
#> [1] "apple" "banana" "eggplant"

str_sort(x, locale = "haw") # Hawaiian
#> [1] "apple" "eggplant" "banana"

Exercises
1. In code that doesn’t use stringr, you’ll often see paste() and

paste0(). What’s the difference between the two functions?
What stringr function are they equivalent to? How do the func‐
tions differ in their handling of NA?

2. In your own words, describe the difference between the sep and
collapse arguments to str_c().

String Basics | 199

http://bit.ly/ISO639-1

3. Use str_length() and str_sub() to extract the middle charac‐
ter from a string. What will you do if the string has an even
number of characters?

4. What does str_wrap() do? When might you want to use it?
5. What does str_trim() do? What’s the opposite of str_trim()?
6. Write a function that turns (e.g.) a vector c("a", "b", "c")

into the string a, b, and c. Think carefully about what it
should do if given a vector of length 0, 1, or 2.

Matching Patterns with Regular Expressions
Regexps are a very terse language that allow you to describe patterns
in strings. They take a little while to get your head around, but once
you understand them, you’ll find them extremely useful.

To learn regular expressions, we’ll use str_view() and
str_view_all(). These functions take a character vector and a reg‐
ular expression, and show you how they match. We’ll start with very
simple regular expressions and then gradually get more and more
complicated. Once you’ve mastered pattern matching, you’ll learn
how to apply those ideas with various stringr functions.

Basic Matches
The simplest patterns match exact strings:

x <- c("apple", "banana", "pear")
str_view(x, "an")

The next step up in complexity is ., which matches any character
(except a newline):

str_view(x, ".a.")

200 | Chapter 11: Strings with stringr

But if "." matches any character, how do you match the character
"."? You need to use an “escape” to tell the regular expression you
want to match it exactly, not use its special behavior. Like strings,
regexps use the backslash, \, to escape special behavior. So to match
an ., you need the regexp \.. Unfortunately this creates a problem.
We use strings to represent regular expressions, and \ is also used as
an escape symbol in strings. So to create the regular expression \.
we need the string "\\.":

To create the regular expression, we need \\
dot <- "\\."

But the expression itself only contains one:
writeLines(dot)
#> \.

And this tells R to look for an explicit .
str_view(c("abc", "a.c", "bef"), "a\\.c")

If \ is used as an escape character in regular expressions, how do
you match a literal \? Well you need to escape it, creating the regular
expression \\. To create that regular expression, you need to use a
string, which also needs to escape \. That means to match a literal \
you need to write "\\\\"—you need four backslashes to match one!

x <- "a\\b"
writeLines(x)
#> a\b

str_view(x, "\\\\")

In this book, I’ll write regular expressions as \. and strings that rep‐
resent the regular expression as "\\.".

Exercises
1. Explain why each of these strings don’t match a \: "\", "\\", "\\

\".

Matching Patterns with Regular Expressions | 201

2. How would you match the sequence "'\?
3. What patterns will the regular expression \..\..\.. match?

How would you represent it as a string?

Anchors
By default, regular expressions will match any part of a string. It’s
often useful to anchor the regular expression so that it matches from
the start or end of the string. You can use:

• ^ to match the start of the string.
• $ to match the end of the string.

x <- c("apple", "banana", "pear")
str_view(x, "^a")

str_view(x, "a$")

To remember which is which, try this mnemonic that I learned from
Evan Misshula: if you begin with power (^), you end up with money
($).

To force a regular expression to only match a complete string,
anchor it with both ^ and $:

x <- c("apple pie", "apple", "apple cake")
str_view(x, "apple")

str_view(x, "^apple$")

202 | Chapter 11: Strings with stringr

http://bit.ly/EvanMisshula

You can also match the boundary between words with \b. I don’t
often use this in R, but I will sometimes use it when I’m doing a
search in RStudio when I want to find the name of a function that’s a
component of other functions. For example, I’ll search for \bsum\b
to avoid matching summarize, summary, rowsum, and so on.

Exercises
1. How would you match the literal string "$^$"?
2. Given the corpus of common words in stringr::words, create

regular expressions that find all words that:
a. Start with “y”.
b. End with “x”.
c. Are exactly three letters long. (Don’t cheat by using

str_length()!)
d. Have seven letters or more.

Since this list is long, you might want to use the match argu‐
ment to str_view() to show only the matching or non‐
matching words.

Character Classes and Alternatives
There are a number of special patterns that match more than one
character. You’ve already seen ., which matches any character apart
from a newline. There are four other useful tools:

• \d matches any digit.
• \s matches any whitespace (e.g., space, tab, newline).
• [abc] matches a, b, or c.
• [^abc] matches anything except a, b, or c.

Remember, to create a regular expression containing \d or \s, you’ll
need to escape the \ for the string, so you’ll type "\\d" or "\\s".

Matching Patterns with Regular Expressions | 203

You can use alternation to pick between one or more alternative pat‐
terns. For example, abc|d..f will match either "abc", or "deaf".
Note that the precedence for | is low, so that abc|xyz matches abc
or xyz not abcyz or abxyz. Like with mathematical expressions, if
precedence ever gets confusing, use parentheses to make it clear
what you want:

str_view(c("grey", "gray"), "gr(e|a)y")

Exercises
1. Create regular expressions to find all words that:

a. Start with a vowel.
b. Only contain consonants. (Hint: think about matching

“not”-vowels.)
c. End with ed, but not with eed.
d. End with ing or ize.

2. Empirically verify the rule “i before e except after c.”
3. Is “q” always followed by a “u”?
4. Write a regular expression that matches a word if it’s probably

written in British English, not American English.
5. Create a regular expression that will match telephone numbers

as commonly written in your country.

Repetition
The next step up in power involves controlling how many times a
pattern matches:

• ?: 0 or 1
• +: 1 or more
• *: 0 or more

x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
str_view(x, "CC?")

204 | Chapter 11: Strings with stringr

str_view(x, "CC+")

str_view(x, 'C[LX]+')

Note that the precedence of these operators is high, so you can write
colou?r to match either American or British spellings. That means
most uses will need parentheses, like bana(na)+.

You can also specify the number of matches precisely:

• {n}: exactly n
• {n,}: n or more
• {,m}: at most m
• {n,m}: between n and m

str_view(x, "C{2}")

str_view(x, "C{2,}")

str_view(x, "C{2,3}")

By default these matches are “greedy”: they will match the longest
string possible. You can make them “lazy,” matching the shortest
string possible, by putting a ? after them. This is an advanced fea‐
ture of regular expressions, but it’s useful to know that it exists:

str_view(x, 'C{2,3}?')

Matching Patterns with Regular Expressions | 205

str_view(x, 'C[LX]+?')

Exercises
1. Describe the equivalents of ?, +, and * in {m,n} form.
2. Describe in words what these regular expressions match (read

carefully to see if I’m using a regular expression or a string that
defines a regular expression):
a. ^.*$

b. "\\{.+\\}"

c. \d{4}-\d{2}-\d{2}

d. "\\\\{4}"

3. Create regular expressions to find all words that:
a. Start with three consonants.
b. Have three or more vowels in a row.
c. Have two or more vowel-consonant pairs in a row.

4. Solve the beginner regexp crosswords at https://regexcross
word.com/challenges/beginner.

Grouping and Backreferences
Earlier, you learned about parentheses as a way to disambiguate
complex expressions. They also define “groups” that you can refer to
with backreferences, like \1, \2, etc. For example, the following regu‐
lar expression finds all fruits that have a repeated pair of letters:

str_view(fruit, "(..)\\1", match = TRUE)

(Shortly, you’ll also see how they’re useful in conjunction with
str_match().)

206 | Chapter 11: Strings with stringr

https://regexcrossword.com/challenges/beginner
https://regexcrossword.com/challenges/beginner

Exercises
1. Describe, in words, what these expressions will match:

a. (.)\1\1

b. "(.)(.)\\2\\1"

c. (..)\1

d. "(.).\\1.\\1"

e. "(.)(.)(.).*\\3\\2\\1"

2. Construct regular expressions to match words that:
a. Start and end with the same character.
b. Contain a repeated pair of letters (e.g., “church” contains “ch”

repeated twice).
c. Contain one letter repeated in at least three places (e.g.,

“eleven” contains three “e”s).

Tools
Now that you’ve learned the basics of regular expressions, it’s time to
learn how to apply them to real problems. In this section you’ll learn
a wide array of stringr functions that let you:

• Determine which strings match a pattern.
• Find the positions of matches.
• Extract the content of matches.
• Replace matches with new values.
• Split a string based on a match.

A word of caution before we continue: because regular expressions
are so powerful, it’s easy to try and solve every problem with a single
regular expression. In the words of Jamie Zawinski:

Some people, when confronted with a problem, think “I know, I’ll
use regular expressions.” Now they have two problems.

As a cautionary tale, check out this regular expression that checks if
an email address is valid:

Tools | 207

This is a somewhat pathological example (because email addresses
are actually suprisingly complex), but is used in real code. See the
stackoverflow discussion for more details.

Don’t forget that you’re in a programming language and you have
other tools at your disposal. Instead of creating one complex regular
expression, it’s often easier to create a series of simpler regexps. If
you get stuck trying to create a single regexp that solves your prob‐
lem, take a step back and think if you could break the problem down
into smaller pieces, solving each challenge before moving on to the
next one.

208 | Chapter 11: Strings with stringr

http://stackoverflow.com/a/201378

Detect Matches
To determine if a character vector matches a pattern, use
str_detect(). It returns a logical vector the same length as the
input:

x <- c("apple", "banana", "pear")
str_detect(x, "e")
#> [1] TRUE FALSE TRUE

Remember that when you use a logical vector in a numeric context,
FALSE becomes 0 and TRUE becomes 1. That makes sum() and
mean() useful if you want to answer questions about matches across
a larger vector:

How many common words start with t?
sum(str_detect(words, "^t"))
#> [1] 65
What proportion of common words end with a vowel?
mean(str_detect(words, "[aeiou]$"))
#> [1] 0.277

When you have complex logical conditions (e.g., match a or b but
not c unless d) it’s often easier to combine multiple str_detect()
calls with logical operators, rather than trying to create a single reg‐
ular expression. For example, here are two ways to find all words
that don’t contain any vowels:

Find all words containing at least one vowel, and negate
no_vowels_1 <- !str_detect(words, "[aeiou]")
Find all words consisting only of consonants (non-vowels)
no_vowels_2 <- str_detect(words, "^[^aeiou]+$")
identical(no_vowels_1, no_vowels_2)
#> [1] TRUE

The results are identical, but I think the first approach is signifi‐
cantly easier to understand. If your regular expression gets overly
complicated, try breaking it up into smaller pieces, giving each piece
a name, and then combining the pieces with logical operations.

A common use of str_detect() is to select the elements that match
a pattern. You can do this with logical subsetting, or the convenient
str_subset() wrapper:

words[str_detect(words, "x$")]
#> [1] "box" "sex" "six" "tax"
str_subset(words, "x$")
#> [1] "box" "sex" "six" "tax"

Tools | 209

Typically, however, your strings will be one column of a data frame,
and you’ll want to use filter instead:

df <- tibble(
 word = words,
 i = seq_along(word)
)
df %>%
 filter(str_detect(words, "x$"))
#> # A tibble: 4 × 2
#> word i
#> <chr> <int>
#> 1 box 108
#> 2 sex 747
#> 3 six 772
#> 4 tax 841

A variation on str_detect() is str_count(): rather than a simple
yes or no, it tells you how many matches there are in a string:

x <- c("apple", "banana", "pear")
str_count(x, "a")
#> [1] 1 3 1

On average, how many vowels per word?
mean(str_count(words, "[aeiou]"))
#> [1] 1.99

It’s natural to use str_count() with mutate():

df %>%
 mutate(
 vowels = str_count(word, "[aeiou]"),
 consonants = str_count(word, "[^aeiou]")
)
#> # A tibble: 980 × 4
#> word i vowels consonants
#> <chr> <int> <int> <int>
#> 1 a 1 1 0
#> 2 able 2 2 2
#> 3 about 3 3 2
#> 4 absolute 4 4 4
#> 5 accept 5 2 4
#> 6 account 6 3 4
#> # ... with 974 more rows

210 | Chapter 11: Strings with stringr

Note that matches never overlap. For example, in "abababa", how
many times will the pattern "aba" match? Regular expressions say
two, not three:

str_count("abababa", "aba")
#> [1] 2
str_view_all("abababa", "aba")

Note the use of str_view_all(). As you’ll shortly learn, many
stringr functions come in pairs: one function works with a single
match, and the other works with all matches. The second function
will have the suffix _all.

Exercises
1. For each of the following challenges, try solving it by using both

a single regular expression, and a combination of multiple
str_detect() calls:
a. Find all words that start or end with x.
b. Find all words that start with a vowel and end with a conso‐

nant.
c. Are there any words that contain at least one of each differ‐

ent vowel?
d. What word has the highest number of vowels? What word

has the highest proportion of vowels? (Hint: what is the
denominator?)

Extract Matches
To extract the actual text of a match, use str_extract(). To show
that off, we’re going to need a more complicated example. I’m going
to use the Harvard sentences, which were designed to test VOIP sys‐
tems, but are also useful for practicing regexes. These are provided
in stringr::sentences:

length(sentences)
#> [1] 720
head(sentences)
#> [1] "The birch canoe slid on the smooth planks."
#> [2] "Glue the sheet to the dark blue background."

Tools | 211

http://bit.ly/Harvardsentences

#> [3] "It's easy to tell the depth of a well."
#> [4] "These days a chicken leg is a rare dish."
#> [5] "Rice is often served in round bowls."
#> [6] "The juice of lemons makes fine punch."

Imagine we want to find all sentences that contain a color. We first
create a vector of color names, and then turn it into a single regular
expression:

colors <- c(
 "red", "orange", "yellow", "green", "blue", "purple"
)
color_match <- str_c(colors, collapse = "|")
color_match
#> [1] "red|orange|yellow|green|blue|purple"

Now we can select the sentences that contain a color, and then
extract the color to figure out which one it is:

has_color <- str_subset(sentences, color_match)
matches <- str_extract(has_color, color_match)
head(matches)
#> [1] "blue" "blue" "red" "red" "red" "blue"

Note that str_extract() only extracts the first match. We can see
that most easily by first selecting all the sentences that have more
than one match:

more <- sentences[str_count(sentences, color_match) > 1]
str_view_all(more, color_match)

str_extract(more, color_match)
#> [1] "blue" "green" "orange"

This is a common pattern for stringr functions, because working
with a single match allows you to use much simpler data structures.
To get all matches, use str_extract_all(). It returns a list:

str_extract_all(more, color_match)
#> [[1]]
#> [1] "blue" "red"

212 | Chapter 11: Strings with stringr

#>
#> [[2]]
#> [1] "green" "red"
#>
#> [[3]]
#> [1] "orange" "red"

You’ll learn more about lists in “Recursive Vectors (Lists)” on page
302 and Chapter 17.

If you use simplify = TRUE, str_extract_all() will return a
matrix with short matches expanded to the same length as the
longest:

str_extract_all(more, color_match, simplify = TRUE)
#> [,1] [,2]
#> [1,] "blue" "red"
#> [2,] "green" "red"
#> [3,] "orange" "red"

x <- c("a", "a b", "a b c")
str_extract_all(x, "[a-z]", simplify = TRUE)
#> [,1] [,2] [,3]
#> [1,] "a" "" ""
#> [2,] "a" "b" ""
#> [3,] "a" "b" "c"

Exercises
1. In the previous example, you might have noticed that the regu‐

lar expression matched “flickered,” which is not a color. Modify
the regex to fix the problem.

2. From the Harvard sentences data, extract:
a. The first word from each sentence.
b. All words ending in ing.
c. All plurals.

Grouped Matches
Earlier in this chapter we talked about the use of parentheses for
clarifying precedence and for backreferences when matching. You
can also use parentheses to extract parts of a complex match. For
example, imagine we want to extract nouns from the sentences. As a
heuristic, we’ll look for any word that comes after “a” or “the”. Defin‐
ing a “word” in a regular expression is a little tricky, so here I use a

Tools | 213

simple approximation—a sequence of at least one character that isn’t
a space:

noun <- "(a|the) ([^]+)"

has_noun <- sentences %>%
 str_subset(noun) %>%
 head(10)
has_noun %>%
 str_extract(noun)
#> [1] "the smooth" "the sheet" "the depth" "a chicken"
#> [5] "the parked" "the sun" "the huge" "the ball"
#> [9] "the woman" "a helps"

str_extract() gives us the complete match; str_match() gives
each individual component. Instead of a character vector, it returns
a matrix, with one column for the complete match followed by one
column for each group:

has_noun %>%
 str_match(noun)
#> [,1] [,2] [,3]
#> [1,] "the smooth" "the" "smooth"
#> [2,] "the sheet" "the" "sheet"
#> [3,] "the depth" "the" "depth"
#> [4,] "a chicken" "a" "chicken"
#> [5,] "the parked" "the" "parked"
#> [6,] "the sun" "the" "sun"
#> [7,] "the huge" "the" "huge"
#> [8,] "the ball" "the" "ball"
#> [9,] "the woman" "the" "woman"
#> [10,] "a helps" "a" "helps"

(Unsurprisingly, our heuristic for detecting nouns is poor, and also
picks up adjectives like smooth and parked.)

If your data is in a tibble, it’s often easier to use tidyr::extract().
It works like str_match() but requires you to name the matches,
which are then placed in new columns:

tibble(sentence = sentences) %>%
 tidyr::extract(
 sentence, c("article", "noun"), "(a|the) ([^]+)",
 remove = FALSE
)
#> # A tibble: 720 × 3
#> sentence article noun
#> * <chr> <chr> <chr>
#> 1 The birch canoe slid on the smooth planks. the smooth
#> 2 Glue the sheet to the dark blue background. the sheet
#> 3 It's easy to tell the depth of a well. the depth

214 | Chapter 11: Strings with stringr

#> 4 These days a chicken leg is a rare dish. a chicken
#> 5 Rice is often served in round bowls. <NA> <NA>
#> 6 The juice of lemons makes fine punch. <NA> <NA>
#> # ... with 714 more rows

Like str_extract(), if you want all matches for each string, you’ll
need str_match_all().

Exercises
1. Find all words that come after a “number” like “one”, “two”,

“three”, etc. Pull out both the number and the word.
2. Find all contractions. Separate out the pieces before and after

the apostrophe.

Replacing Matches
str_replace() and str_replace_all() allow you to replace
matches with new strings. The simplest use is to replace a pattern
with a fixed string:

x <- c("apple", "pear", "banana")
str_replace(x, "[aeiou]", "-")
#> [1] "-pple" "p-ar" "b-nana"
str_replace_all(x, "[aeiou]", "-")
#> [1] "-ppl-" "p--r" "b-n-n-"

With str_replace_all() you can perform multiple replacements
by supplying a named vector:

x <- c("1 house", "2 cars", "3 people")
str_replace_all(x, c("1" = "one", "2" = "two", "3" = "three"))
#> [1] "one house" "two cars" "three people"

Instead of replacing with a fixed string you can use backreferences
to insert components of the match. In the following code, I flip the
order of the second and third words:

sentences %>%
 str_replace("([^]+) ([^]+) ([^]+)", "\\1 \\3 \\2") %>%
 head(5)
#> [1] "The canoe birch slid on the smooth planks."
#> [2] "Glue sheet the to the dark blue background."
#> [3] "It's to easy tell the depth of a well."
#> [4] "These a days chicken leg is a rare dish."
#> [5] "Rice often is served in round bowls."

Tools | 215

Exercises
1. Replace all forward slashes in a string with backslashes.
2. Implement a simple version of str_to_lower() using

replace_all().
3. Switch the first and last letters in words. Which of those strings

are still words?

Splitting
Use str_split() to split a string up into pieces. For example, we
could split sentences into words:

sentences %>%
 head(5) %>%
 str_split(" ")
#> [[1]]
#> [1] "The" "birch" "canoe" "slid" "on" "the"
#> [7] "smooth" "planks."
#>
#> [[2]]
#> [1] "Glue" "the" "sheet" "to"
#> [5] "the" "dark" "blue" "background."
#>
#> [[3]]
#> [1] "It's" "easy" "to" "tell" "the" "depth" "of"
#> [8] "a" "well."
#>
#> [[4]]
#> [1] "These" "days" "a" "chicken" "leg" "is"
#> [7] "a" "rare" "dish."
#>
#> [[5]]
#> [1] "Rice" "is" "often" "served" "in" "round"
#> [7] "bowls."

Because each component might contain a different number of
pieces, this returns a list. If you’re working with a length-1 vector,
the easiest thing is to just extract the first element of the list:

"a|b|c|d" %>%
 str_split("\\|") %>%
 .[[1]]
#> [1] "a" "b" "c" "d"

Otherwise, like the other stringr functions that return a list, you can
use simplify = TRUE to return a matrix:

216 | Chapter 11: Strings with stringr

sentences %>%
 head(5) %>%
 str_split(" ", simplify = TRUE)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] "The" "birch" "canoe" "slid" "on" "the" "smooth"
#> [2,] "Glue" "the" "sheet" "to" "the" "dark" "blue"
#> [3,] "It's" "easy" "to" "tell" "the" "depth" "of"
#> [4,] "These" "days" "a" "chicken" "leg" "is" "a"
#> [5,] "Rice" "is" "often" "served" "in" "round" "bowls."
#> [,8] [,9]
#> [1,] "planks." ""
#> [2,] "background." ""
#> [3,] "a" "well."
#> [4,] "rare" "dish."
#> [5,] "" ""

You can also request a maximum number of pieces:

fields <- c("Name: Hadley", "Country: NZ", "Age: 35")
fields %>% str_split(": ", n = 2, simplify = TRUE)
#> [,1] [,2]
#> [1,] "Name" "Hadley"
#> [2,] "Country" "NZ"
#> [3,] "Age" "35"

Instead of splitting up strings by patterns, you can also split up by
character, line, sentence, and word boundary()s:

x <- "This is a sentence. This is another sentence."
str_view_all(x, boundary("word"))

str_split(x, " ")[[1]]
#> [1] "This" "is" "a" "sentence." ""
#> [6] "This"
#> [7] "is" "another" "sentence."
str_split(x, boundary("word"))[[1]]
#> [1] "This" "is" "a" "sentence" "This"
#> [6] "is"
#> [7] "another" "sentence"

Exercises
1. Split up a string like "apples, pears, and bananas" into indi‐

vidual components.
2. Why is it better to split up by boundary("word") than " "?

Tools | 217

3. What does splitting with an empty string ("") do? Experiment,
and then read the documentation.

Find Matches
str_locate() and str_locate_all() give you the starting and
ending positions of each match. These are particularly useful when
none of the other functions does exactly what you want. You can use
str_locate() to find the matching pattern, and str_sub() to
extract and/or modify them.

Other Types of Pattern
When you use a pattern that’s a string, it’s automatically wrapped
into a call to regex():

The regular call:
str_view(fruit, "nana")
Is shorthand for
str_view(fruit, regex("nana"))

You can use the other arguments of regex() to control details of the
match:

• ignore_case = TRUE allows characters to match either their
uppercase or lowercase forms. This always uses the current
locale:

bananas <- c("banana", "Banana", "BANANA")
str_view(bananas, "banana")

str_view(bananas, regex("banana", ignore_case = TRUE))

• multiline = TRUE allows ^ and $ to match the start and end of
each line rather than the start and end of the complete string:

x <- "Line 1\nLine 2\nLine 3"
str_extract_all(x, "^Line")[[1]]
#> [1] "Line"
str_extract_all(x, regex("^Line", multiline = TRUE))[[1]]
#> [1] "Line" "Line" "Line"

218 | Chapter 11: Strings with stringr

• comments = TRUE allows you to use comments and white space
to make complex regular expressions more understandable.
Spaces are ignored, as is everything after #. To match a literal
space, you’ll need to escape it: "\\ ".

phone <- regex("
 \\(? # optional opening parens
 (\\d{3}) # area code
 [)-]? # optional closing parens, dash, or space
 (\\d{3}) # another three numbers
 [-]? # optional space or dash
 (\\d{3}) # three more numbers
 ", comments = TRUE)

str_match("514-791-8141", phone)
#> [,1] [,2] [,3] [,4]
#> [1,] "514-791-814" "514" "791" "814"

• dotall = TRUE allows . to match everything, including \n.

There are three other functions you can use instead of regex():

• fixed() matches exactly the specified sequence of bytes. It
ignores all special regular expressions and operates at a very low
level. This allows you to avoid complex escaping and can be
much faster than regular expressions. The following microbe‐
nchmark shows that it’s about 3x faster for a simple example:

microbenchmark::microbenchmark(
 fixed = str_detect(sentences, fixed("the")),
 regex = str_detect(sentences, "the"),
 times = 20
)
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> fixed 116 117 136 120 125 389 20 a
#> regex 333 337 346 338 342 467 20 b

Beware using fixed() with non-English data. It is problematic
because there are often multiple ways of representing the same
character. For example, there are two ways to define “á”: either
as a single character or as an “a” plus an accent:

a1 <- "\u00e1"
a2 <- "a\u0301"
c(a1, a2)
#> [1] "á" "á"

Other Types of Pattern | 219

a1 == a2
#> [1] FALSE

They render identically, but because they’re defined differently,
fixed() doesn’t find a match. Instead, you can use coll(),
defined next, to respect human character comparison rules:

str_detect(a1, fixed(a2))
#> [1] FALSE
str_detect(a1, coll(a2))
#> [1] TRUE

• coll() compares strings using standard collation rules. This is
useful for doing case-insensitive matching. Note that coll()
takes a locale parameter that controls which rules are used for
comparing characters. Unfortunately different parts of the
world use different rules!

That means you also need to be aware of the difference
when doing case-insensitive matches:
i <- c("I", "İ", "i", "ı")
i
#> [1] "I" "İ" "i" "ı"

str_subset(i, coll("i", ignore_case = TRUE))
#> [1] "I" "i"
str_subset(
 i,
 coll("i", ignore_case = TRUE, locale = "tr")
)
#> [1] "İ" "i"

Both fixed() and regex() have ignore_case arguments, but
they do not allow you to pick the locale: they always use the
default locale. You can see what that is with the following code
(more on stringi later):

stringi::stri_locale_info()
#> $Language
#> [1] "en"
#>
#> $Country
#> [1] "US"
#>
#> $Variant
#> [1] ""
#>
#> $Name
#> [1] "en_US"

220 | Chapter 11: Strings with stringr

The downside of coll() is speed; because the rules for recog‐
nizing which characters are the same are complicated, coll() is
relatively slow compared to regex() and fixed().

• As you saw with str_split(), you can use boundary() to
match boundaries. You can also use it with the other functions:

x <- "This is a sentence."
str_view_all(x, boundary("word"))

str_extract_all(x, boundary("word"))
#> [[1]]
#> [1] "This" "is" "a" "sentence"

Exercises
1. How would you find all strings containing \ with regex() ver‐

sus with fixed()?
2. What are the five most common words in sentences?

Other Uses of Regular Expressions
There are two useful functions in base R that also use regular
expressions:

• apropos() searches all objects available from the global envi‐
ronment. This is useful if you can’t quite remember the name of
the function:

apropos("replace")
#> [1] "%+replace%" "replace" "replace_na"
#> [4] "str_replace" "str_replace_all" "str_replace_na"
#> [7] "theme_replace"

• dir() lists all the files in a directory. The pattern argument
takes a regular expression and only returns filenames that
match the pattern. For example, you can find all the R Mark‐
down files in the current directory with:

head(dir(pattern = "\\.Rmd$"))
#> [1] "communicate-plots.Rmd" "communicate.Rmd"

Other Uses of Regular Expressions | 221

#> [3] "datetimes.Rmd" "EDA.Rmd"
#> [5] "explore.Rmd" "factors.Rmd"

(If you’re more comfortable with “globs” like *.Rmd, you can
convert them to regular expressions with glob2rx()).

stringi
stringr is built on top of the stringi package. stringr is useful when
you’re learning because it exposes a minimal set of functions, which
have been carefully picked to handle the most common string
manipulation functions. stringi, on the other hand, is designed to be
comprehensive. It contains almost every function you might ever
need: stringi has 234 functions to stringr’s 42.

If you find yourself struggling to do something in stringr, it’s worth
taking a look at stringi. The packages work very similarly, so you
should be able to translate your stringr knowledge in a natural way.
The main difference is the prefix: str_ versus stri_.

Exercises
1. Find the stringi functions that:

a. Count the number of words.
b. Find duplicated strings.
c. Generate random text.

2. How do you control the language that stri_sort() uses for
sorting?

222 | Chapter 11: Strings with stringr

CHAPTER 12

Factors with forcats

Introduction
In R, factors are used to work with categorical variables, variables
that have a fixed and known set of possible values. They are also
useful when you want to display character vectors in a non-
alphabetical order.

Historically, factors were much easier to work with than characters.
As a result, many of the functions in base R automatically convert
characters to factors. This means that factors often crop up in places
where they’re not actually helpful. Fortunately, you don’t need to
worry about that in the tidyverse, and can focus on situations where
factors are genuinely useful.

For more historical context on factors, I recommend stringsAsFac‐
tors: An unauthorized biography by Roger Peng, and stringsAsFactors
= <sigh> by Thomas Lumley.

Prerequisites
To work with factors, we’ll use the forcats package, which provides
tools for dealing with categorical variables (and it’s an anagram of
factors!). It provides a wide range of helpers for working with fac‐
tors. forcats is not part of the core tidyverse, so we need to load it
explicitly.

library(tidyverse)
library(forcats)

223

http://bit.ly/stringsfactorsbio
http://bit.ly/stringsfactorsbio
http://bit.ly/stringsfactorsigh
http://bit.ly/stringsfactorsigh

Creating Factors
Imagine that you have a variable that records month:

x1 <- c("Dec", "Apr", "Jan", "Mar")

Using a string to record this variable has two problems:

1. There are only twelve possible months, and there’s nothing sav‐
ing you from typos:

x2 <- c("Dec", "Apr", "Jam", "Mar")

2. It doesn’t sort in a useful way:
sort(x1)
#> [1] "Apr" "Dec" "Jan" "Mar"

You can fix both of these problems with a factor. To create a factor
you must start by creating a list of the valid levels:

month_levels <- c(
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)

Now you can create a factor:

y1 <- factor(x1, levels = month_levels)
y1
#> [1] Dec Apr Jan Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
sort(y1)
#> [1] Jan Mar Apr Dec
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

And any values not in the set will be silently converted to NA:

y2 <- factor(x2, levels = month_levels)
y2
#> [1] Dec Apr <NA> Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

If you want a want an error, you can use readr::parse_factor():

y2 <- parse_factor(x2, levels = month_levels)
#> Warning: 1 parsing failure.
#> row col expected actual
#> 3 -- value in level set Jam

If you omit the levels, they’ll be taken from the data in alphabetical
order:

224 | Chapter 12: Factors with forcats

factor(x1)
#> [1] Dec Apr Jan Mar
#> Levels: Apr Dec Jan Mar

Sometimes you’d prefer that the order of the levels match the order
of the first appearance in the data. You can do that when creating the
factor by setting levels to unique(x), or after the fact, with fct_inor
der():

f1 <- factor(x1, levels = unique(x1))
f1
#> [1] Dec Apr Jan Mar
#> Levels: Dec Apr Jan Mar

f2 <- x1 %>% factor() %>% fct_inorder()
f2
#> [1] Dec Apr Jan Mar
#> Levels: Dec Apr Jan Mar

If you ever need to access the set of valid levels directly, you can do
so with levels():

levels(f2)
#> [1] "Dec" "Apr" "Jan" "Mar"

General Social Survey
For the rest of this chapter, we’re going to focus on
forcats::gss_cat. It’s a sample of data from the General Social
Survey, which is a long-running US survey conducted by the inde‐
pendent research organization NORC at the University of Chicago.
The survey has thousands of questions, so in gss_cat I’ve selected a
handful that will illustrate some common challenges you’ll
encounter when working with factors:

gss_cat
#> # A tibble: 21,483 × 9
#> year marital age race rincome
#> <int> <fctr> <int> <fctr> <fctr>
#> 1 2000 Never married 26 White $8000 to 9999
#> 2 2000 Divorced 48 White $8000 to 9999
#> 3 2000 Widowed 67 White Not applicable
#> 4 2000 Never married 39 White Not applicable
#> 5 2000 Divorced 25 White Not applicable
#> 6 2000 Married 25 White $20000 - 24999
#> # ... with 2.148e+04 more rows, and 4 more variables:
#> # partyid <fctr>, relig <fctr>, denom <fctr>, tvhours <int>

General Social Survey | 225

http://gss.norc.org
http://gss.norc.org

(Remember, since this dataset is provided by a package, you can get
more information about the variables with ?gss_cat.)

When factors are stored in a tibble, you can’t see their levels so
easily. One way to see them is with count():

gss_cat %>%
 count(race)
#> # A tibble: 3 × 2
#> race n
#> <fctr> <int>
#> 1 Other 1959
#> 2 Black 3129
#> 3 White 16395

Or with a bar chart:

ggplot(gss_cat, aes(race)) +
 geom_bar()

By default, ggplot2 will drop levels that don’t have any values. You
can force them to display with:

ggplot(gss_cat, aes(race)) +
 geom_bar() +
 scale_x_discrete(drop = FALSE)

226 | Chapter 12: Factors with forcats

These levels represent valid values that simply did not occur in this
dataset. Unfortunately, dplyr doesn’t yet have a drop option, but it
will in the future.

When working with factors, the two most common operations are
changing the order of the levels, and changing the values of the lev‐
els. Those operations are described in the following sections.

Exercises
1. Explore the distribution of rincome (reported income). What

makes the default bar chart hard to understand? How could you
improve the plot?

2. What is the most common relig in this survey? What’s the
most common partyid?

3. Which relig does denom (denomination) apply to? How can
you find out with a table? How can you find out with a visuali‐
zation?

Modifying Factor Order
It’s often useful to change the order of the factor levels in a visualiza‐
tion. For example, imagine you want to explore the average number
of hours spent watching TV per day across religions:

Modifying Factor Order | 227

relig <- gss_cat %>%
 group_by(relig) %>%
 summarize(
 age = mean(age, na.rm = TRUE),
 tvhours = mean(tvhours, na.rm = TRUE),
 n = n()
)

ggplot(relig, aes(tvhours, relig)) + geom_point()

It is difficult to interpret this plot because there’s no overall pattern.
We can improve it by reordering the levels of relig using fct_reor
der(). fct_reorder() takes three arguments:

• f, the factor whose levels you want to modify.
• x, a numeric vector that you want to use to reorder the levels.
• Optionally, fun, a function that’s used if there are multiple val‐

ues of x for each value of f. The default value is median.

ggplot(relig, aes(tvhours, fct_reorder(relig, tvhours))) +
 geom_point()

228 | Chapter 12: Factors with forcats

Reordering religion makes it much easier to see that people in the
“Don’t know” category watch much more TV, and Hinduism and
other Eastern religions watch much less.

As you start making more complicated transformations, I’d recom‐
mend moving them out of aes() and into a separate mutate() step.
For example, you could rewrite the preceding plot as:

relig %>%
 mutate(relig = fct_reorder(relig, tvhours)) %>%
 ggplot(aes(tvhours, relig)) +
 geom_point()

What if we create a similar plot looking at how average age varies
across reported income level?

rincome <- gss_cat %>%
 group_by(rincome) %>%
 summarize(
 age = mean(age, na.rm = TRUE),
 tvhours = mean(tvhours, na.rm = TRUE),
 n = n()
)

ggplot(
 rincome,
 aes(age, fct_reorder(rincome, age))
) + geom_point()

Modifying Factor Order | 229

Here, arbitrarily reordering the levels isn’t a good idea! That’s
because rincome already has a principled order that we shouldn’t
mess with. Reserve fct_reorder() for factors whose levels are arbi‐
trarily ordered.

However, it does make sense to pull “Not applicable” to the front
with the other special levels. You can use fct_relevel(). It takes a
factor, f, and then any number of levels that you want to move to
the front of the line:

ggplot(
 rincome,
 aes(age, fct_relevel(rincome, "Not applicable"))
) +
 geom_point()

Why do you think the average age for “Not applicable” is so high?

230 | Chapter 12: Factors with forcats

Another type of reordering is useful when you are coloring the lines
on a plot. fct_reorder2() reorders the factor by the y values associ‐
ated with the largest x values. This makes the plot easier to read
because the line colors line up with the legend:

by_age <- gss_cat %>%
 filter(!is.na(age)) %>%
 group_by(age, marital) %>%
 count() %>%
 mutate(prop = n / sum(n))

ggplot(by_age, aes(age, prop, color = marital)) +
 geom_line(na.rm = TRUE)

ggplot(
 by_age,
 aes(age, prop, color = fct_reorder2(marital, age, prop))
) +
 geom_line() +
 labs(color = "marital")

Finally, for bar plots, you can use fct_infreq() to order levels in
increasing frequency: this is the simplest type of reordering because
it doesn’t need any extra variables. You may want to combine with
fct_rev():

gss_cat %>%
 mutate(marital = marital %>% fct_infreq() %>% fct_rev()) %>%
 ggplot(aes(marital)) +
 geom_bar()

Modifying Factor Order | 231

Exercises
1. There are some suspiciously high numbers in tvhours. Is the

mean a good summary?
2. For each factor in gss_cat identify whether the order of the lev‐

els is arbitrary or principled.
3. Why did moving “Not applicable” to the front of the levels move

it to the bottom of the plot?

Modifying Factor Levels
More powerful than changing the orders of the levels is changing
their values. This allows you to clarify labels for publication, and
collapse levels for high-level displays. The most general and power‐
ful tool is fct_recode(). It allows you to recode, or change, the
value of each level. For example, take gss_cat$partyid:

gss_cat %>% count(partyid)
#> # A tibble: 10 × 2
#> partyid n
#> <fctr> <int>
#> 1 No answer 154
#> 2 Don't know 1
#> 3 Other party 393
#> 4 Strong republican 2314
#> 5 Not str republican 3032
#> 6 Ind,near rep 1791
#> # ... with 4 more rows

The levels are terse and inconsistent. Let’s tweak them to be longer
and use a parallel construction:

gss_cat %>%
 mutate(partyid = fct_recode(partyid,
 "Republican, strong" = "Strong republican",
 "Republican, weak" = "Not str republican",
 "Independent, near rep" = "Ind,near rep",
 "Independent, near dem" = "Ind,near dem",
 "Democrat, weak" = "Not str democrat",
 "Democrat, strong" = "Strong democrat"
)) %>%
 count(partyid)
#> # A tibble: 10 × 2
#> partyid n
#> <fctr> <int>
#> 1 No answer 154

232 | Chapter 12: Factors with forcats

#> 2 Don't know 1
#> 3 Other party 393
#> 4 Republican, strong 2314
#> 5 Republican, weak 3032
#> 6 Independent, near rep 1791
#> # ... with 4 more rows

fct_recode() will leave levels that aren’t explicitly mentioned as is,
and will warn you if you accidentally refer to a level that doesn’t
exist.

To combine groups, you can assign multiple old levels to the same
new level:

gss_cat %>%
 mutate(partyid = fct_recode(partyid,
 "Republican, strong" = "Strong republican",
 "Republican, weak" = "Not str republican",
 "Independent, near rep" = "Ind,near rep",
 "Independent, near dem" = "Ind,near dem",
 "Democrat, weak" = "Not str democrat",
 "Democrat, strong" = "Strong democrat",
 "Other" = "No answer",
 "Other" = "Don't know",
 "Other" = "Other party"
)) %>%
 count(partyid)
#> # A tibble: 8 × 2
#> partyid n
#> <fctr> <int>
#> 1 Other 548
#> 2 Republican, strong 2314
#> 3 Republican, weak 3032
#> 4 Independent, near rep 1791
#> 5 Independent 4119
#> 6 Independent, near dem 2499
#> # ... with 2 more rows

You must use this technique with care: if you group together cate‐
gories that are truly different you will end up with misleading
results.

If you want to collapse a lot of levels, fct_collapse() is a useful
variant of fct_recode(). For each new variable, you can provide a
vector of old levels:

gss_cat %>%
 mutate(partyid = fct_collapse(partyid,
 other = c("No answer", "Don't know", "Other party"),
 rep = c("Strong republican", "Not str republican"),
 ind = c("Ind,near rep", "Independent", "Ind,near dem"),

Modifying Factor Levels | 233

 dem = c("Not str democrat", "Strong democrat")
)) %>%
 count(partyid)
#> # A tibble: 4 × 2
#> partyid n
#> <fctr> <int>
#> 1 other 548
#> 2 rep 5346
#> 3 ind 8409
#> 4 dem 7180

Sometimes you just want to lump together all the small groups to
make a plot or table simpler. That’s the job of fct_lump():

gss_cat %>%
 mutate(relig = fct_lump(relig)) %>%
 count(relig)
#> # A tibble: 2 × 2
#> relig n
#> <fctr> <int>
#> 1 Protestant 10846
#> 2 Other 10637

The default behavior is to progressively lump together the smallest
groups, ensuring that the aggregate is still the smallest group. In this
case it’s not very helpful: it is true that the majority of Americans in
this survey are Protestant, but we’ve probably overcollapsed.

Instead, we can use the n parameter to specify how many groups
(excluding other) we want to keep:

gss_cat %>%
 mutate(relig = fct_lump(relig, n = 10)) %>%
 count(relig, sort = TRUE) %>%
 print(n = Inf)
#> # A tibble: 10 × 2
#> relig n
#> <fctr> <int>
#> 1 Protestant 10846
#> 2 Catholic 5124
#> 3 None 3523
#> 4 Christian 689
#> 5 Other 458
#> 6 Jewish 388
#> 7 Buddhism 147
#> 8 Inter-nondenominational 109
#> 9 Moslem/islam 104
#> 10 Orthodox-christian 95

234 | Chapter 12: Factors with forcats

Exercises
1. How have the proportions of people identifying as Democrat,

Republican, and Independent changed over time?
2. How could you collapse rincome into a small set of categories?

Modifying Factor Levels | 235

CHAPTER 13

Dates and Times with lubridate

Introduction
This chapter will show you how to work with dates and times in R.
At first glance, dates and times seem simple. You use them all the
time in your regular life, and they don’t seem to cause much confu‐
sion. However, the more you learn about dates and times, the more
complicated they seem to get. To warm up, try these three seemingly
simple questions:

• Does every year have 365 days?
• Does every day have 24 hours?
• Does every minute have 60 seconds?

I’m sure you know that not every year has 365 days, but do you
know the full rule for determining if a year is a leap year? (It has
three parts.) You might have remembered that many parts of the
world use daylight saving time (DST), so that some days have 23
hours, and others have 25. You might not have known that some
minutes have 61 seconds because every now and then leap seconds
are added because the Earth’s rotation is gradually slowing down.

Dates and times are hard because they have to reconcile two physical
phenomena (the rotation of the Earth and its orbit around the sun)
with a whole raft of geopolitical phenomena including months, time
zones, and DST. This chapter won’t teach you every last detail about
dates and times, but it will give you a solid grounding of practical
skills that will help you with common data analysis challenges.

237

Prerequisites
This chapter will focus on the lubridate package, which makes it
easier to work with dates and times in R. lubridate is not part of
core tidyverse because you only need it when you’re working with
dates/times. We will also need nycflights13 for practice data.

library(tidyverse)

library(lubridate)
library(nycflights13)

Creating Date/Times
There are three types of date/time data that refer to an instant in
time:

• A date. Tibbles print this as <date>.
• A time within a day. Tibbles print this as <time>.
• A date-time is a date plus a time: it uniquely identifies an instant

in time (typically to the nearest second). Tibbles print this as
<dttm>. Elsewhere in R these are called POSIXct, but I don’t
think that’s a very useful name.

In this chapter we are only going to focus on dates and date-times as
R doesn’t have a native class for storing times. If you need one, you
can use the hms package.

You should always use the simplest possible data type that works for
your needs. That means if you can use a date instead of a date-time,
you should. Date-times are substantially more complicated because
of the need to handle time zones, which we’ll come back to at the
end of the chapter.

To get the current date or date-time you can use today() or now():

today()
#> [1] "2016-10-10"
now()
#> [1] "2016-10-10 15:19:39 PDT"

Otherwise, there are three ways you’re likely to create a date/time:

238 | Chapter 13: Dates and Times with lubridate

• From a string.
• From individual date-time components.
• From an existing date/time object.

They work as follows.

From Strings
Date/time data often comes as strings. You’ve seen one approach to
parsing strings into date-times in “Dates, Date-Times, and Times”
on page 134. Another approach is to use the helpers provided by
lubridate. They automatically work out the format once you specify
the order of the component. To use them, identify the order in
which year, month, and day appear in your dates, then arrange “y”,
“m”, and “d” in the same order. That gives you the name of the lubri‐
date function that will parse your date. For example:

ymd("2017-01-31")
#> [1] "2017-01-31"
mdy("January 31st, 2017")
#> [1] "2017-01-31"
dmy("31-Jan-2017")
#> [1] "2017-01-31"

These functions also take unquoted numbers. This is the most con‐
cise way to create a single date/time object, as you might need when
filtering date/time data. ymd() is short and unambiguous:

ymd(20170131)
#> [1] "2017-01-31"

ymd() and friends create dates. To create a date-time, add an under‐
score and one or more of “h”, “m”, and “s” to the name of the parsing
function:

ymd_hms("2017-01-31 20:11:59")
#> [1] "2017-01-31 20:11:59 UTC"
mdy_hm("01/31/2017 08:01")
#> [1] "2017-01-31 08:01:00 UTC"

You can also force the creation of a date-time from a date by supply‐
ing a time zone:

ymd(20170131, tz = "UTC")
#> [1] "2017-01-31 UTC"

Creating Date/Times | 239

From Individual Components
Instead of a single string, sometimes you’ll have the individual com‐
ponents of the date-time spread across multiple columns. This is
what we have in the flights data:

flights %>%
 select(year, month, day, hour, minute)
#> # A tibble: 336,776 × 5
#> year month day hour minute
#> <int> <int> <int> <dbl> <dbl>
#> 1 2013 1 1 5 15
#> 2 2013 1 1 5 29
#> 3 2013 1 1 5 40
#> 4 2013 1 1 5 45
#> 5 2013 1 1 6 0
#> 6 2013 1 1 5 58
#> # ... with 3.368e+05 more rows

To create a date/time from this sort of input, use make_date() for
dates, or make_datetime() for date-times:

flights %>%
 select(year, month, day, hour, minute) %>%
 mutate(
 departure = make_datetime(year, month, day, hour, minute)
)
#> # A tibble: 336,776 × 6
#> year month day hour minute departure
#> <int> <int> <int> <dbl> <dbl> <dttm>
#> 1 2013 1 1 5 15 2013-01-01 05:15:00
#> 2 2013 1 1 5 29 2013-01-01 05:29:00
#> 3 2013 1 1 5 40 2013-01-01 05:40:00
#> 4 2013 1 1 5 45 2013-01-01 05:45:00
#> 5 2013 1 1 6 0 2013-01-01 06:00:00
#> 6 2013 1 1 5 58 2013-01-01 05:58:00
#> # ... with 3.368e+05 more rows

Let’s do the same thing for each of the four time columns in
flights. The times are represented in a slightly odd format, so we
use modulus arithmetic to pull out the hour and minute compo‐
nents. Once I’ve created the date-time variables, I focus in on the
variables we’ll explore in the rest of the chapter:

make_datetime_100 <- function(year, month, day, time) {
 make_datetime(year, month, day, time %/% 100, time %% 100)
}

flights_dt <- flights %>%
 filter(!is.na(dep_time), !is.na(arr_time)) %>%

240 | Chapter 13: Dates and Times with lubridate

 mutate(
 dep_time = make_datetime_100(year, month, day, dep_time),
 arr_time = make_datetime_100(year, month, day, arr_time),
 sched_dep_time = make_datetime_100(
 year, month, day, sched_dep_time
),
 sched_arr_time = make_datetime_100(
 year, month, day, sched_arr_time
)
) %>%
 select(origin, dest, ends_with("delay"), ends_with("time"))

flights_dt
#> # A tibble: 328,063 × 9
#> origin dest dep_delay arr_delay dep_time
#> <chr> <chr> <dbl> <dbl> <dttm>
#> 1 EWR IAH 2 11 2013-01-01 05:17:00
#> 2 LGA IAH 4 20 2013-01-01 05:33:00
#> 3 JFK MIA 2 33 2013-01-01 05:42:00
#> 4 JFK BQN -1 -18 2013-01-01 05:44:00
#> 5 LGA ATL -6 -25 2013-01-01 05:54:00
#> 6 EWR ORD -4 12 2013-01-01 05:54:00
#> # ... with 3.281e+05 more rows, and 4 more variables:
#> # sched_dep_time <dttm>, arr_time <dttm>,
#> # sched_arr_time <dttm>, air_time <dbl>

With this data, I can visualize the distribution of departure times
across the year:

flights_dt %>%
 ggplot(aes(dep_time)) +
 geom_freqpoly(binwidth = 86400) # 86400 seconds = 1 day

Creating Date/Times | 241

Or within a single day:

flights_dt %>%
 filter(dep_time < ymd(20130102)) %>%
 ggplot(aes(dep_time)) +
 geom_freqpoly(binwidth = 600) # 600 s = 10 minutes

Note that when you use date-times in a numeric context (like in a
histogram), 1 means 1 second, so a binwidth of 86400 means one
day. For dates, 1 means 1 day.

From Other Types
You may want to switch between a date-time and a date. That’s he
job of as_datetime() and as_date():

as_datetime(today())
#> [1] "2016-10-10 UTC"
as_date(now())
#> [1] "2016-10-10"

Sometimes you’ll get date/times as numeric offsets from the “Unix
Epoch,” 1970-01-01. If the offset is in seconds, use as_datetime(); if
it’s in days, use as_date():

as_datetime(60 * 60 * 10)
#> [1] "1970-01-01 10:00:00 UTC"
as_date(365 * 10 + 2)
#> [1] "1980-01-01"

242 | Chapter 13: Dates and Times with lubridate

Exercises
1. What happens if you parse a string that contains invalid dates?

ymd(c("2010-10-10", "bananas"))

2. What does the tzone argument to today() do? Why is it impor‐
tant?

3. Use the appropriate lubridate function to parse each of the fol‐
lowing dates:

d1 <- "January 1, 2010"
d2 <- "2015-Mar-07"
d3 <- "06-Jun-2017"
d4 <- c("August 19 (2015)", "July 1 (2015)")
d5 <- "12/30/14" # Dec 30, 2014

Date-Time Components
Now that you know how to get date-time data into R’s date-time
data structures, let’s explore what you can do with them. This sec‐
tion will focus on the accessor functions that let you get and set
individual components. The next section will look at how arithmetic
works with date-times.

Getting Components
You can pull out individual parts of the date with the accessor func‐
tions year(), month(), mday() (day of the month), yday() (day of
the year), wday() (day of the week), hour(), minute(), and sec
ond():

datetime <- ymd_hms("2016-07-08 12:34:56")

year(datetime)
#> [1] 2016
month(datetime)
#> [1] 7
mday(datetime)
#> [1] 8

yday(datetime)
#> [1] 190
wday(datetime)
#> [1] 6

Date-Time Components | 243

For month() and wday() you can set label = TRUE to return the
abbreviated name of the month or day of the week. Set abbr =
FALSE to return the full name:

month(datetime, label = TRUE)
#> [1] Jul
#> 12 Levels: Jan < Feb < Mar < Apr < May < Jun < ... < Dec
wday(datetime, label = TRUE, abbr = FALSE)
#> [1] Friday
#> 7 Levels: Sunday < Monday < Tuesday < ... < Saturday

We can use wday() to see that more flights depart during the week
than on the weekend:

flights_dt %>%
 mutate(wday = wday(dep_time, label = TRUE)) %>%
 ggplot(aes(x = wday)) +
 geom_bar()

There’s an interesting pattern if we look at the average departure
delay by minute within the hour. It looks like flights leaving in
minutes 20–30 and 50–60 have much lower delays than the rest of
the hour!

flights_dt %>%
 mutate(minute = minute(dep_time)) %>%
 group_by(minute) %>%
 summarize(
 avg_delay = mean(arr_delay, na.rm = TRUE),
 n = n()) %>%
 ggplot(aes(minute, avg_delay)) +
 geom_line()

244 | Chapter 13: Dates and Times with lubridate

Interestingly, if we look at the scheduled departure time we don’t see
such a strong pattern:

sched_dep <- flights_dt %>%
 mutate(minute = minute(sched_dep_time)) %>%
 group_by(minute) %>%
 summarize(
 avg_delay = mean(arr_delay, na.rm = TRUE),
 n = n())

ggplot(sched_dep, aes(minute, avg_delay)) +
 geom_line()

Date-Time Components | 245

So why do we see that pattern with the actual departure times? Well,
like much data collected by humans, there’s a strong bias toward
flights leaving at “nice” departure times. Always be alert for this sort
of pattern whenever you work with data that involves human judg‐
ment!

ggplot(sched_dep, aes(minute, n)) +
 geom_line()

Rounding
An alternative approach to plotting individual components is to
round the date to a nearby unit of time, with floor_date(),
round_date(), and ceiling_date(). Each ceiling_date()function
takes a vector of dates to adjust and then the name of the unit to
round down (floor), round up (ceiling), or round to. This, for exam‐
ple, allows us to plot the number of flights per week:

flights_dt %>%
 count(week = floor_date(dep_time, "week")) %>%
 ggplot(aes(week, n)) +
 geom_line()

246 | Chapter 13: Dates and Times with lubridate

Computing the difference between a rounded and unrounded date
can be particularly useful.

Setting Components
You can also use each accessor function to set the components of a
date/time:

(datetime <- ymd_hms("2016-07-08 12:34:56"))
#> [1] "2016-07-08 12:34:56 UTC"

year(datetime) <- 2020
datetime
#> [1] "2020-07-08 12:34:56 UTC"
month(datetime) <- 01
datetime
#> [1] "2020-01-08 12:34:56 UTC"
hour(datetime) <- hour(datetime) + 1

Alternatively, rather than modifying in place, you can create a new
date-time with update(). This also allows you to set multiple values
at once:

update(datetime, year = 2020, month = 2, mday = 2, hour = 2)
#> [1] "2020-02-02 02:34:56 UTC"

If values are too big, they will roll over:

ymd("2015-02-01") %>%
 update(mday = 30)
#> [1] "2015-03-02"
ymd("2015-02-01") %>%

Date-Time Components | 247

 update(hour = 400)
#> [1] "2015-02-17 16:00:00 UTC"

You can use update() to show the distribution of flights across the
course of the day for every day of the year:

flights_dt %>%
 mutate(dep_hour = update(dep_time, yday = 1)) %>%
 ggplot(aes(dep_hour)) +
 geom_freqpoly(binwidth = 300)

Setting larger components of a date to a constant is a powerful tech‐
nique that allows you to explore patterns in the smaller components.

Exercises
1. How does the distribution of flight times within a day change

over the course of the year?
2. Compare dep_time, sched_dep_time, and dep_delay. Are they

consistent? Explain your findings.
3. Compare air_time with the duration between the departure

and arrival. Explain your findings. (Hint: consider the location
of the airport.)

4. How does the average delay time change over the course of a
day? Should you use dep_time or sched_dep_time? Why?

5. On what day of the week should you leave if you want to mini‐
mize the chance of a delay?

248 | Chapter 13: Dates and Times with lubridate

6. What makes the distribution of diamonds$carat and flights
$sched_dep_time similar?

7. Confirm my hypothesis that the early departures of flights in
minutes 20–30 and 50–60 are caused by scheduled flights that
leave early. Hint: create a binary variable that tells you whether
or not a flight was delayed.

Time Spans
Next you’ll learn about how arithmetic with dates works, including
subtraction, addition, and division. Along the way, you’ll learn
about three important classes that represent time spans:

• Durations, which represent an exact number of seconds.
• Periods, which represent human units like weeks and months.
• Intervals, which represent a starting and ending point.

Durations
In R, when you subtract two dates, you get a difftime object:

How old is Hadley?
h_age <- today() - ymd(19791014)
h_age
#> Time difference of 13511 days

A difftime class object records a time span of seconds, minutes,
hours, days, or weeks. This ambiguity can make difftimes a little
painful to work with, so lubridate provides an alternative that
always uses seconds—the duration:

as.duration(h_age)
#> [1] "1167350400s (~36.99 years)"

Durations come with a bunch of convenient constructors:

dseconds(15)
#> [1] "15s"
dminutes(10)
#> [1] "600s (~10 minutes)"
dhours(c(12, 24))
#> [1] "43200s (~12 hours)" "86400s (~1 days)"
ddays(0:5)
#> [1] "0s" "86400s (~1 days)"
#> [3] "172800s (~2 days)" "259200s (~3 days)"

Time Spans | 249

#> [5] "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)
#> [1] "1814400s (~3 weeks)"
dyears(1)
#> [1] "31536000s (~52.14 weeks)"

Durations always record the time span in seconds. Larger units are
created by converting minutes, hours, days, weeks, and years to sec‐
onds at the standard rate (60 seconds in a minute, 60 minutes in an
hour, 24 hours in day, 7 days in a week, 365 days in a year).

You can add and multiply durations:

2 * dyears(1)
#> [1] "63072000s (~2 years)"
dyears(1) + dweeks(12) + dhours(15)
#> [1] "38847600s (~1.23 years)"

You can add and subtract durations to and from days:

tomorrow <- today() + ddays(1)
last_year <- today() - dyears(1)

However, because durations represent an exact number of seconds,
sometimes you might get an unexpected result:

one_pm <- ymd_hms(
 "2016-03-12 13:00:00",
 tz = "America/New_York"
)

one_pm
#> [1] "2016-03-12 13:00:00 EST"
one_pm + ddays(1)
#> [1] "2016-03-13 14:00:00 EDT"

Why is one day after 1 p.m. on March 12, 2 p.m. on March 13?! If
you look carefully at the date you might also notice that the time
zones have changed. Because of DST, March 12 only has 23 hours,
so if we add a full day’s worth of seconds we end up with a different
time.

Periods
To solve this problem, lubridate provides periods. Periods are time
spans but don’t have a fixed length in seconds; instead they work
with “human” times, like days and months. That allows them to
work in a more intuitive way:

250 | Chapter 13: Dates and Times with lubridate

one_pm
#> [1] "2016-03-12 13:00:00 EST"
one_pm + days(1)
#> [1] "2016-03-13 13:00:00 EDT"

Like durations, periods can be created with a number of friendly
constructor functions:

seconds(15)
#> [1] "15S"
minutes(10)
#> [1] "10M 0S"
hours(c(12, 24))
#> [1] "12H 0M 0S" "24H 0M 0S"
days(7)
#> [1] "7d 0H 0M 0S"
months(1:6)
#> [1] "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S"
#> [4] "4m 0d 0H 0M 0S" "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S"
weeks(3)
#> [1] "21d 0H 0M 0S"
years(1)
#> [1] "1y 0m 0d 0H 0M 0S"

You can add and multiply periods:

10 * (months(6) + days(1))
#> [1] "60m 10d 0H 0M 0S"
days(50) + hours(25) + minutes(2)
#> [1] "50d 25H 2M 0S"

And of course, add them to dates. Compared to durations, periods
are more likely to do what you expect:

A leap year
ymd("2016-01-01") + dyears(1)
#> [1] "2016-12-31"
ymd("2016-01-01") + years(1)
#> [1] "2017-01-01"

Daylight Savings Time
one_pm + ddays(1)
#> [1] "2016-03-13 14:00:00 EDT"
one_pm + days(1)
#> [1] "2016-03-13 13:00:00 EDT"

Let’s use periods to fix an oddity related to our flight dates. Some
planes appear to have arrived at their destination before they depar‐
ted from New York City:

flights_dt %>%
 filter(arr_time < dep_time)

Time Spans | 251

#> # A tibble: 10,633 × 9
#> origin dest dep_delay arr_delay dep_time
#> <chr> <chr> <dbl> <dbl> <dttm>
#> 1 EWR BQN 9 -4 2013-01-01 19:29:00
#> 2 JFK DFW 59 NA 2013-01-01 19:39:00
#> 3 EWR TPA -2 9 2013-01-01 20:58:00
#> 4 EWR SJU -6 -12 2013-01-01 21:02:00
#> 5 EWR SFO 11 -14 2013-01-01 21:08:00
#> 6 LGA FLL -10 -2 2013-01-01 21:20:00
#> # ... with 1.063e+04 more rows, and 4 more variables:
#> # sched_dep_time <dttm>, arr_time <dttm>,
#> # sched_arr_time <dttm>, air_time <dbl>

These are overnight flights. We used the same date information for
both the departure and the arrival times, but these flights arrived on
the following day. We can fix this by adding days(1) to the arrival
time of each overnight flight:

flights_dt <- flights_dt %>%
 mutate(
 overnight = arr_time < dep_time,
 arr_time = arr_time + days(overnight * 1),
 sched_arr_time = sched_arr_time + days(overnight * 1)
)

Now all of our flights obey the laws of physics:

flights_dt %>%
 filter(overnight, arr_time < dep_time)
#> # A tibble: 0 × 10
#> # ... with 10 variables: origin <chr>, dest <chr>,
#> # dep_delay <dbl>, arr_delay <dbl>, dep_time <dttm>,
#> # sched_dep_time <dttm>, arr_time <dttm>,
#> # sched_arr_time <dttm>, air_time <dbl>, overnight <lgl>

Intervals
It’s obvious what dyears(1) / ddays(365) should return: one,
because durations are always represented by a number of seconds,
and a duration of a year is defined as 365 days’ worth of seconds.

What should years(1) / days(1) return? Well, if the year was
2015 it should return 365, but if it was 2016, it should return 366!
There’s not quite enough information for lubridate to give a single
clear answer. What it does instead is give an estimate, with a warn‐
ing:

years(1) / days(1)
#> estimate only: convert to intervals for accuracy
#> [1] 365

252 | Chapter 13: Dates and Times with lubridate

If you want a more accurate measurement, you’ll have to use an
interval. An interval is a duration with a starting point; that makes it
precise so you can determine exactly how long it is:

next_year <- today() + years(1)
(today() %--% next_year) / ddays(1)
#> [1] 365

To find out how many periods fall into an interval, you need to use
integer division:

(today() %--% next_year) %/% days(1)
#> [1] 365

Summary
How do you pick between duration, periods, and intervals? As
always, pick the simplest data structure that solves your problem. If
you only care about physical time, use a duration; if you need to add
human times, use a period; if you need to figure out how long a span
is in human units, use an interval.

Figure 13-1 summarizes permitted arithmetic operations between
the different data types.

Figure 13-1. The allowed arithmetic operations between pairs of date/
time classes

Exercises
1. Why is there months() but no dmonths()?
2. Explain days(overnight * 1) to someone who has just started

learning R. How does it work?

Time Spans | 253

3. Create a vector of dates giving the first day of every month in
2015. Create a vector of dates giving the first day of every month
in the current year.

4. Write a function that, given your birthday (as a date), returns
how old you are in years.

5. Why can’t (today() %--% (today() + years(1)) /

months(1) work?

Time Zones
Time zones are an enormously complicated topic because of their
interaction with geopolitical entities. Fortunately we don’t need to
dig into all the details as they’re not all that important for data analy‐
sis, but there are a few challenges we’ll need to tackle head on.

The first challenge is that everyday names of time zones tend to be
ambiguous. For example, if you’re American you’re probably famil‐
iar with EST, or Eastern Standard Time. However, both Australia
and Canada also have EST! To avoid confusion, R uses the interna‐
tional standard IANA time zones. These use a consistent naming
scheme with “/”, typically in the form “<continent>/<city>” (there
are a few exceptions because not every country lies on a continent).
Examples include “America/New_York,” “Europe/Paris,” and
“Pacific/Auckland.”

You might wonder why the time zone uses a city, when typically you
think of time zones as associated with a country or region within a
country. This is because the IANA database has to record decades’
worth of time zone rules. In the course of decades, countries change
names (or break apart) fairly frequently, but city names tend to stay
the same. Another problem is that name needs to reflect not only to
the current behavior, but also the complete history. For example,
there are time zones for both “America/New_York” and “America/
Detroit.” These cities both currently use Eastern Standard Time but
in 1969–1972, Michigan (the state in which Detroit is located) did
not follow DST, so it needs a different name. It’s worth reading the
raw time zone database (available at http://www.iana.org/time-zones)
just to read some of these stories!

You can find out what R thinks your current time zone is with
Sys.timezone():

254 | Chapter 13: Dates and Times with lubridate

http://www.iana.org/time-zones

Sys.timezone()
#> [1] "America/Los_Angeles"

(If R doesn’t know, you’ll get an NA.)

And see the complete list of all time zone names with OlsonNames():

length(OlsonNames())
#> [1] 589
head(OlsonNames())
#> [1] "Africa/Abidjan" "Africa/Accra"
#> [3] "Africa/Addis_Ababa" "Africa/Algiers"
#> [5] "Africa/Asmara" "Africa/Asmera"

In R, the time zone is an attribute of the date-time that only controls
printing. For example, these three objects represent the same instant
in time:

(x1 <- ymd_hms("2015-06-01 12:00:00", tz = "America/New_York"))
#> [1] "2015-06-01 12:00:00 EDT"
(x2 <- ymd_hms("2015-06-01 18:00:00", tz = "Europe/Copenhagen"))
#> [1] "2015-06-01 18:00:00 CEST"
(x3 <- ymd_hms("2015-06-02 04:00:00", tz = "Pacific/Auckland"))
#> [1] "2015-06-02 04:00:00 NZST"

You can verify that they’re the same time using subtraction:

x1 - x2
#> Time difference of 0 secs
x1 - x3
#> Time difference of 0 secs

Unless otherwise specified, lubridate always uses UTC. UTC (Coor‐
dinated Universal Time) is the standard time zone used by the scien‐
tific community and is roughly equivalent to its predecessor GMT
(Greenwich Mean Time). It does not have DST, which makes it a
convenient representation for computation. Operations that com‐
bine date-times, like c(), will often drop the time zone. In that case,
the date-times will display in your local time zone:

x4 <- c(x1, x2, x3)
x4
#> [1] "2015-06-01 09:00:00 PDT" "2015-06-01 09:00:00 PDT"
#> [3] "2015-06-01 09:00:00 PDT"

You can change the time zone in two ways:

• Keep the instant in time the same, and change how it’s dis‐
played. Use this when the instant is correct, but you want a
more natural display:

Time Zones | 255

x4a <- with_tz(x4, tzone = "Australia/Lord_Howe")
x4a
#> [1] "2015-06-02 02:30:00 LHST"
#> [2] "2015-06-02 02:30:00 LHST"
#> [3] "2015-06-02 02:30:00 LHST"
x4a - x4
#> Time differences in secs
#> [1] 0 0 0

(This also illustrates another challenge of times zones: they’re
not all integer hour offsets!)

• Change the underlying instant in time. Use this when you have
an instant that has been labeled with the incorrect time zone,
and you need to fix it:

x4b <- force_tz(x4, tzone = "Australia/Lord_Howe")
x4b
#> [1] "2015-06-01 09:00:00 LHST"
#> [2] "2015-06-01 09:00:00 LHST"
#> [3] "2015-06-01 09:00:00 LHST"
x4b - x4
#> Time differences in hours
#> [1] -17.5 -17.5 -17.5

256 | Chapter 13: Dates and Times with lubridate

PART III

Program

In this part of the book, you’ll improve your programming skills.
Programming is a cross-cutting skill needed for all data science
work: you must use a computer to do data science; you cannot do it
in your head, or with pencil and paper.

Programming produces code, and code is a tool of communication.
Obviously code tells the computer what you want it to do. But it also
communicates meaning to other humans. Thinking about code as a
vehicle for communication is important because every project you
do is fundamentally collaborative. Even if you’re not working with
other people, you’ll definitely be working with future-you! Writing
clear code is important so that others (like future-you) can under‐
stand why you tackled an analysis in the way you did. That means
getting better at programming also involves getting better at com‐

municating. Over time, you want your code to become not just eas‐
ier to write, but easier for others to read.

Writing code is similar in many ways to writing prose. One parallel
that I find particularly useful is that in both cases rewriting is the key
to clarity. The first expression of your ideas is unlikely to be particu‐
larly clear, and you may need to rewrite multiple times. After solving
a data analysis challenge, it’s often worth looking at your code and
thinking about whether or not it’s obvious what you’ve done. If you
spend a little time rewriting your code while the ideas are fresh, you
can save a lot of time later trying to re-create what your code did.
But this doesn’t mean you should rewrite every function: you need
to balance what you need to achieve now with saving time in the
long run. (But the more you rewrite your functions the more likely
your first attempt will be clear.)

In the following four chapters, you’ll learn skills that will allow you
to both tackle new programs and solve existing problems with
greater clarity and ease:

• In Chapter 14, you will dive deep into the pipe, %>%, and learn
more about how it works, what the alternatives are, and when
not to use it.

• Copy-and-paste is a powerful tool, but you should avoid doing
it more than twice. Repeating yourself in code is dangerous
because it can easily lead to errors and inconsistencies. Instead,
in Chapter 15, you’ll learn how to write functions, which let you
extract out repeated code so that it can be easily reused.

• As you start to write more powerful functions, you’ll need a
solid grounding in R’s data structures, provided by Chapter 16.
You must master the four common atomic vectors and the three
important S3 classes built on top of them, and understand the
mysteries of the list and data frame.

• Functions extract out repeated code, but you often need to
repeat the same actions on different inputs. You need tools for
iteration that let you do similar things again and again. These
tools include for loops and functional programming, which
you’ll learn about in Chapter 17.

Learning More
The goal of these chapters is to teach you the minimum about pro‐
gramming that you need to practice data science, which turns out to
be a reasonable amount. Once you have mastered the material in
this book, I strongly believe you should invest further in your pro‐
gramming skills. Learning more about programming is a long-term
investment: it won’t pay off immediately, but in the long term it will
allow you to solve new problems more quickly, and let you reuse
your insights from previous problems in new scenarios.

To learn more you need to study R as a programming language, not
just an interactive environment for data science. We have written
two books that will help you do so:

• Hands-On Programming with R, by Garrett Grolemund. This is
an introduction to R as a programming language and is a great
place to start if R is your first programming language. It covers
similar material to these chapters, but with a different style and
different motivation examples (based in the casino). It’s a useful
complement if you find that these four chapters go by too
quickly.

• Advanced R by Hadley Wickham. This dives into the details of R
the programming language. This is a great place to start if you
have existing programming experience. It’s also a great next step
once you’ve internalized the ideas in these chapters. You can
read it online at http://adv-r.had.co.nz.

http://shop.oreilly.com/product/0636920028574.do
http://adv-r.had.co.nz

CHAPTER 14

Pipes with magrittr

Introduction
Pipes are a powerful tool for clearly expressing a sequence of multi‐
ple operations. So far, you’ve been using them without knowing how
they work, or what the alternatives are. Now, in this chapter, it’s time
to explore the pipe in more detail. You’ll learn the alternatives to the
pipe, when you shouldn’t use the pipe, and some useful related tools.

Prerequisites
The pipe, %>%, comes from the magrittr package by Stefan Milton
Bache. Packages in the tidyverse load %>% for you automatically, so
you don’t usually load magrittr explicitly. Here, however, we’re
focusing on piping, and we aren’t loading any other packages, so we
will load it explicitly.

library(magrittr)

Piping Alternatives
The point of the pipe is to help you write code in a way that is easier
to read and understand. To see why the pipe is so useful, we’re going
to explore a number of ways of writing the same code. Let’s use code
to tell a story about a little bunny named Foo Foo:

261

Little bunny Foo Foo
Went hopping through the forest
Scooping up the field mice
And bopping them on the head

This is a popular children’s poem that is accompanied by hand
actions.

We’ll start by defining an object to represent little bunny Foo Foo:

foo_foo <- little_bunny()

And we’ll use a function for each key verb: hop(), scoop(), and
bop(). Using this object and these verbs, there are (at least) four
ways we could retell the story in code:

• Save each intermediate step as a new object.
• Overwrite the original object many times.
• Compose functions.
• Use the pipe.

We’ll work through each approach, showing you the code and talk‐
ing about the advantages and disadvantages.

Intermediate Steps
The simplest approach is to save each step as a new object:

foo_foo_1 <- hop(foo_foo, through = forest)
foo_foo_2 <- scoop(foo_foo_1, up = field_mice)
foo_foo_3 <- bop(foo_foo_2, on = head)

The main downside of this form is that it forces you to name each
intermediate element. If there are natural names, this is a good idea,
and you should do it. But many times, like in this example, there
aren’t natural names, and you add numeric suffixes to make the
names unique. That leads to two problems:

• The code is cluttered with unimportant names.
• You have to carefully increment the suffix on each line.

Whenever I write code like this, I invariably use the wrong number
on one line and then spend 10 minutes scratching my head and try‐
ing to figure out what went wrong with my code.

262 | Chapter 14: Pipes with magrittr

You may also worry that this form creates many copies of your data
and takes up a lot of memory. Surprisingly, that’s not the case. First,
note that proactively worrying about memory is not a useful way to
spend your time: worry about it when it becomes a problem (i.e.,
you run out of memory), not before. Second, R isn’t stupid, and it
will share columns across data frames, where possible. Let’s take a
look at an actual data manipulation pipeline where we add a new
column to ggplot2::diamonds:

diamonds <- ggplot2::diamonds
diamonds2 <- diamonds %>%
 dplyr::mutate(price_per_carat = price / carat)

pryr::object_size(diamonds)
#> 3.46 MB
pryr::object_size(diamonds2)
#> 3.89 MB
pryr::object_size(diamonds, diamonds2)
#> 3.89 MB

pryr::object_size() gives the memory occupied by all of its argu‐
ments. The results seem counterintuitive at first:

• diamonds takes up 3.46 MB.
• diamonds2 takes up 3.89 MB.
• diamonds and diamonds2 together take up 3.89 MB!

How can that work? Well, diamonds2 has 10 columns in common
with diamonds: there’s no need to duplicate all that data, so the two
data frames have variables in common. These variables will only get
copied if you modify one of them. In the following example, we
modify a single value in diamonds$carat. That means the carat
variable can no longer be shared between the two data frames, and a
copy must be made. The size of each data frame is unchanged, but
the collective size increases:

diamonds$carat[1] <- NA
pryr::object_size(diamonds)
#> 3.46 MB
pryr::object_size(diamonds2)
#> 3.89 MB
pryr::object_size(diamonds, diamonds2)
#> 4.32 MB

Piping Alternatives | 263

(Note that we use pryr::object_size() here, not the built-in
object.size(). object.size() only takes a single object so it can’t
compute how data is shared across multiple objects.)

Overwrite the Original
Instead of creating intermediate objects at each step, we could over‐
write the original object:

foo_foo <- hop(foo_foo, through = forest)
foo_foo <- scoop(foo_foo, up = field_mice)
foo_foo <- bop(foo_foo, on = head)

This is less typing (and less thinking), so you’re less likely to make
mistakes. However, there are two problems:

• Debugging is painful. If you make a mistake you’ll need to re-
run the complete pipeline from the beginning.

• The repetition of the object being transformed (we’ve written
foo_foo six times!) obscures what’s changing on each line.

Function Composition
Another approach is to abandon assignment and just string the
function calls together:

bop(
 scoop(
 hop(foo_foo, through = forest),
 up = field_mice
),
 on = head
)

Here the disadvantage is that you have to read from inside-out, from
right-to-left, and that the arguments end up spread far apart (evoca‐
tively called the Dagwood sandwich problem). In short, this code is
hard for a human to consume.

Use the Pipe
Finally, we can use the pipe:

foo_foo %>%
 hop(through = forest) %>%
 scoop(up = field_mouse) %>%
 bop(on = head)

264 | Chapter 14: Pipes with magrittr

https://en.wikipedia.org/wiki/Dagwood_sandwich

This is my favorite form, because it focuses on verbs, not nouns. You
can read this series of function compositions like it’s a set of impera‐
tive actions. Foo Foo hops, then scoops, then bops. The downside, of
course, is that you need to be familiar with the pipe. If you’ve never
seen %>% before, you’ll have no idea what this code does. Fortunately,
most people pick up the idea very quickly, so when you share your
code with others who aren’t familiar with the pipe, you can easily
teach them.

The pipe works by performing a “lexical transformation”: behind the
scenes, magrittr reassembles the code in the pipe to a form that
works by overwriting an intermediate object. When you run a pipe
like the preceding one, magrittr does something like this:

my_pipe <- function(.) {
 . <- hop(., through = forest)
 . <- scoop(., up = field_mice)
 bop(., on = head)
}
my_pipe(foo_foo)

This means that the pipe won’t work for two classes of functions:

• Functions that use the current environment. For example,
assign() will create a new variable with the given name in the
current environment:

assign("x", 10)
x
#> [1] 10

"x" %>% assign(100)
x
#> [1] 10

The use of assign with the pipe does not work because it
assigns it to a temporary environment used by %>%. If you do
want to use assign with the pipe, you must be explicit about the
environment:

env <- environment()
"x" %>% assign(100, envir = env)
x
#> [1] 100

Other functions with this problem include get() and load().
• Functions that use lazy evaluation. In R, function arguments are

only computed when the function uses them, not prior to call‐

Piping Alternatives | 265

ing the function. The pipe computes each element in turn, so
you can’t rely on this behavior.
One place that this is a problem is tryCatch(), which lets you
capture and handle errors:

tryCatch(stop("!"), error = function(e) "An error")
#> [1] "An error"

stop("!") %>%
 tryCatch(error = function(e) "An error")
#> Error in eval(expr, envir, enclos): !

There are a relatively wide class of functions with this behavior,
including try(), suppressMessages(), and suppressWarn

ings() in base R.

When Not to Use the Pipe
The pipe is a powerful tool, but it’s not the only tool at your disposal,
and it doesn’t solve every problem! Pipes are most useful for rewrit‐
ing a fairly short linear sequence of operations. I think you should
reach for another tool when:

• Your pipes are longer than (say) 10 steps. In that case, create
intermediate objects with meaningful names. That will make
debugging easier, because you can more easily check the inter‐
mediate results, and it makes it easier to understand your code,
because the variable names can help communicate intent.

• You have multiple inputs or outputs. If there isn’t one primary
object being transformed, but two or more objects being com‐
bined together, don’t use the pipe.

• You are starting to think about a directed graph with a complex
dependency structure. Pipes are fundamentally linear and
expressing complex relationships with them will typically yield
confusing code.

Other Tools from magrittr
All packages in the tidyverse automatically make %>% available for
you, so you don’t normally load magrittr explicitly. However, there

266 | Chapter 14: Pipes with magrittr

are some other useful tools inside magrittr that you might want to
try out:

• When working with more complex pipes, it’s sometimes useful
to call a function for its side effects. Maybe you want to print
out the current object, or plot it, or save it to disk. Many times,
such functions don’t return anything, effectively terminating the
pipe.
To work around this problem, you can use the “tee” pipe. %T>%
works like %>% except that it returns the lefthand side instead of
the righthand side. It’s called “tee” because it’s like a literal T-
shaped pipe:

rnorm(100) %>%
 matrix(ncol = 2) %>%
 plot() %>%
 str()
#> NULL

rnorm(100) %>%
 matrix(ncol = 2) %T>%
 plot() %>%
 str()
#> num [1:50, 1:2] -0.387 -0.785 -1.057 -0.796 -1.756 ...

Other Tools from magrittr | 267

• If you’re working with functions that don’t have a data frame–
based API (i.e., you pass them individual vectors, not a data
frame and expressions to be evaluated in the context of that data
frame), you might find %$% useful. It “explodes” out the variables
in a data frame so that you can refer to them explicitly. This is
useful when working with many functions in base R:

mtcars %$%
 cor(disp, mpg)
#> [1] -0.848

• For assignment magrittr provides the %<>% operator, which
allows you to replace code like:

mtcars <- mtcars %>%
 transform(cyl = cyl * 2)

with:
mtcars %<>% transform(cyl = cyl * 2)

I’m not a fan of this operator because I think assignment is such
a special operation that it should always be clear when it’s occur‐
ring. In my opinion, a little bit of duplication (i.e., repeating the
name of the object twice) is fine in return for making assign‐
ment more explicit.

268 | Chapter 14: Pipes with magrittr

CHAPTER 15

Functions

Introduction
One of the best ways to improve your reach as a data scientist is to
write functions. Functions allow you to automate common tasks in a
more powerful and general way than copying and pasting. Writing a
function has three big advantages over using copy-and-paste:

• You can give a function an evocative name that makes your
code easier to understand.

• As requirements change, you only need to update code in one
place, instead of many.

• You eliminate the chance of making incidental mistakes when
you copy and paste (i.e., updating a variable name in one place,
but not in another).

Writing good functions is a lifetime journey. Even after using R for
many years I still learn new techniques and better ways of approach‐
ing old problems. The goal of this chapter is not to teach you every
esoteric detail of functions but to get you started with some prag‐
matic advice that you can apply immediately.

As well as practical advice for writing functions, this chapter also
gives you some suggestions for how to style your code. Good code
style is like correct punctuation. Youcanmanagewithoutit, but it sure
makes things easier to read! As with styles of punctuation, there are
many possible variations. Here we present the style we use in our
code, but the most important thing is to be consistent.

269

Prerequisites
The focus of this chapter is on writing functions in base R, so you
won’t need any extra packages.

When Should You Write a Function?
You should consider writing a function whenever you’ve copied and
pasted a block of code more than twice (i.e., you now have three
copies of the same code). For example, take a look at this code. What
does it do?

df <- tibble::tibble(
 a = rnorm(10),
 b = rnorm(10),
 c = rnorm(10),
 d = rnorm(10)
)

df$a <- (df$a - min(df$a, na.rm = TRUE)) /
 (max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
 (max(df$b, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
 (max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
 (max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))

You might be able to puzzle out that this rescales each column to
have a range from 0 to 1. But did you spot the mistake? I made an
error when copying and pasting the code for df$b: I forgot to
change an a to a b. Extracting repeated code out into a function is a
good idea because it prevents you from making this type of mistake.

To write a function you need to first analyze the code. How many
inputs does it have?

(df$a - min(df$a, na.rm = TRUE)) /
 (max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))

This code only has one input: df$a. (If you’re surprised that TRUE is
not an input, you can explore why in the following exercise.) To
make the inputs more clear, it’s a good idea to rewrite the code using
temporary variables with general names. Here this code only
requires a single numeric vector, so I’ll call it x:

x <- df$a
(x - min(x, na.rm = TRUE)) /

270 | Chapter 15: Functions

(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
#> [1] 0.289 0.751 0.000 0.678 0.853 1.000 0.172 0.611 0.612
#> [10] 0.601

There is some duplication in this code. We’re computing the range
of the data three times, but it makes sense to do it in one step:

rng <- range(x, na.rm = TRUE)
(x - rng[1]) / (rng[2] - rng[1])
#> [1] 0.289 0.751 0.000 0.678 0.853 1.000 0.172 0.611 0.612
#> [10] 0.601

Pulling out intermediate calculations into named variables is a good
practice because it makes it more clear what the code is doing. Now
that I’ve simplified the code, and checked that it still works, I can
turn it into a function:

rescale01 <- function(x) {
 rng <- range(x, na.rm = TRUE)
 (x - rng[1]) / (rng[2] - rng[1])
}
rescale01(c(0, 5, 10))
#> [1] 0.0 0.5 1.0

There are three key steps to creating a new function:

1. You need to pick a name for the function. Here I’ve used
rescale01 because this function rescales a vector to lie between
0 and 1.

2. You list the inputs, or arguments, to the function inside func
tion. Here we have just one argument. If we had more the call
would look like function(x, y, z).

3. You place the code you have developed in the body of the func‐
tion, a { block that immediately follows function(...).

Note the overall process: I only made the function after I’d figured
out how to make it work with a simple input. It’s easier to start with
working code and turn it into a function; it’s harder to create a func‐
tion and then try to make it work.

At this point it’s a good idea to check your function with a few dif‐
ferent inputs:

rescale01(c(-10, 0, 10))
#> [1] 0.0 0.5 1.0
rescale01(c(1, 2, 3, NA, 5))
#> [1] 0.00 0.25 0.50 NA 1.00

When Should You Write a Function? | 271

As you write more and more functions you’ll eventually want to
convert these informal, interactive tests into formal, automated tests.
That process is called unit testing. Unfortunately, it’s beyond the
scope of this book, but you can learn about it at http://r-
pkgs.had.co.nz/tests.html.

We can simplify the original example now that we have a function:

df$a <- rescale01(df$a)
df$b <- rescale01(df$b)
df$c <- rescale01(df$c)
df$d <- rescale01(df$d)

Compared to the original, this code is easier to understand and
we’ve eliminated one class of copy-and-paste errors. There is still
quite a bit of duplication since we’re doing the same thing to multi‐
ple columns. We’ll learn how to eliminate that duplication in Chap‐
ter 17, once you’ve learned more about R’s data structures in
Chapter 16.

Another advantage of functions is that if our requirements change,
we only need to make the change in one place. For example, we
might discover that some of our variables include infinite values,
and rescale01() fails:

x <- c(1:10, Inf)
rescale01(x)
#> [1] 0 0 0 0 0 0 0 0 0 0 NaN

Because we’ve extracted the code into a function, we only need to
make the fix in one place:

rescale01 <- function(x) {
 rng <- range(x, na.rm = TRUE, finite = TRUE)
 (x - rng[1]) / (rng[2] - rng[1])
}
rescale01(x)
#> [1] 0.000 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889
#> [10] 1.000 Inf

This is an important part of the “do not repeat yourself ” (or DRY)
principle. The more repetition you have in your code, the more
places you need to remember to update when things change (and
they always do!), and the more likely you are to create bugs over
time.

272 | Chapter 15: Functions

http://r-pkgs.had.co.nz/tests.html
http://r-pkgs.had.co.nz/tests.html

Exercises
1. Why is TRUE not a parameter to rescale01()? What would hap‐

pen if x contained a single missing value, and na.rm was FALSE?
2. In the second variant of rescale01(), infinite values are left

unchanged. Rewrite rescale01() so that -Inf is mapped to 0,
and Inf is mapped to 1.

3. Practice turning the following code snippets into functions.
Think about what each function does. What would you call it?
How many arguments does it need? Can you rewrite it to be
more expressive or less duplicative?

mean(is.na(x))

x / sum(x, na.rm = TRUE)

sd(x, na.rm = TRUE) / mean(x, na.rm = TRUE)

4. Follow http://nicercode.github.io/intro/writing-functions.html to
write your own functions to compute the variance and skew of a
numeric vector.

5. Write both_na(), a function that takes two vectors of the same
length and returns the number of positions that have an NA in
both vectors.

6. What do the following functions do? Why are they useful even
though they are so short?

is_directory <- function(x) file.info(x)$isdir
is_readable <- function(x) file.access(x, 4) == 0

7. Read the complete lyrics to “Little Bunny Foo Foo.” There’s a lot
of duplication in this song. Extend the initial piping example to
re-create the complete song, and use functions to reduce the
duplication.

Functions Are for Humans and Computers
It’s important to remember that functions are not just for the com‐
puter, but are also for humans. R doesn’t care what your function is
called, or what comments it contains, but these are important for
human readers. This section discusses some things that you should
bear in mind when writing functions that humans can understand.

Functions Are for Humans and Computers | 273

http://nicercode.github.io/intro/writing-functions.html
http://bit.ly/littlebunnyfoofoo

The name of a function is important. Ideally, the name of your func‐
tion will be short, but clearly evoke what the function does. That’s
hard! But it’s better to be clear than short, as RStudio’s autocomplete
makes it easy to type long names.

Generally, function names should be verbs, and arguments should
be nouns. There are some exceptions: nouns are OK if the function
computes a very well known noun (i.e., mean() is better than com
pute_mean()), or is accessing some property of an object (i.e.,
coef() is better than get_coefficients()). A good sign that a
noun might be a better choice is if you’re using a very broad verb
like “get,” “compute,” “calculate,” or “determine.” Use your best judg‐
ment and don’t be afraid to rename a function if you figure out a
better name later:

Too short
f()

Not a verb, or descriptive
my_awesome_function()

Long, but clear
impute_missing()
collapse_years()

If your function name is composed of multiple words, I recommend
using “snake_case,” where each lowercase word is separated by an
underscore. camelCase is a popular alternative. It doesn’t really mat‐
ter which one you pick; the important thing is to be consistent: pick
one or the other and stick with it. R itself is not very consistent, but
there’s nothing you can do about that. Make sure you don’t fall into
the same trap by making your code as consistent as possible:

Never do this!
col_mins <- function(x, y) {}
rowMaxes <- function(y, x) {}

If you have a family of functions that do similar things, make sure
they have consistent names and arguments. Use a common prefix to
indicate that they are connected. That’s better than a common suffix
because autocomplete allows you to type the prefix and see all the
members of the family:

Good
input_select()
input_checkbox()
input_text()

274 | Chapter 15: Functions

Not so good
select_input()
checkbox_input()
text_input()

A good example of this design is the stringr package: if you don’t
remember exactly which function you need, you can type str_ and
jog your memory.

Where possible, avoid overriding existing functions and variables.
It’s impossible to do in general because so many good names are
already taken by other packages, but avoiding the most common
names from base R will avoid confusion:

Don't do this!
T <- FALSE
c <- 10
mean <- function(x) sum(x)

Use comments, lines starting with #, to explain the “why” of your
code. You generally should avoid comments that explain the “what”
or the “how.” If you can’t understand what the code does from read‐
ing it, you should think about how to rewrite it to be more clear. Do
you need to add some intermediate variables with useful names? Do
you need to break out a subcomponent of a large function so you
can name it? However, your code can never capture the reasoning
behind your decisions: why did you choose this approach instead of
an alternative? What else did you try that didn’t work? It’s a great
idea to capture that sort of thinking in a comment.

Another important use of comments is to break up your file into
easily readable chunks. Use long lines of - or = to make it easy to
spot the breaks:

Load data --------------------------------------

Plot data --------------------------------------

RStudio provides a keyboard shortcut to create these headers (Cmd/
Ctrl-Shift-R), and will display them in the code navigation drop-
down at the bottom-left of the editor:

Functions Are for Humans and Computers | 275

Exercises
1. Read the source code for each of the following three functions,

puzzle out what they do, and then brainstorm better names:
f1 <- function(string, prefix) {
 substr(string, 1, nchar(prefix)) == prefix
}
f2 <- function(x) {
 if (length(x) <= 1) return(NULL)
 x[-length(x)]
}
f3 <- function(x, y) {
 rep(y, length.out = length(x))
}

2. Take a function that you’ve written recently and spend five
minutes brainstorming a better name for it and its arguments.

3. Compare and contrast rnorm() and MASS::mvrnorm(). How
could you make them more consistent?

4. Make a case for why norm_r(), norm_d(), etc., would be better
than rnorm(), dnorm(). Make a case for the opposite.

Conditional Execution
An if statement allows you to conditionally execute code. It looks
like this:

if (condition) {
 # code executed when condition is TRUE
} else {
 # code executed when condition is FALSE
}

To get help on if you need to surround it in backticks: ?`if`. The
help isn’t particularly helpful if you’re not already an experienced
programmer, but at least you know how to get to it!

Here’s a simple function that uses an if statement. The goal of this
function is to return a logical vector describing whether or not each
element of a vector is named:

has_name <- function(x) {
 nms <- names(x)
 if (is.null(nms)) {
 rep(FALSE, length(x))

276 | Chapter 15: Functions

 } else {
 !is.na(nms) & nms != ""
 }
}

This function takes advantage of the standard return rule: a function
returns the last value that it computed. Here that is either one of the
two branches of the if statement.

Conditions
The condition must evaluate to either TRUE or FALSE. If it’s a vector,
you’ll get a warning message; if it’s an NA, you’ll get an error. Watch
out for these messages in your own code:

if (c(TRUE, FALSE)) {}
#> Warning in if (c(TRUE, FALSE)) {:
#> the condition has length > 1 and only the
#> first element will be used
#> NULL

if (NA) {}
#> Error in if (NA) {: missing value where TRUE/FALSE needed

You can use || (or) and && (and) to combine multiple logical
expressions. These operators are “short-circuiting”: as soon as ||
sees the first TRUE it returns TRUE without computing anything else.
As soon as && sees the first FALSE it returns FALSE. You should never
use | or & in an if statement: these are vectorized operations that
apply to multiple values (that’s why you use them in filter()). If
you do have a logical vector, you can use any() or all() to collapse
it to a single value.

Be careful when testing for equality. == is vectorized, which means
that it’s easy to get more than one output. Either check the length is
already 1, collapse with all() or any(), or use the nonvectorized
identical(). identical() is very strict: it always returns either a
single TRUE or a single FALSE, and doesn’t coerce types. This means
that you need to be careful when comparing integers and doubles:

identical(0L, 0)
#> [1] FALSE

You also need to be wary of floating-point numbers:

x <- sqrt(2) ^ 2
x
#> [1] 2

Conditional Execution | 277

x == 2
#> [1] FALSE
x - 2
#> [1] 4.44e-16

Instead use dplyr::near() for comparisons, as described in “Com‐
parisons” on page 46.

And remember, x == NA doesn’t do anything useful!

Multiple Conditions
You can chain multiple if statements together:

if (this) {
 # do that
} else if (that) {
 # do something else
} else {
 #
}

But if you end up with a very long series of chained if statements,
you should consider rewriting. One useful technique is the
switch() function. It allows you to evaluate selected code based on
position or name:

#> function(x, y, op) {
#> switch(op,
#> plus = x + y,
#> minus = x - y,
#> times = x * y,
#> divide = x / y,
#> stop("Unknown op!")
#>)
#> }

Another useful function that can often eliminate long chains of if
statements is cut(). It’s used to discretize continuous variables.

Code Style
Both if and function should (almost) always be followed by squig‐
gly brackets ({}), and the contents should be indented by two
spaces. This makes it easier to see the hierarchy in your code by
skimming the lefthand margin.

An opening curly brace should never go on its own line and should
always be followed by a new line. A closing curly brace should

278 | Chapter 15: Functions

always go on its own line, unless it’s followed by else. Always indent
the code inside curly braces:

Good
if (y < 0 && debug) {
 message("Y is negative")
}

if (y == 0) {
 log(x)
} else {
 y ^ x
}

Bad
if (y < 0 && debug)
message("Y is negative")

if (y == 0) {
 log(x)
}
else {
 y ^ x
}

It’s OK to drop the curly braces if you have a very short if statement
that can fit on one line:

y <- 10
x <- if (y < 20) "Too low" else "Too high"

I recommend this only for very brief if statements. Otherwise, the
full form is easier to read:

if (y < 20) {
 x <- "Too low"
} else {
 x <- "Too high"
}

Exercises
1. What’s the difference between if and ifelse()? Carefully read

the help and construct three examples that illustrate the key dif‐
ferences.

2. Write a greeting function that says “good morning,” “good after‐
noon,” or “good evening,” depending on the time of day. (Hint:
use a time argument that defaults to lubridate::now(). That
will make it easier to test your function.)

Conditional Execution | 279

3. Implement a fizzbuzz function. It takes a single number as
input. If the number is divisible by three, it returns “fizz”. If it’s
divisible by five it returns “buzz”. If it’s divisible by three and
five, it returns “fizzbuzz”. Otherwise, it returns the number.
Make sure you first write working code before you create the
function.

4. How could you use cut() to simplify this set of nested if-else
statements?

if (temp <= 0) {
 "freezing"
} else if (temp <= 10) {
 "cold"
} else if (temp <= 20) {
 "cool"
} else if (temp <= 30) {
 "warm"
} else {
 "hot"
}

How would you change the call to cut() if I’d used < instead of
<=? What is the other chief advantage of cut() for this problem?
(Hint: what happens if you have many values in temp?)

5. What happens if you use switch() with numeric values?
6. What does this switch() call do? What happens if x is “e”?

switch(x,
 a = ,
 b = "ab",
 c = ,
 d = "cd"
)

Experiment, then carefully read the documentation.

Function Arguments
The arguments to a function typically fall into two broad sets: one
set supplies the data to compute on, and the other supplies argu‐
ments that control the details of the computation. For example:

• In log(), the data is x, and the detail is the base of the
logarithm.

280 | Chapter 15: Functions

• In mean(), the data is x, and the details are how much data to
trim from the ends (trim) and how to handle missing values
(na.rm).

• In t.test(), the data are x and y, and the details of the test are
alternative, mu, paired, var.equal, and conf.level.

• In str_c() you can supply any number of strings to ..., and
the details of the concatenation are controlled by sep and
collapse.

Generally, data arguments should come first. Detail arguments
should go on the end, and usually should have default values. You
specify a default value in the same way you call a function with a
named argument:

Compute confidence interval around
mean using normal approximation
mean_ci <- function(x, conf = 0.95) {
 se <- sd(x) / sqrt(length(x))
 alpha <- 1 - conf
 mean(x) + se * qnorm(c(alpha / 2, 1 - alpha / 2))
}

x <- runif(100)
mean_ci(x)
#> [1] 0.498 0.610
mean_ci(x, conf = 0.99)
#> [1] 0.480 0.628

The default value should almost always be the most common value.
The few exceptions to this rule have to do with safety. For example,
it makes sense for na.rm to default to FALSE because missing values
are important. Even though na.rm = TRUE is what you usually put
in your code, it’s a bad idea to silently ignore missing values by
default.

When you call a function, you typically omit the names of the data
arguments, because they are used so commonly. If you override the
default value of a detail argument, you should use the full name:

Good
mean(1:10, na.rm = TRUE)

Bad
mean(x = 1:10, , FALSE)
mean(, TRUE, x = c(1:10, NA))

Function Arguments | 281

You can refer to an argument by its unique prefix (e.g., mean(x, n =
TRUE)), but this is generally best avoided given the possibilities for
confusion.

Notice that when you call a function, you should place a space
around = in function calls, and always put a space after a comma,
not before (just like in regular English). Using whitespace makes it
easier to skim the function for the important components:

Good
average <- mean(feet / 12 + inches, na.rm = TRUE)

Bad
average<-mean(feet/12+inches,na.rm=TRUE)

Choosing Names
The names of the arguments are also important. R doesn’t care, but
the readers of your code (including future-you!) will. Generally you
should prefer longer, more descriptive names, but there are a hand‐
ful of very common, very short names. It’s worth memorizing these:

• x, y, z: vectors.
• w: a vector of weights.
• df: a data frame.
• i, j: numeric indices (typically rows and columns).
• n: length, or number of rows.
• p: number of columns.

Otherwise, consider matching names of arguments in existing R
functions. For example, use na.rm to determine if missing values
should be removed.

Checking Values
As you start to write more functions, you’ll eventually get to the
point where you don’t remember exactly how your function works.
At this point it’s easy to call your function with invalid inputs. To
avoid this problem, it’s often useful to make constraints explicit. For
example, imagine you’ve written some functions for computing
weighted summary statistics:

282 | Chapter 15: Functions

wt_mean <- function(x, w) {
 sum(x * w) / sum(x)
}
wt_var <- function(x, w) {
 mu <- wt_mean(x, w)
 sum(w * (x - mu) ^ 2) / sum(w)
}
wt_sd <- function(x, w) {
 sqrt(wt_var(x, w))
}

What happens if x and w are not the same length?

wt_mean(1:6, 1:3)
#> [1] 2.19

In this case, because of R’s vector recycling rules, we don’t get an
error.

It’s good practice to check important preconditions, and throw an
error (with stop()) if they are not true:

wt_mean <- function(x, w) {
 if (length(x) != length(w)) {
 stop("`x` and `w` must be the same length", call. = FALSE)
 }
 sum(w * x) / sum(x)
}

Be careful not to take this too far. There’s a trade-off between how
much time you spend making your function robust, versus how
long you spend writing it. For example, if you also added a na.rm
argument, I probably wouldn’t check it carefully:

wt_mean <- function(x, w, na.rm = FALSE) {
 if (!is.logical(na.rm)) {
 stop("`na.rm` must be logical")
 }
 if (length(na.rm) != 1) {
 stop("`na.rm` must be length 1")
 }
 if (length(x) != length(w)) {
 stop("`x` and `w` must be the same length", call. = FALSE)
 }

 if (na.rm) {
 miss <- is.na(x) | is.na(w)
 x <- x[!miss]
 w <- w[!miss]
 }
 sum(w * x) / sum(x)
}

Function Arguments | 283

This is a lot of extra work for little additional gain. A useful compro‐
mise is the built-in stopifnot(); it checks that each argument is
TRUE, and produces a generic error message if not:

wt_mean <- function(x, w, na.rm = FALSE) {
 stopifnot(is.logical(na.rm), length(na.rm) == 1)
 stopifnot(length(x) == length(w))

 if (na.rm) {
 miss <- is.na(x) | is.na(w)
 x <- x[!miss]
 w <- w[!miss]
 }
 sum(w * x) / sum(x)
}
wt_mean(1:6, 6:1, na.rm = "foo")
#> Error: is.logical(na.rm) is not TRUE

Note that when using stopifnot() you assert what should be true
rather than checking for what might be wrong.

Dot-Dot-Dot (…)
Many functions in R take an arbitrary number of inputs:

sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
#> [1] 55
stringr::str_c("a", "b", "c", "d", "e", "f")
#> [1] "abcdef"

How do these functions work? They rely on a special argument: ...
(pronounced dot-dot-dot). This special argument captures any
number of arguments that aren’t otherwise matched.

It’s useful because you can then send those ... on to another func‐
tion. This is a useful catch-all if your function primarily wraps
another function. For example, I commonly create these helper
functions that wrap around str_c():

commas <- function(...) stringr::str_c(..., collapse = ", ")
commas(letters[1:10])
#> [1] "a, b, c, d, e, f, g, h, i, j"

rule <- function(..., pad = "-") {
 title <- paste0(...)
 width <- getOption("width") - nchar(title) - 5
 cat(title, " ", stringr::str_dup(pad, width), "\n", sep = "")
}
rule("Important output")
#> Important output --

284 | Chapter 15: Functions

Here ... lets me forward on any arguments that I don’t want to deal
with to str_c(). It’s a very convenient technique. But it does come
at a price: any misspelled arguments will not raise an error. This
makes it easy for typos to go unnoticed:

x <- c(1, 2)
sum(x, na.mr = TRUE)
#> [1] 4

If you just want to capture the values of the ..., use list(...).

Lazy Evaluation
Arguments in R are lazily evaluated: they’re not computed until
they’re needed. That means if they’re never used, they’re never
called. This is an important property of R as a programming lan‐
guage, but is generally not important when you’re writing your own
functions for data analysis. You can read more about lazy evaluation
at http://adv-r.had.co.nz/Functions.html#lazy-evaluation.

Exercises
1. What does commas(letters, collapse = "-") do? Why?
2. It’d be nice if you could supply multiple characters to the pad

argument, e.g., rule("Title", pad = "-+"). Why doesn’t this
currently work? How could you fix it?

3. What does the trim argument to mean() do? When might you
use it?

4. The default value for the method argument to cor() is c("pear
son", "kendall", "spearman"). What does that mean? What
value is used by default?

Return Values
Figuring out what your function should return is usually straightfor‐
ward: it’s why you created the function in the first place! There are
two things you should consider when returning a value:

• Does returning early make your function easier to read?
• Can you make your function pipeable?

Return Values | 285

http://adv-r.had.co.nz/Functions.html#lazy-evaluation

Explicit Return Statements
The value returned by the function is usually the last statement it
evaluates, but you can choose to return early by using return(). I
think it’s best to save the use of return() to signal that you can
return early with a simpler solution. A common reason to do this is
because the inputs are empty:

complicated_function <- function(x, y, z) {
 if (length(x) == 0 || length(y) == 0) {
 return(0)
 }

 # Complicated code here
}

Another reason is because you have a if statement with one com‐
plex block and one simple block. For example, you might write an
if statement like this:

f <- function() {
 if (x) {
 # Do
 # something
 # that
 # takes
 # many
 # lines
 # to
 # express
 } else {
 # return something short
 }
}

But if the first block is very long, by the time you get to the else,
you’ve forgotten the condition. One way to rewrite it is to use an
early return for the simple case:

f <- function() {
 if (!x) {
 return(something_short)
 }

 # Do
 # something
 # that
 # takes
 # many
 # lines

286 | Chapter 15: Functions

 # to
 # express
}

This tends to make the code easier to understand, because you don’t
need quite so much context to understand it.

Writing Pipeable Functions
If you want to write your own pipeable functions, thinking about
the return value is important. There are two main types of pipeable
functions: transformation and side-effect.

In transformation functions, there’s a clear “primary” object that is
passed in as the first argument, and a modified version is returned
by the function. For example, the key objects for dplyr and tidyr are
data frames. If you can identify what the object type is for your
domain, you’ll find that your functions just work with the pipe.

Side-effect functions are primarily called to perform an action, like
drawing a plot or saving a file, not transforming an object. These
functions should “invisibly” return the first argument, so they’re not
printed by default, but can still be used in a pipeline. For example,
this simple function prints out the number of missing values in a
data frame:

show_missings <- function(df) {
 n <- sum(is.na(df))
 cat("Missing values: ", n, "\n", sep = "")

 invisible(df)
}

If we call it interactively, the invisible() means that the input df
doesn’t get printed out:

show_missings(mtcars)
#> Missing values: 0

But it’s still there, it’s just not printed by default:

x <- show_missings(mtcars)
#> Missing values: 0
class(x)
#> [1] "data.frame"
dim(x)
#> [1] 32 11

Return Values | 287

And we can still use it in a pipe:

mtcars %>%
 show_missings() %>%
 mutate(mpg = ifelse(mpg < 20, NA, mpg)) %>%
 show_missings()
#> Missing values: 0
#> Missing values: 18

Environment
The last component of a function is its environment. This is not
something you need to understand deeply when you first start writ‐
ing functions. However, it’s important to know a little bit about envi‐
ronments because they are crucial to how functions work. The
environment of a function controls how R finds the value associated
with a name. For example, take this function:

f <- function(x) {
 x + y
}

In many programming languages, this would be an error, because y
is not defined inside the function. In R, this is valid code because R
uses rules called lexical scoping to find the value associated with a
name. Since y is not defined inside the function, R will look in the
environment where the function was defined:

y <- 100
f(10)
#> [1] 110

y <- 1000
f(10)
#> [1] 1010

This behavior seems like a recipe for bugs, and indeed you should
avoid creating functions like this deliberately, but by and large it
doesn’t cause too many problems (especially if you regularly restart
R to get to a clean slate).

The advantage of this behavior is that from a language standpoint it
allows R to be very consistent. Every name is looked up using the
same set of rules. For f() that includes the behavior of two things
that you might not expect: { and +. This allows you to do devious
things like:

288 | Chapter 15: Functions

`+` <- function(x, y) {
 if (runif(1) < 0.1) {
 sum(x, y)
 } else {
 sum(x, y) * 1.1
 }
}
table(replicate(1000, 1 + 2))
#>
#> 3 3.3
#> 100 900
rm(`+`)

This is a common phenomenon in R. R places few limits on your
power. You can do many things that you can’t do in other program‐
ming languages. You can do many things that 99% of the time are
extremely ill-advised (like overriding how addition works!). But this
power and flexibility is what makes tools like ggplot2 and dplyr
possible. Learning how to make best use of this flexibility is beyond
the scope of this book, but you can read about in Advanced R.

Environment | 289

http://adv-r.had.co.nz

CHAPTER 16

Vectors

Introduction
So far this book has focused on tibbles and packages that work with
them. But as you start to write your own functions, and dig deeper
into R, you need to learn about vectors, the objects that underlie tib‐
bles. If you’ve learned R in a more traditional way, you’re probably
already familiar with vectors, as most R resources start with vectors
and work their way up to tibbles. I think it’s better to start with tib‐
bles because they’re immediately useful, and then work your way
down to the underlying components.

Vectors are particularly important as most of the functions you will
write will work with vectors. It is possible to write functions that
work with tibbles (like in ggplot2, dplyr, and tidyr), but the tools
you need to write such functions are currently idiosyncratic and
immature. I am working on a better approach, https://github.com/
hadley/lazyeval, but it will not be ready in time for the publication of
the book. Even when complete, you’ll still need to understand vec‐
tors; it’ll just make it easier to write a user-friendly layer on top.

Prerequisites
The focus of this chapter is on base R data structures, so it isn’t
essential to load any packages. We will, however, use a handful of
functions from the purrr package to avoid some inconsistences in
base R.

291

https://github.com/hadley/lazyeval
https://github.com/hadley/lazyeval

library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages --------------------------------
#> filter(): dplyr, stats
#> lag(): dplyr, stats

Vector Basics
There are two types of vectors:

• Atomic vectors, of which there are six types: logical, integer, dou‐
ble, character, complex, and raw. Integer and double vectors are
collectively known as numeric vectors.

• Lists, which are sometimes called recursive vectors because lists
can contain other lists.

The chief difference between atomic vectors and lists is that atomic
vectors are homogeneous, while lists can be heterogeneous. There’s
one other related object: NULL. NULL is often used to represent the
absence of a vector (as opposed to NA, which is used to represent the
absence of a value in a vector). NULL typically behaves like a vector of
length 0. Figure 16-1 summarizes the interrelationships.

Figure 16-1. The hierarchy of R’s vector types

292 | Chapter 16: Vectors

Every vector has two key properties:

• Its type, which you can determine with typeof():
typeof(letters)
#> [1] "character"
typeof(1:10)
#> [1] "integer"

• Its length, which you can determine with length():
x <- list("a", "b", 1:10)
length(x)
#> [1] 3

Vectors can also contain arbitrary additional metadata in the form
of attributes. These attributes are used to create augmented vectors,
which build on additional behavior. There are four important types
of augmented vector:

• Factors are built on top of integer vectors.
• Dates and date-times are built on top of numeric vectors.
• Data frames and tibbles are built on top of lists.

This chapter will introduce you to these important vectors from
simplest to most complicated. You’ll start with atomic vectors, then
build up to lists, and finish off with augmented vectors.

Important Types of Atomic Vector
The four most important types of atomic vector are logical, integer,
double, and character. Raw and complex are rarely used during a
data analysis, so I won’t discuss them here.

Logical
Logical vectors are the simplest type of atomic vector because they
can take only three possible values: FALSE, TRUE, and NA. Logical vec‐
tors are usually constructed with comparison operators, as described
in “Comparisons” on page 46. You can also create them by hand
with c():

1:10 %% 3 == 0
#> [1] FALSE FALSE TRUE FALSE FALSE
#> [2] TRUE FALSE FALSE TRUE FALSE

Important Types of Atomic Vector | 293

c(TRUE, TRUE, FALSE, NA)
#> [1] TRUE TRUE FALSE NA

Numeric
Integer and double vectors are known collectively as numeric vec‐
tors. In R, numbers are doubles by default. To make an integer, place
a L after the number:

typeof(1)
#> [1] "double"
typeof(1L)
#> [1] "integer"
1.5L
#> [1] 1.5

The distinction between integers and doubles is not usually impor‐
tant, but there are two important differences that you should be
aware of:

• Doubles are approximations. Doubles represent floating-point
numbers that cannot always be precisely represented with a
fixed amount of memory. This means that you should consider
all doubles to be approximations. For example, what is square of
the square root of two?

x <- sqrt(2) ^ 2
x
#> [1] 2
x - 2
#> [1] 4.44e-16

This behavior is common when working with floating-point
numbers: most calculations include some approximation error.
Instead of comparing floating-point numbers using ==, you
should use dplyr::near(), which allows for some numerical
tolerance.

• Integers have one special value, NA, while doubles have four, NA,
NaN, Inf, and -Inf. All three special values can arise during
division:

c(-1, 0, 1) / 0
#> [1] -Inf NaN Inf

Avoid using == to check for these other special values. Instead
use the helper functions is.finite(), is.infinite(), and
is.nan():

294 | Chapter 16: Vectors

0 Inf NA NaN

is.finite() x

is.infinite() x

is.na() x x

is.nan() x

Character
Character vectors are the most complex type of atomic vector,
because each element of a character vector is a string, and a string
can contain an arbitrary amount of data.

You’ve already learned a lot about working with strings in Chap‐
ter 11. Here I want to mention one important feature of the underly‐
ing string implementation: R uses a global string pool. This means
that each unique string is only stored in memory once, and every
use of the string points to that representation. This reduces the
amount of memory needed by duplicated strings. You can see this
behavior in practice with pryr::object_size():

x <- "This is a reasonably long string."
pryr::object_size(x)
#> 136 B

y <- rep(x, 1000)
pryr::object_size(y)
#> 8.13 kB

y doesn’t take up 1000x as much memory as x, because each element
of y is just a pointer to that same string. A pointer is 8 bytes, so 1000
pointers to a 136 B string is 8 * 1000 + 136 = 8.13 kB.

Missing Values
Note that each type of atomic vector has its own missing value:

NA # logical
#> [1] NA
NA_integer_ # integer
#> [1] NA
NA_real_ # double
#> [1] NA
NA_character_ # character
#> [1] NA

Important Types of Atomic Vector | 295

Normally you don’t need to know about these different types
because you can always use NA and it will be converted to the correct
type using the implicit coercion rules described next. However, there
are some functions that are strict about their inputs, so it’s useful to
have this knowledge sitting in your back pocket so you can be spe‐
cific when needed.

Exercises
1. Describe the difference between is.finite(x) and !is.infin

ite(x).
2. Read the source code for dplyr::near() (Hint: to see the

source code, drop the ()). How does it work?
3. A logical vector can take three possible values. How many possi‐

ble values can an integer vector take? How many possible values
can a double take? Use Google to do some research.

4. Brainstorm at least four functions that allow you to convert a
double to an integer. How do they differ? Be precise.

5. What functions from the readr package allow you to turn a
string into a logical, integer, and double vector?

Using Atomic Vectors
Now that you understand the different types of atomic vector, it’s
useful to review some of the important tools for working with them.
These include:

• How to convert from one type to another, and when that hap‐
pens automatically.

• How to tell if an object is a specific type of vector.
• What happens when you work with vectors of different lengths.
• How to name the elements of a vector.
• How to pull out elements of interest.

Coercion
There are two ways to convert, or coerce, one type of vector to
another:

296 | Chapter 16: Vectors

• Explicit coercion happens when you call a function like as.logi
cal(), as.integer(), as.double(), or as.character(). When‐
ever you find yourself using explicit coercion, you should
always check whether you can make the fix upstream, so that
the vector never had the wrong type in the first place. For exam‐
ple, you may need to tweak your readr col_types specification.

• Implicit coercion happens when you use a vector in a specific
context that expects a certain type of vector. For example, when
you use a logical vector with a numeric summary function, or
when you use a double vector where an integer vector is
expected.

Because explicit coercion is used relatively rarely, and is largely easy
to understand, I’ll focus on implicit coercion here.

You’ve already seen the most important type of implicit coercion:
using a logical vector in a numeric context. In this case TRUE is con‐
verted to 1 and FALSE is converted to 0. That means the sum of a
logical vector is the number of trues, and the mean of a logical vec‐
tor is the proportion of trues:

x <- sample(20, 100, replace = TRUE)
y <- x > 10
sum(y) # how many are greater than 10?
#> [1] 44
mean(y) # what proportion are greater than 10?
#> [1] 0.44

You may see some code (typically older) that relies on implicit coer‐
cion in the opposite direction, from integer to logical:

if (length(x)) {
 # do something
}

In this case, 0 is converted to FALSE and everything else is converted
to TRUE. I think this makes it harder to understand your code, and I
don’t recommend it. Instead be explicit: length(x) > 0.

It’s also important to understand what happens when you try and
create a vector containing multiple types with c()—the most com‐
plex type always wins:

typeof(c(TRUE, 1L))
#> [1] "integer"
typeof(c(1L, 1.5))

Using Atomic Vectors | 297

#> [1] "double"
typeof(c(1.5, "a"))
#> [1] "character"

An atomic vector cannot have a mix of different types because the
type is a property of the complete vector, not the individual ele‐
ments. If you need to mix multiple types in the same vector, you
should use a list, which you’ll learn about shortly.

Test Functions
Sometimes you want to do different things based on the type of vec‐
tor. One option is to use typeof(). Another is to use a test function
that returns a TRUE or FALSE. Base R provides many functions like
is.vector() and is.atomic(), but they often return surprising
results. Instead, it’s safer to use the is_* functions provided by
purrr, which are summarized in the following table.

lgl int dbl chr list

is_logical() x

is_integer() x

is_double() x

is_numeric() x x

is_character() x

is_atomic() x x x x

is_list() x

is_vector() x x x x x

Each predicate also comes with a “scalar” version, like
is_scalar_atomic(), which checks that the length is 1. This is use‐
ful, for example, if you want to check that an argument to your func‐
tion is a single logical value.

Scalars and Recycling Rules
As well as implicitly coercing the types of vectors to be compatible,
R will also implicitly coerce the length of vectors. This is called vec‐
tor recycling, because the shorter vector is repeated, or recycled, to
the same length as the longer vector.

This is generally most useful when you are mixing vectors and
“scalars.” I put scalars in quotes because R doesn’t actually have

298 | Chapter 16: Vectors

scalars: instead, a single number is a vector of length 1. Because
there are no scalars, most built-in functions are vectorized, meaning
that they will operate on a vector of numbers. That’s why, for exam‐
ple, this code works:

sample(10) + 100
#> [1] 109 108 104 102 103 110 106 107 105 101
runif(10) > 0.5
#> [1] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
#> [10] TRUE

In R, basic mathematical operations work with vectors. That means
that you should never need to perform explicit iteration when per‐
forming simple mathematical computations.

It’s intuitive what should happen if you add two vectors of the same
length, or a vector and a “scalar,” but what happens if you add two
vectors of different lengths?

1:10 + 1:2
#> [1] 2 4 4 6 6 8 8 10 10 12

Here, R will expand the shortest vector to the same length as the
longest, so-called recycling. This is silent except when the length of
the longer is not an integer multiple of the length of the shorter:

1:10 + 1:3
#> Warning in 1:10 + 1:3:
#> longer object length is not a multiple of shorter
#> object length
#> [1] 2 4 6 5 7 9 8 10 12 11

While vector recycling can be used to create very succinct, clever
code, it can also silently conceal problems. For this reason, the vec‐
torized functions in tidyverse will throw errors when you recycle
anything other than a scalar. If you do want to recycle, you’ll need to
do it yourself with rep():

tibble(x = 1:4, y = 1:2)
#> Error: Variables must be length 1 or 4.
#> Problem variables: 'y'

tibble(x = 1:4, y = rep(1:2, 2))
#> # A tibble: 4 × 2
#> x y
#> <int> <int>
#> 1 1 1
#> 2 2 2
#> 3 3 1
#> 4 4 2

Using Atomic Vectors | 299

tibble(x = 1:4, y = rep(1:2, each = 2))
#> # A tibble: 4 × 2
#> x y
#> <int> <int>
#> 1 1 1
#> 2 2 1
#> 3 3 2
#> 4 4 2

Naming Vectors
All types of vectors can be named. You can name them during cre‐
ation with c():

c(x = 1, y = 2, z = 4)
#> x y z
#> 1 2 4

Or after the fact with purrr::set_names():

set_names(1:3, c("a", "b", "c"))
#> a b c
#> 1 2 3

Named vectors are most useful for subsetting, described next.

Subsetting
So far we’ve used dplyr::filter() to filter the rows in a tibble. fil
ter() only works with tibble, so we’ll need a new tool for vectors: [.
[is the subsetting function, and is called like x[a]. There are four
types of things that you can subset a vector with:

• A numeric vector containing only integers. The integers must
either be all positive, all negative, or zero.
Subsetting with positive integers keeps the elements at those
positions:

x <- c("one", "two", "three", "four", "five")
x[c(3, 2, 5)]
#> [1] "three" "two" "five"

By repeating a position, you can actually make a longer output
than input:

x[c(1, 1, 5, 5, 5, 2)]
#> [1] "one" "one" "five" "five" "five" "two"

300 | Chapter 16: Vectors

Negative values drop the elements at the specified positions:
x[c(-1, -3, -5)]
#> [1] "two" "four"

It’s an error to mix positive and negative values:
x[c(1, -1)]
#> Error in x[c(1, -1)]:
#> only 0's may be mixed with negative subscripts

The error message mentions subsetting with zero, which returns
no values:

x[0]
#> character(0)

This is not useful very often, but it can be helpful if you want to
create unusual data structures to test your functions with.

• Subsetting with a logical vector keeps all values corresponding
to a TRUE value. This is most often useful in conjunction with
the comparison functions:

x <- c(10, 3, NA, 5, 8, 1, NA)

All non-missing values of x
x[!is.na(x)]
#> [1] 10 3 5 8 1

All even (or missing!) values of x
x[x %% 2 == 0]
#> [1] 10 NA 8 NA

• If you have a named vector, you can subset it with a character
vector:

x <- c(abc = 1, def = 2, xyz = 5)
x[c("xyz", "def")]
#> xyz def
#> 5 2

Like with positive integers, you can also use a character vector
to duplicate individual entries.

• The simplest type of subsetting is nothing, x[], which returns
the complete x. This is not useful for subsetting vectors, but it is
useful when subsetting matrices (and other high-dimensional
structures) because it lets you select all the rows or all the col‐
umns, by leaving that index blank. For example, if x is 2D,

Using Atomic Vectors | 301

x[1,] selects the first row and all the columns, and x[, -1]
selects all rows and all columns except the first.

To learn more about the applications of subsetting, read the “Subset‐
ting” chapter of Advanced R.

There is an important variation of [called [[. [[only ever extracts a
single element, and always drops names. It’s a good idea to use it
whenever you want to make it clear that you’re extracting a single
item, as in a for loop. The distinction between [and [[is most
important for lists, as we’ll see shortly.

Exercises
1. What does mean(is.na(x)) tell you about a vector x? What

about sum(!is.finite(x))?
2. Carefully read the documentation of is.vector(). What does it

actually test for? Why does is.atomic() not agree with the def‐
inition of atomic vectors above?

3. Compare and contrast setNames() with purrr::set_names().
4. Create functions that take a vector as input and return:

a. The last value. Should you use [or [[?
b. The elements at even numbered positions.
c. Every element except the last value.
d. Only even numbers (and no missing values).

5. Why is x[-which(x > 0)] not the same as x[x <= 0]?
6. What happens when you subset with a positive integer that’s

bigger than the length of the vector? What happens when you
subset with a name that doesn’t exist?

Recursive Vectors (Lists)
Lists are a step up in complexity from atomic vectors, because lists
can contain other lists. This makes them suitable for representing
hierarchical or tree-like structures. You create a list with list():

x <- list(1, 2, 3)
x
#> [[1]]

302 | Chapter 16: Vectors

http://bit.ly/subsetadvR
http://bit.ly/subsetadvR

#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3

A very useful tool for working with lists is str() because it focuses
on the structure, not the contents:

str(x)
#> List of 3
#> $: num 1
#> $: num 2
#> $: num 3

x_named <- list(a = 1, b = 2, c = 3)
str(x_named)
#> List of 3
#> $ a: num 1
#> $ b: num 2
#> $ c: num 3

Unlike atomic vectors, lists() can contain a mix of objects:

y <- list("a", 1L, 1.5, TRUE)
str(y)
#> List of 4
#> $: chr "a"
#> $: int 1
#> $: num 1.5
#> $: logi TRUE

Lists can even contain other lists!

z <- list(list(1, 2), list(3, 4))
str(z)
#> List of 2
#> $:List of 2
#> ..$: num 1
#> ..$: num 2
#> $:List of 2
#> ..$: num 3
#> ..$: num 4

Visualizing Lists
To explain more complicated list manipulation functions, it’s helpful
to have a visual representation of lists. For example, take these three
lists:

Recursive Vectors (Lists) | 303

x1 <- list(c(1, 2), c(3, 4))
x2 <- list(list(1, 2), list(3, 4))
x3 <- list(1, list(2, list(3)))

I’ll draw them as follows:

There are three principles:

• Lists have rounded corners. Atomic vectors have square cor‐
ners.

• Children are drawn inside their parent, and have a slightly
darker background to make it easier to see the hierarchy.

• The orientation of the children (i.e., rows or columns) isn’t
important, so I’ll pick a row or column orientation to either save
space or illustrate an important property in the example.

Subsetting
There are three ways to subset a list, which I’ll illustrate with a:

a <- list(a = 1:3, b = "a string", c = pi, d = list(-1, -5))

• [extracts a sublist. The result will always be a list:
str(a[1:2])
#> List of 2
#> $ a: int [1:3] 1 2 3
#> $ b: chr "a string"
str(a[4])
#> List of 1
#> $ d:List of 2
#> ..$: num -1
#> ..$: num -5

Like with vectors, you can subset with a logical, integer, or char‐
acter vector.

304 | Chapter 16: Vectors

• [[extracts a single component from a list. It removes a level of
hierarchy from the list:

str(y[[1]])
#> chr "a"
str(y[[4]])
#> logi TRUE

• $ is a shorthand for extracting named elements of a list. It works
similarly to [[except that you don’t need to use quotes:

a$a
#> [1] 1 2 3
a[["a"]]
#> [1] 1 2 3

The distinction between [and [[is really important for lists,
because [[drills down into the list while [returns a new, smaller
list. Compare the preceding code and output with the visual repre‐
sentation in Figure 16-2.

Figure 16-2. Subsetting a list, visually

Lists of Condiments
The difference between [and [[is very important, but it’s easy to
get confused. To help you remember, let me show you an unusual
pepper shaker:

Recursive Vectors (Lists) | 305

If this pepper shaker is your list x, then, x[1] is a pepper shaker con‐
taining a single pepper packet:

306 | Chapter 16: Vectors

x[2] would look the same, but would contain the second packet.
x[1:2] would be a pepper shaker containing two pepper packets.

x[[1]] is:

If you wanted to get the content of the pepper package, you’d need
x[[1]][[1]]:

Exercises
1. Draw the following lists as nested sets:

a. list(a, b, list(c, d), list(e, f))

b. list(list(list(list(list(list(a))))))

2. What happens if you subset a tibble as if you’re subsetting a list?
What are the key differences between a list and a tibble?

Attributes
Any vector can contain arbitrary additional metadata through its
attributes. You can think of attributes as a named list of vectors that
can be attached to any object. You can get and set individual

Attributes | 307

attribute values with attr() or see them all at once with
attributes():

x <- 1:10
attr(x, "greeting")
#> NULL
attr(x, "greeting") <- "Hi!"
attr(x, "farewell") <- "Bye!"
attributes(x)
#> $greeting
#> [1] "Hi!"
#>
#> $farewell
#> [1] "Bye!"

There are three very important attributes that are used to implement
fundamental parts of R:

• Names are used to name the elements of a vector.
• Dimensions (dims, for short) make a vector behave like a matrix

or array.
• Class is used to implement the S3 object-oriented system.

You’ve seen names earlier, and we won’t cover dimensions because
we don’t use matrices in this book. It remains to describe the class,
which controls how generic functions work. Generic functions are
key to object-oriented programming in R, because they make func‐
tions behave differently for different classes of input. A detailed dis‐
cussion of object-oriented programming is beyond the scope of this
book, but you can read more about it in Advanced R.

Here’s what a typical generic function looks like:

as.Date
#> function (x, ...)
#> UseMethod("as.Date")
#> <bytecode: 0x7fa61e0590d8>
#> <environment: namespace:base>

The call to “UseMethod” means that this is a generic function, and it
will call a specific method, a function, based on the class of the first
argument. (All methods are functions; not all functions are meth‐
ods.) You can list all the methods for a generic with methods():

308 | Chapter 16: Vectors

http://bit.ly/OOproadvR

methods("as.Date")
#> [1] as.Date.character as.Date.date as.Date.dates
#> [4] as.Date.default as.Date.factor as.Date.numeric
#> [7] as.Date.POSIXct as.Date.POSIXlt
#> see '?methods' for accessing help and source code

For example, if x is a character vector, as.Date() will call
as.Date.character(); if it’s a factor, it’ll call as.Date.factor().

You can see the specific implementation of a method with
getS3method():

getS3method("as.Date", "default")
#> function (x, ...)
#> {
#> if (inherits(x, "Date"))
#> return(x)
#> if (is.logical(x) && all(is.na(x)))
#> return(structure(as.numeric(x), class = "Date"))
#> stop(
#> gettextf("do not know how to convert '%s' to class %s",
#> deparse(substitute(x)), dQuote("Date")), domain = NA)
#> }
#> <bytecode: 0x7fa61dd47e78>
#> <environment: namespace:base>
getS3method("as.Date", "numeric")
#> function (x, origin, ...)
#> {
#> if (missing(origin))
#> stop("'origin' must be supplied")
#> as.Date(origin, ...) + x
#> }
#> <bytecode: 0x7fa61dd463b8>
#> <environment: namespace:base>

The most important S3 generic is print(): it controls how the
object is printed when you type its name at the console. Other
important generics are the subsetting functions [, [[, and $.

Augmented Vectors
Atomic vectors and lists are the building blocks for other important
vector types like factors and dates. I call these augmented vectors,
because they are vectors with additional attributes, including class.
Because augmented vectors have a class, they behave differently to
the atomic vector on which they are built. In this book, we make use
of four important augmented vectors:

Augmented Vectors | 309

• Factors
• Date-times and times
• Tibbles

These are described next.

Factors
Factors are designed to represent categorical data that can take a
fixed set of possible values. Factors are built on top of integers, and
have a levels attribute:

x <- factor(c("ab", "cd", "ab"), levels = c("ab", "cd", "ef"))
typeof(x)
#> [1] "integer"
attributes(x)
#> $levels
#> [1] "ab" "cd" "ef"
#>
#> $class
#> [1] "factor"

Dates and Date-Times
Dates in R are numeric vectors that represent the number of days
since 1 January 1970:

x <- as.Date("1971-01-01")
unclass(x)
#> [1] 365

typeof(x)
#> [1] "double"
attributes(x)
#> $class
#> [1] "Date"

Date-times are numeric vectors with class POSIXct that represent
the number of seconds since 1 January 1970. (In case you were won‐
dering, “POSIXct” stands for “Portable Operating System Interface,”
calendar time.)

x <- lubridate::ymd_hm("1970-01-01 01:00")
unclass(x)
#> [1] 3600
#> attr(,"tzone")
#> [1] "UTC"

310 | Chapter 16: Vectors

typeof(x)
#> [1] "double"
attributes(x)
#> $tzone
#> [1] "UTC"
#>
#> $class
#> [1] "POSIXct" "POSIXt"

The tzone attribute is optional. It controls how the time is printed,
not what absolute time it refers to:

attr(x, "tzone") <- "US/Pacific"
x
#> [1] "1969-12-31 17:00:00 PST"

attr(x, "tzone") <- "US/Eastern"
x
#> [1] "1969-12-31 20:00:00 EST"

There is another type of date-times called POSIXlt. These are built
on top of named lists:

y <- as.POSIXlt(x)
typeof(y)
#> [1] "list"
attributes(y)
#> $names
#> [1] "sec" "min" "hour" "mday" "mon" "year"
#> [7] "wday" "yday" "isdst" "zone" "gmtoff"
#>
#> $class
#> [1] "POSIXlt" "POSIXt"
#>
#> $tzone
#> [1] "US/Eastern" "EST" "EDT"

POSIXlts are rare inside the tidyverse. They do crop up in base R,
because they are needed to extract specific components of a date,
like the year or month. Since lubridate provides helpers for you to
do this instead, you don’t need them. POSIXct’s are always easier to
work with, so if you find you have a POSIXlt, you should always
convert it to a regular date-time with lubridate::as_date_time().

Tibbles
Tibbles are augmented lists. They have three classes: tbl_df, tbl,
and data.frame. They have two attributes: (column) names and
row.names.

Augmented Vectors | 311

tb <- tibble::tibble(x = 1:5, y = 5:1)
typeof(tb)
#> [1] "list"
attributes(tb)
#> $names
#> [1] "x" "y"
#>
#> $class
#> [1] "tbl_df" "tbl" "data.frame"
#>
#> $row.names
#> [1] 1 2 3 4 5

Traditional data.frames have a very similar structure:

df <- data.frame(x = 1:5, y = 5:1)
typeof(df)
#> [1] "list"
attributes(df)
#> $names
#> [1] "x" "y"
#>
#> $row.names
#> [1] 1 2 3 4 5
#>
#> $class
#> [1] "data.frame"

The main difference is the class. The class of tibble includes
“data.frame,” which means tibbles inherit the regular data frame
behavior by default.

The difference between a tibble or a data frame and a list is that all
of the elements of a tibble or data frame must be vectors with the
same length. All functions that work with tibbles enforce this con‐
straint.

Exercises
1. What does hms::hms(3600) return? How does it print? What

primitive type is the augmented vector built on top of? What
attributes does it use?

2. Try and make a tibble that has columns with different lengths.
What happens?

3. Based of the previous definition, is it OK to have a list as a col‐
umn of a tibble?

312 | Chapter 16: Vectors

CHAPTER 17

Iteration with purrr

Introduction
In Chapter 15, we talked about how important it is to reduce dupli‐
cation in your code by creating functions instead of copying and
pasting. Reducing code duplication has three main benefits:

• It’s easier to see the intent of your code, because your eyes are
drawn to what’s different, not what stays the same.

• It’s easier to respond to changes in requirements. As your needs
change, you only need to make changes in one place, rather
than remembering to change every place that you copied and
pasted the code.

• You’re likely to have fewer bugs because each line of code is used
in more places.

One tool for reducing duplication is functions, which reduce dupli‐
cation by identifying repeated patterns of code and extracting them
out into independent pieces that can be easily reused and updated.
Another tool for reducing duplication is iteration, which helps you
when you need to do the same thing to multiple inputs: repeating
the same operation on different columns, or on different datasets. In
this chapter you’ll learn about two important iteration paradigms:
imperative programming and functional programming. On the
imperative side you have tools like for loops and while loops, which
are a great place to start because they make iteration very explicit, so
it’s obvious what’s happening. However, for loops are quite verbose,

313

and require quite a bit of bookkeeping code that is duplicated for
every for loop. Functional programming (FP) offers tools to extract
out this duplicated code, so each common for loop pattern gets its
own function. Once you master the vocabulary of FP, you can solve
many common iteration problems with less code, more ease, and
fewer errors.

Prerequisites
Once you’ve mastered the for loops provided by base R, you’ll learn
some of the powerful programming tools provided by purrr, one of
the tidyverse core packages.

library(tidyverse)

For Loops
Imagine we have this simple tibble:

df <- tibble(
 a = rnorm(10),
 b = rnorm(10),
 c = rnorm(10),
 d = rnorm(10)
)

We want to compute the median of each column. You could do it
with copy-and-paste:

median(df$a)
#> [1] -0.246
median(df$b)
#> [1] -0.287
median(df$c)
#> [1] -0.0567
median(df$d)
#> [1] 0.144

But that breaks our rule of thumb: never copy and paste more than
twice. Instead, we could use a for loop:

output <- vector("double", ncol(df)) # 1. output
for (i in seq_along(df)) { # 2. sequence
 output[[i]] <- median(df[[i]]) # 3. body
}
output
#> [1] -0.2458 -0.2873 -0.0567 0.1443

314 | Chapter 17: Iteration with purrr

Every for loop has three components:

output output <- vector("double", length(x))
Before you start the loop, you must always allocate sufficient
space for the output. This is very important for efficiency: if you
grow the for loop at each iteration using c() (for example), your
for loop will be very slow.

A general way of creating an empty vector of given length is the
vector() function. It has two arguments: the type of the vector
(“logical,” “integer,” “double,” “character,” etc.) and the length of
the vector.

sequence i in seq_along(df)
This determines what to loop over: each run of the for loop will
assign i to a different value from seq_along(df). It’s useful to
think of i as a pronoun, like “it.”

You might not have seen seq_along() before. It’s a safe version
of the familiar 1:length(l), with an important difference; if
you have a zero-length vector, seq_along() does the right thing:

y <- vector("double", 0)
seq_along(y)
#> integer(0)
1:length(y)
#> [1] 1 0

You probably won’t create a zero-length vector deliberately, but
it’s easy to create them accidentally. If you use 1:length(x)
instead of seq_along(x), you’re likely to get a confusing error
message.

body output[[i]] <- median(df[[i]])
This is the code that does the work. It’s run repeatedly, each time
with a different value for i. The first iteration will run out
put[[1]] <- median(df[[1]]), the second will run out
put[[2]] <- median(df[[2]]), and so on.

That’s all there is to the for loop! Now is a good time to practice cre‐
ating some basic (and not so basic) for loops using the following
exercises. Then we’ll move on to some variations of the for loop that
help you solve other problems that will crop up in practice.

For Loops | 315

Exercises
1. Write for loops to:

a. Compute the mean of every column in mtcars.
b. Determine the type of each column in nyc

flights13::flights.
c. Compute the number of unique values in each column of

iris.
d. Generate 10 random normals for each of μ = –10, 0, 10, and

100.
Think about the output, sequence, and body before you start
writing the loop.

2. Eliminate the for loop in each of the following examples by tak‐
ing advantage of an existing function that works with vectors:

out <- ""
for (x in letters) {
 out <- stringr::str_c(out, x)
}

x <- sample(100)
sd <- 0
for (i in seq_along(x)) {
 sd <- sd + (x[i] - mean(x)) ^ 2
}
sd <- sqrt(sd / (length(x) - 1))

x <- runif(100)
out <- vector("numeric", length(x))
out[1] <- x[1]
for (i in 2:length(x)) {
 out[i] <- out[i - 1] + x[i]
}

3. Combine your function writing and for loop skills:
a. Write a for loop that prints() the lyrics to the children’s

song “Alice the Camel.”
b. Convert the nursery rhyme “Ten in the Bed” to a function.

Generalize it to any number of people in any sleeping struc‐
ture.

316 | Chapter 17: Iteration with purrr

c. Convert the song “99 Bottles of Beer on the Wall” to a func‐
tion. Generalize to any number of any vessel containing any
liquid on any surface.

4. It’s common to see for loops that don’t preallocate the output
and instead increase the length of a vector at each step:

output <- vector("integer", 0)
for (i in seq_along(x)) {
 output <- c(output, lengths(x[[i]]))
}
output

How does this affect performance? Design and execute an
experiment.

For Loop Variations
Once you have the basic for loop under your belt, there are some
variations that you should be aware of. These variations are impor‐
tant regardless of how you do iteration, so don’t forget about them
once you’ve mastered the FP techniques you’ll learn about in the
next section.

There are four variations on the basic theme of the for loop:

• Modifying an existing object, instead of creating a new object.
• Looping over names or values, instead of indices.
• Handling outputs of unknown length.
• Handling sequences of unknown length.

Modifying an Existing Object
Sometimes you want to use a for loop to modify an existing object.
For example, remember our challenge from Chapter 15. We wanted
to rescale every column in a data frame:

df <- tibble(
 a = rnorm(10),
 b = rnorm(10),
 c = rnorm(10),
 d = rnorm(10)
)
rescale01 <- function(x) {

For Loop Variations | 317

 rng <- range(x, na.rm = TRUE)
 (x - rng[1]) / (rng[2] - rng[1])
}

df$a <- rescale01(df$a)
df$b <- rescale01(df$b)
df$c <- rescale01(df$c)
df$d <- rescale01(df$d)

To solve this with a for loop we again think about the three compo‐
nents:

Output
We already have the output—it’s the same as the input!

Sequence
We can think about a data frame as a list of columns, so we can
iterate over each column with seq_along(df).

Body
Apply rescale01().

This gives us:

for (i in seq_along(df)) {
 df[[i]] <- rescale01(df[[i]])
}

Typically you’ll be modifying a list or data frame with this sort of
loop, so remember to use [[, not [. You might have spotted that I
used [[in all my for loops: I think it’s better to use [[even for
atomic vectors because it makes it clear that I want to work with a
single element.

Looping Patterns
There are three basic ways to loop over a vector. So far I’ve shown
you the most general: looping over the numeric indices with for (i
in seq_along(xs)), and extracting the value with x[[i]]. There
are two other forms:

• Loop over the elements: for (x in xs). This is most useful if
you only care about side effects, like plotting or saving a file,
because it’s difficult to save the output efficiently.

• Loop over the names: for (nm in names(xs)). This gives you a
name, which you can use to access the value with x[[nm]]. This
is useful if you want to use the name in a plot title or a filename.

318 | Chapter 17: Iteration with purrr

If you’re creating named output, make sure to name the results
vector like so:

results <- vector("list", length(x))
names(results) <- names(x)

Iteration over the numeric indices is the most general form, because
given the position you can extract both the name and the value:

for (i in seq_along(x)) {
 name <- names(x)[[i]]
 value <- x[[i]]
}

Unknown Output Length
Sometimes you might not know how long the output will be. For
example, imagine you want to simulate some random vectors of
random lengths. You might be tempted to solve this problem by
progressively growing the vector:

means <- c(0, 1, 2)

output <- double()
for (i in seq_along(means)) {
 n <- sample(100, 1)
 output <- c(output, rnorm(n, means[[i]]))
}
str(output)
#> num [1:202] 0.912 0.205 2.584 -0.789 0.588 ...

But this is not very efficient because in each iteration, R has to copy
all the data from the previous iterations. In technical terms you get
“quadratic” (O(n2)) behavior, which means that a loop with three
times as many elements would take nine (32) times as long to run.

A better solution is to save the results in a list, and then combine
into a single vector after the loop is done:

out <- vector("list", length(means))
for (i in seq_along(means)) {
 n <- sample(100, 1)
 out[[i]] <- rnorm(n, means[[i]])
}
str(out)
#> List of 3
#> $: num [1:83] 0.367 1.13 -0.941 0.218 1.415 ...
#> $: num [1:21] -0.485 -0.425 2.937 1.688 1.324 ...
#> $: num [1:40] 2.34 1.59 2.93 3.84 1.3 ...

For Loop Variations | 319

str(unlist(out))
#> num [1:144] 0.367 1.13 -0.941 0.218 1.415 ...

Here I’ve used unlist() to flatten a list of vectors into a single vec‐
tor. A stricter option is to use purrr::flatten_dbl()—it will throw
an error if the input isn’t a list of doubles.

This pattern occurs in other places too:

• You might be generating a long string. Instead of paste()ing
together each iteration with the previous, save the output in a
character vector and then combine that vector into a single
string with paste(output, collapse = "").

• You might be generating a big data frame. Instead of sequen‐
tially rbind()ing in each iteration, save the output in a list, then
use dplyr::bind_rows(output) to combine the output into a
single data frame.

Watch out for this pattern. Whenever you see it, switch to a more
complex result object, and then combine in one step at the end.

Unknown Sequence Length
Sometimes you don’t even know how long the input sequence
should be. This is common when doing simulations. For example,
you might want to loop until you get three heads in a row. You can’t
do that sort of iteration with the for loop. Instead, you can use a
while loop. A while loop is simpler than a for loop because it only
has two components, a condition and a body:

while (condition) {
 # body
}

A while loop is also more general than a for loop, because you can
rewrite any for loop as a while loop, but you can’t rewrite every
while loop as a for loop:

for (i in seq_along(x)) {
 # body
}

Equivalent to
i <- 1
while (i <= length(x)) {
 # body

320 | Chapter 17: Iteration with purrr

 i <- i + 1
}

Here’s how we could use a while loop to find how many tries it takes
to get three heads in a row:

flip <- function() sample(c("T", "H"), 1)

flips <- 0
nheads <- 0

while (nheads < 3) {
 if (flip() == "H") {
 nheads <- nheads + 1
 } else {
 nheads <- 0
 }
 flips <- flips + 1
}
flips
#> [1] 3

I mention while loops only briefly, because I hardly ever use them.
They’re most often used for simulation, which is outside the scope
of this book. However, it is good to know they exist so that you’re
prepared for problems where the number of iterations is not known
in advance.

Exercises
1. Imagine you have a directory full of CSV files that you want to

read in. You have their paths in a vector, files <-

dir("data/", pattern = "\\.csv$", full.names = TRUE),
and now want to read each one with read_csv(). Write the for
loop that will load them into a single data frame.

2. What happens if you use for (nm in names(x)) and x has no
names? What if only some of the elements are named? What if
the names are not unique?

3. Write a function that prints the mean of each numeric column
in a data frame, along with its name. For example,
show_mean(iris) would print:

show_mean(iris)
#> Sepal.Length: 5.84
#> Sepal.Width: 3.06
#> Petal.Length: 3.76
#> Petal.Width: 1.20

For Loop Variations | 321

(Extra challenge: what function did I use to make sure that the
numbers lined up nicely, even though the variable names had
different lengths?)

4. What does this code do? How does it work?
trans <- list(
 disp = function(x) x * 0.0163871,
 am = function(x) {
 factor(x, labels = c("auto", "manual"))
 }
)
for (var in names(trans)) {
 mtcars[[var]] <- trans[[var]](mtcars[[var]])
}

For Loops Versus Functionals
For loops are not as important in R as they are in other languages
because R is a functional programming language. This means that
it’s possible to wrap up for loops in a function, and call that function
instead of using the for loop directly.

To see why this is important, consider (again) this simple data
frame:

df <- tibble(
 a = rnorm(10),
 b = rnorm(10),
 c = rnorm(10),
 d = rnorm(10)
)

Imagine you want to compute the mean of every column. You could
do that with a for loop:

output <- vector("double", length(df))
for (i in seq_along(df)) {
 output[[i]] <- mean(df[[i]])
}
output
#> [1] 0.2026 -0.2068 0.1275 -0.0917

You realize that you’re going to want to compute the means of every
column pretty frequently, so you extract it out into a function:

col_mean <- function(df) {
 output <- vector("double", length(df))
 for (i in seq_along(df)) {

322 | Chapter 17: Iteration with purrr

 output[i] <- mean(df[[i]])
 }
 output
}

But then you think it’d also be helpful to be able to compute the
median, and the standard deviation, so you copy and paste your
col_mean() function and replace the mean() with median() and
sd():

col_median <- function(df) {
 output <- vector("double", length(df))
 for (i in seq_along(df)) {
 output[i] <- median(df[[i]])
 }
 output
}
col_sd <- function(df) {
 output <- vector("double", length(df))
 for (i in seq_along(df)) {
 output[i] <- sd(df[[i]])
 }
 output
}

Uh oh! You’ve copied and pasted this code twice, so it’s time to think
about how to generalize it. Notice that most of this code is for-loop
boilerplate and it’s hard to see the one thing (mean(), median(),
sd()) that is different between the functions.

What would you do if you saw a set of functions like this?

f1 <- function(x) abs(x - mean(x)) ^ 1
f2 <- function(x) abs(x - mean(x)) ^ 2
f3 <- function(x) abs(x - mean(x)) ^ 3

Hopefully, you’d notice that there’s a lot of duplication, and extract it
out into an additional argument:

f <- function(x, i) abs(x - mean(x)) ^ i

You’ve reduced the chance of bugs (because you now have 1/3 less
code), and made it easy to generalize to new situations.

We can do exactly the same thing with col_mean(), col_median(),
and col_sd() by adding an argument that supplies the function to
apply to each column:

col_summary <- function(df, fun) {
 out <- vector("double", length(df))
 for (i in seq_along(df)) {

For Loops Versus Functionals | 323

 out[i] <- fun(df[[i]])
 }
 out
}
col_summary(df, median)
#> [1] 0.237 -0.218 0.254 -0.133
col_summary(df, mean)
#> [1] 0.2026 -0.2068 0.1275 -0.0917

The idea of passing a function to another function is an extremely
powerful idea, and it’s one of the behaviors that makes R a func‐
tional programming language. It might take you a while to wrap
your head around the idea, but it’s worth the investment. In the rest
of the chapter, you’ll learn about and use the purrr package, which
provides functions that eliminate the need for many common for
loops. The apply family of functions in base R (apply(), lapply(),
tapply(), etc.) solve a similar problem, but purrr is more consistent
and thus is easier to learn.

The goal of using purrr functions instead of for loops is to allow you
to break common list manipulation challenges into independent
pieces:

• How can you solve the problem for a single element of the list?
Once you’ve solved that problem, purrr takes care of generaliz‐
ing your solution to every element in the list.

• If you’re solving a complex problem, how can you break it down
into bite-sized pieces that allow you to advance one small step
toward a solution? With purrr, you get lots of small pieces that
you can compose together with the pipe.

This structure makes it easier to solve new problems. It also makes it
easier to understand your solutions to old problems when you re-
read your old code.

Exercises
1. Read the documentation for apply(). In the second case, what

two for loops does it generalize?
2. Adapt col_summary() so that it only applies to numeric col‐

umns. You might want to start with an is_numeric() function
that returns a logical vector that has a TRUE corresponding to
each numeric column.

324 | Chapter 17: Iteration with purrr

The Map Functions
The pattern of looping over a vector, doing something to each ele‐
ment, and saving the results is so common that the purrr package
provides a family of functions to do it for you. There is one function
for each type of output:

• map() makes a list.
• map_lgl() makes a logical vector.
• map_int() makes an integer vector.
• map_dbl() makes a double vector.
• map_chr() makes a character vector.

Each function takes a vector as input, applies a function to each
piece, and then returns a new vector that’s the same length (and has
the same names) as the input. The type of the vector is determined
by the suffix to the map function.

Once you master these functions, you’ll find it takes much less time
to solve iteration problems. But you should never feel bad about
using a for loop instead of a map function. The map functions are a
step up a tower of abstraction, and it can take a long time to get your
head around how they work. The important thing is that you solve
the problem that you’re working on, not write the most concise and
elegant code (although that’s definitely something you want to strive
toward!).

Some people will tell you to avoid for loops because they are slow.
They’re wrong! (Well at least they’re rather out of date, as for loops
haven’t been slow for many years). The chief benefit of using func‐
tions like map() is not speed, but clarity: they make your code easier
to write and to read.

We can use these functions to perform the same computations as the
last for loop. Those summary functions returned doubles, so we
need to use map_dbl():

map_dbl(df, mean)
#> a b c d
#> 0.2026 -0.2068 0.1275 -0.0917
map_dbl(df, median)
#> a b c d
#> 0.237 -0.218 0.254 -0.133

The Map Functions | 325

map_dbl(df, sd)
#> a b c d
#> 0.796 0.759 1.164 1.062

Compared to using a for loop, focus is on the operation being per‐
formed (i.e., mean(), median(), sd()), not the bookkeeping required
to loop over every element and store the output. This is even more
apparent if we use the pipe:

df %>% map_dbl(mean)
#> a b c d
#> 0.2026 -0.2068 0.1275 -0.0917
df %>% map_dbl(median)
#> a b c d
#> 0.237 -0.218 0.254 -0.133
df %>% map_dbl(sd)
#> a b c d
#> 0.796 0.759 1.164 1.062

There are a few differences between map_*() and col_summary():

• All purrr functions are implemented in C. This makes them a
little faster at the expense of readability.

• The second argument, .f, the function to apply, can be a for‐
mula, a character vector, or an integer vector. You’ll learn about
those handy shortcuts in the next section.

• map_*() uses ... (“Dot-Dot-Dot (…)” on page 284) to pass along
additional arguments to .f each time it’s called:

map_dbl(df, mean, trim = 0.5)
#> a b c d
#> 0.237 -0.218 0.254 -0.133

• The map functions also preserve names:
z <- list(x = 1:3, y = 4:5)
map_int(z, length)
#> x y
#> 3 2

Shortcuts
There are a few shortcuts that you can use with .f in order to save a
little typing. Imagine you want to fit a linear model to each group in
a dataset. The following toy example splits up the mtcars dataset
into three pieces (one for each value of cylinder) and fits the same
linear model to each piece:

326 | Chapter 17: Iteration with purrr

models <- mtcars %>%
 split(.$cyl) %>%
 map(function(df) lm(mpg ~ wt, data = df))

The syntax for creating an anonymous function in R is quite verbose
so purrr provides a convenient shortcut—a one-sided formula:

models <- mtcars %>%
 split(.$cyl) %>%
 map(~lm(mpg ~ wt, data = .))

Here I’ve used . as a pronoun: it refers to the current list element (in
the same way that i referred to the current index in the for loop).

When you’re looking at many models, you might want to extract a
summary statistic like the R2. To do that we need to first run sum
mary() and then extract the component called r.squared. We could
do that using the shorthand for anonymous functions:

models %>%
 map(summary) %>%
 map_dbl(~.$r.squared)
#> 4 6 8
#> 0.509 0.465 0.423

But extracting named components is a common operation, so purrr
provides an even shorter shortcut: you can use a string.

models %>%
 map(summary) %>%
 map_dbl("r.squared")
#> 4 6 8
#> 0.509 0.465 0.423

You can also use an integer to select elements by position:

x <- list(list(1, 2, 3), list(4, 5, 6), list(7, 8, 9))
x %>% map_dbl(2)
#> [1] 2 5 8

Base R
If you’re familiar with the apply family of functions in base R, you
might have noticed some similarities with the purrr functions:

• lapply() is basically identical to map(), except that map() is
consistent with all the other functions in purrr, and you can use
the shortcuts for .f.

The Map Functions | 327

• Base sapply() is a wrapper around lapply() that automatically
simplifies the output. This is useful for interactive work but is
problematic in a function because you never know what sort of
output you’ll get:

x1 <- list(
 c(0.27, 0.37, 0.57, 0.91, 0.20),
 c(0.90, 0.94, 0.66, 0.63, 0.06),
 c(0.21, 0.18, 0.69, 0.38, 0.77)
)
x2 <- list(
 c(0.50, 0.72, 0.99, 0.38, 0.78),
 c(0.93, 0.21, 0.65, 0.13, 0.27),
 c(0.39, 0.01, 0.38, 0.87, 0.34)
)

threshold <- function(x, cutoff = 0.8) x[x > cutoff]
x1 %>% sapply(threshold) %>% str()
#> List of 3
#> $: num 0.91
#> $: num [1:2] 0.9 0.94
#> $: num(0)
x2 %>% sapply(threshold) %>% str()
#> num [1:3] 0.99 0.93 0.87

• vapply() is a safe alternative to sapply() because you supply
an additional argument that defines the type. The only problem
with vapply() is that it’s a lot of typing: vapply(df,

is.numeric, logical(1)) is equivalent to map_lgl(df,

is.numeric). One advantage of vapply() over purrr’s map
functions is that it can also produce matrices—the map func‐
tions only ever produce vectors.

I focus on purrr functions here because they have more consistent
names and arguments, helpful shortcuts, and in the future will pro‐
vide easy parallelism and progress bars.

Exercises
1. Write code that uses one of the map functions to:

a. Compute the mean of every column in mtcars.
b. Determine the type of each column in nyc

flights13::flights.

328 | Chapter 17: Iteration with purrr

c. Compute the number of unique values in each column of
iris.

d. Generate 10 random normals for each of μ = –10, 0, 10, and
100.

2. How can you create a single vector that for each column in a
data frame indicates whether or not it’s a factor?

3. What happens when you use the map functions on vectors that
aren’t lists? What does map(1:5, runif) do? Why?

4. What does map(-2:2, rnorm, n = 5) do? Why? What does
map_dbl(-2:2, rnorm, n = 5) do? Why?

5. Rewrite map(x, function(df) lm(mpg ~ wt, data = df)) to
eliminate the anonymous function.

Dealing with Failure
When you use the map functions to repeat many operations, the
chances are much higher that one of those operations will fail.
When this happens, you’ll get an error message, and no output. This
is annoying: why does one failure prevent you from accessing all the
other successes? How do you ensure that one bad apple doesn’t ruin
the whole barrel?

In this section you’ll learn how to deal with this situation with a new
function: safely(). safely() is an adverb: it takes a function (a
verb) and returns a modified version. In this case, the modified
function will never throw an error. Instead, it always returns a list
with two elements:

result

The original result. If there was an error, this will be NULL.

error

An error object. If the operation was successful, this will be
NULL.

(You might be familiar with the try() function in base R. It’s similar,
but because it sometimes returns the original result and it some‐
times returns an error object it’s more difficult to work with.)

Dealing with Failure | 329

Let’s illustrate this with a simple example, log():

safe_log <- safely(log)
str(safe_log(10))
#> List of 2
#> $ result: num 2.3
#> $ error : NULL
str(safe_log("a"))
#> List of 2
#> $ result: NULL
#> $ error :List of 2
#> ..$ message: chr "non-numeric argument to mathematical ..."
#> ..$ call : language .f(...)
#> ..- attr(*, "class")= chr [1:3] "simpleError" "error" ...

When the function succeeds the result element contains the result
and the error element is NULL. When the function fails, the result
element is NULL and the error element contains an error object.

safely() is designed to work with map:

x <- list(1, 10, "a")
y <- x %>% map(safely(log))
str(y)
#> List of 3
#> $:List of 2
#> ..$ result: num 0
#> ..$ error : NULL
#> $:List of 2
#> ..$ result: num 2.3
#> ..$ error : NULL
#> $:List of 2
#> ..$ result: NULL
#> ..$ error :List of 2
#> $ message: chr "non-numeric argument to ..."
#> $ call : language .f(...)
#> - attr(*, "class")=chr [1:3] "simpleError" "error" ...

This would be easier to work with if we had two lists: one of all the
errors and one of all the output. That’s easy to get with
purrr::transpose():

y <- y %>% transpose()
str(y)
#> List of 2
#> $ result:List of 3
#> ..$: num 0
#> ..$: num 2.3
#> ..$: NULL
#> $ error :List of 3
#> ..$: NULL

330 | Chapter 17: Iteration with purrr

#> ..$: NULL
#> ..$:List of 2
#> $ message: chr "non-numeric argument to ..."
#> $ call : language .f(...)
#> - attr(*, "class")=chr [1:3] "simpleError" "error" ...

It’s up to you how to deal with the errors, but typically you’ll either
look at the values of x where y is an error, or work with the values of
y that are OK:

is_ok <- y$error %>% map_lgl(is_null)
x[!is_ok]
#> [[1]]
#> [1] "a"
y$result[is_ok] %>% flatten_dbl()
#> [1] 0.0 2.3

purrr provides two other useful adverbs:

• Like safely(), possibly() always succeeds. It’s simpler than
safely(), because you give it a default value to return when
there is an error:

x <- list(1, 10, "a")
x %>% map_dbl(possibly(log, NA_real_))
#> [1] 0.0 2.3 NA

• quietly() performs a similar role to safely(), but instead of
capturing errors, it captures printed output, messages, and
warnings:

x <- list(1, -1)
x %>% map(quietly(log)) %>% str()
#> List of 2
#> $:List of 4
#> ..$ result : num 0
#> ..$ output : chr ""
#> ..$ warnings: chr(0)
#> ..$ messages: chr(0)
#> $:List of 4
#> ..$ result : num NaN
#> ..$ output : chr ""
#> ..$ warnings: chr "NaNs produced"
#> ..$ messages: chr(0)

Dealing with Failure | 331

Mapping over Multiple Arguments
So far we’ve mapped along a single input. But often you have multi‐
ple related inputs that you need to iterate along in parallel. That’s the
job of the map2() and pmap() functions. For example, imagine you
want to simulate some random normals with different means. You
know how to do that with map():

mu <- list(5, 10, -3)
mu %>%
 map(rnorm, n = 5) %>%
 str()
#> List of 3
#> $: num [1:5] 5.45 5.5 5.78 6.51 3.18
#> $: num [1:5] 10.79 9.03 10.89 10.76 10.65
#> $: num [1:5] -3.54 -3.08 -5.01 -3.51 -2.9

What if you also want to vary the standard deviation? One way to do
that would be to iterate over the indices and index into vectors of
means and sds:

sigma <- list(1, 5, 10)
seq_along(mu) %>%
 map(~rnorm(5, mu[[.]], sigma[[.]])) %>%
 str()
#> List of 3
#> $: num [1:5] 4.94 2.57 4.37 4.12 5.29
#> $: num [1:5] 11.72 5.32 11.46 10.24 12.22
#> $: num [1:5] 3.68 -6.12 22.24 -7.2 10.37

But that obfuscates the intent of the code. Instead we could use
map2(), which iterates over two vectors in parallel:

map2(mu, sigma, rnorm, n = 5) %>% str()
#> List of 3
#> $: num [1:5] 4.78 5.59 4.93 4.3 4.47
#> $: num [1:5] 10.85 10.57 6.02 8.82 15.93
#> $: num [1:5] -1.12 7.39 -7.5 -10.09 -2.7

map2() generates this series of function calls:

332 | Chapter 17: Iteration with purrr

Note that the arguments that vary for each call come before the func‐
tion; arguments that are the same for every call come after.

Like map(), map2() is just a wrapper around a for loop:

map2 <- function(x, y, f, ...) {
 out <- vector("list", length(x))
 for (i in seq_along(x)) {
 out[[i]] <- f(x[[i]], y[[i]], ...)
 }
 out
}

You could also imagine map3(), map4(), map5(), map6(), etc., but
that would get tedious quickly. Instead, purrr provides pmap(),
which takes a list of arguments. You might use that if you wanted to
vary the mean, standard deviation, and number of samples:

n <- list(1, 3, 5)
args1 <- list(n, mu, sigma)
args1 %>%
 pmap(rnorm) %>%
 str()
#> List of 3
#> $: num 4.55
#> $: num [1:3] 13.4 18.8 13.2
#> $: num [1:5] 0.685 10.801 -11.671 21.363 -2.562

That looks like:

If you don’t name the elements of list, pmap() will use positional
matching when calling the function. That’s a little fragile, and makes
the code harder to read, so it’s better to name the arguments:

args2 <- list(mean = mu, sd = sigma, n = n)
args2 %>%
 pmap(rnorm) %>%
 str()

Mapping over Multiple Arguments | 333

That generates longer, but safer, calls:

Since the arguments are all the same length, it makes sense to store
them in a data frame:

params <- tribble(
 ~mean, ~sd, ~n,
 5, 1, 1,
 10, 5, 3,
 -3, 10, 5
)
params %>%
 pmap(rnorm)
#> [[1]]
#> [1] 4.68
#>
#> [[2]]
#> [1] 23.44 12.85 7.28
#>
#> [[3]]
#> [1] -5.34 -17.66 0.92 6.06 9.02

As soon as your code gets complicated, I think a data frame is a
good approach because it ensures that each column has a name and
is the same length as all the other columns.

Invoking Different Functions
There’s one more step up in complexity—as well as varying the
arguments to the function you might also vary the function itself:

f <- c("runif", "rnorm", "rpois")
param <- list(
 list(min = -1, max = 1),
 list(sd = 5),
 list(lambda = 10)
)

334 | Chapter 17: Iteration with purrr

To handle this case, you can use invoke_map():

invoke_map(f, param, n = 5) %>% str()
#> List of 3
#> $: num [1:5] 0.762 0.36 -0.714 0.531 0.254
#> $: num [1:5] 3.07 -3.09 1.1 5.64 9.07
#> $: int [1:5] 9 14 8 9 7

The first argument is a list of functions or a character vector of func‐
tion names. The second argument is a list of lists giving the argu‐
ments that vary for each function. The subsequent arguments are
passed on to every function.

And again, you can use tribble() to make creating these matching
pairs a little easier:

sim <- tribble(
 ~f, ~params,
 "runif", list(min = -1, max = 1),
 "rnorm", list(sd = 5),
 "rpois", list(lambda = 10)
)
sim %>%
 mutate(sim = invoke_map(f, params, n = 10))

Walk
Walk is an alternative to map that you use when you want to call a
function for its side effects, rather than for its return value. You typi‐
cally do this because you want to render output to the screen or save
files to disk—the important thing is the action, not the return value.
Here’s a very simple example:

x <- list(1, "a", 3)

x %>%

Walk | 335

 walk(print)
#> [1] 1
#> [1] "a"
#> [1] 3

walk() is generally not that useful compared to walk2() or pwalk().
For example, if you had a list of plots and a vector of filenames, you
could use pwalk() to save each file to the corresponding location on
disk:

library(ggplot2)
plots <- mtcars %>%
 split(.$cyl) %>%
 map(~ggplot(., aes(mpg, wt)) + geom_point())
paths <- stringr::str_c(names(plots), ".pdf")

pwalk(list(paths, plots), ggsave, path = tempdir())

walk(), walk2(), and pwalk() all invisibly return .x, the first argu‐
ment. This makes them suitable for use in the middle of pipelines.

Other Patterns of For Loops
purrr provides a number of other functions that abstract over other
types of for loops. You’ll use them less frequently than the map func‐
tions, but they’re useful to know about. The goal here is to briefly
illustrate each function, so hopefully it will come to mind if you see
a similar problem in the future. Then you can go look up the docu‐
mentation for more details.

Predicate Functions
A number of functions work with predicate functions that return
either a single TRUE or FALSE.

keep() and discard() keep elements of the input where the predi‐
cate is TRUE or FALSE, respectively:

iris %>%
 keep(is.factor) %>%
 str()
#> 'data.frame': 150 obs. of 1 variable:
#> $ Species: Factor w/ 3 levels "setosa","versicolor",..: ...

iris %>%
 discard(is.factor) %>%
 str()
#> 'data.frame': 150 obs. of 4 variables:

336 | Chapter 17: Iteration with purrr

#> $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3 ...
#> $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 ...
#> $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 ...

some() and every() determine if the predicate is true for any or for
all of the elements:

x <- list(1:5, letters, list(10))

x %>%
 some(is_character)
#> [1] TRUE

x %>%
 every(is_vector)
#> [1] TRUE

detect() finds the first element where the predicate is true;
detect_index() returns its position:

x <- sample(10)
x
#> [1] 8 7 5 6 9 2 10 1 3 4

x %>%
 detect(~ . > 5)
#> [1] 8

x %>%
 detect_index(~ . > 5)
#> [1] 1

head_while() and tail_while() take elements from the start or
end of a vector while a predicate is true:

x %>%
 head_while(~ . > 5)
#> [1] 8 7

x %>%
 tail_while(~ . > 5)
#> integer(0)

Reduce and Accumulate
Sometimes you have a complex list that you want to reduce to a sim‐
ple list by repeatedly applying a function that reduces a pair to a sin‐
gleton. This is useful if you want to apply a two-table dplyr verb to
multiple tables. For example, you might have a list of data frames,

Other Patterns of For Loops | 337

and you want to reduce to a single data frame by joining the ele‐
ments together:

dfs <- list(
 age = tibble(name = "John", age = 30),
 sex = tibble(name = c("John", "Mary"), sex = c("M", "F")),
 trt = tibble(name = "Mary", treatment = "A")
)

dfs %>% reduce(full_join)
#> Joining, by = "name"
#> Joining, by = "name"
#> # A tibble: 2 × 4
#> name age sex treatment
#> <chr> <dbl> <chr> <chr>
#> 1 John 30 M <NA>
#> 2 Mary NA F A

Or maybe you have a list of vectors, and want to find the intersec‐
tion:

vs <- list(
 c(1, 3, 5, 6, 10),
 c(1, 2, 3, 7, 8, 10),
 c(1, 2, 3, 4, 8, 9, 10)
)

vs %>% reduce(intersect)
#> [1] 1 3 10

The reduce function takes a “binary” function (i.e., a function with
two primary inputs), and applies it repeatedly to a list until there is
only a single element left.

Accumulate is similar but it keeps all the interim results. You could
use it to implement a cumulative sum:

x <- sample(10)
x
#> [1] 6 9 8 5 2 4 7 1 10 3
x %>% accumulate(`+`)
#> [1] 6 15 23 28 30 34 41 42 52 55

Exercises
1. Implement your own version of every() using a for loop. Com‐

pare it with purrr::every(). What does purrr’s version do that
your version doesn’t?

338 | Chapter 17: Iteration with purrr

2. Create an enhanced col_sum() that applies a summary function
to every numeric column in a data frame.

3. A possible base R equivalent of col_sum() is:
col_sum3 <- function(df, f) {
 is_num <- sapply(df, is.numeric)
 df_num <- df[, is_num]

 sapply(df_num, f)
}

But it has a number of bugs as illustrated with the following
inputs:

df <- tibble(
 x = 1:3,
 y = 3:1,
 z = c("a", "b", "c")
)
OK
col_sum3(df, mean)
Has problems: don't always return numeric vector
col_sum3(df[1:2], mean)
col_sum3(df[1], mean)
col_sum3(df[0], mean)

What causes the bugs?

Other Patterns of For Loops | 339

PART IV

Model

Now that you are equipped with powerful programming tools we
can finally return to modeling. You’ll use your new tools of data
wrangling and programming to fit many models and understand
how they work. The focus of this book is on exploration, not confir‐
mation or formal inference. But you’ll learn a few basic tools that
help you understand the variation within your models.

The goal of a model is to provide a simple low-dimensional sum‐
mary of a dataset. Ideally, the model will capture true “signals” (i.e.,
patterns generated by the phenomenon of interest), and ignore
“noise” (i.e., random variation that you’re not interested in). Here we
only cover “predictive” models, which, as the name suggests, gener‐
ate predictions. There is another type of model that we’re not going
to discuss: “data discovery” models. These models don’t make pre‐

dictions, but instead help you discover interesting relationships
within your data. (These two categories of models are sometimes
called supervised and unsupervised, but I don’t think that terminol‐
ogy is particularly illuminating.)

This book is not going to give you a deep understanding of the
mathematical theory that underlies models. It will, however, build
your intuition about how statistical models work, and give you a
family of useful tools that allow you to use models to better under‐
stand your data:

• In Chapter 18, you’ll learn how models work mechanistically,
focusing on the important family of linear models. You’ll learn
general tools for gaining insight into what a predictive model
tells you about your data, focusing on simple simulated datasets.

• In Chapter 19, you’ll learn how to use models to pull out known
patterns in real data. Once you have recognized an important
pattern it’s useful to make it explicit in a model, because then
you can more easily see the subtler signals that remain.

• In Chapter 20, you’ll learn how to use many simple models to
help understand complex datasets. This is a powerful technique,
but to access it you’ll need to combine modeling and program‐
ming tools.

These topics are notable because of what they don’t include: any
tools for quantitatively assessing models. That is deliberate: precisely
quantifying a model requires a couple of big ideas that we just don’t
have the space to cover here. For now, you’ll rely on qualitative
assessment and your natural skepticism. In “Learning More About
Models” on page 396, we’ll point you to other resources where you
can learn more.

Hypothesis Generation Versus Hypothesis
Confirmation
In this book, we are going to use models as a tool for exploration,
completing the trifecta of the tools for EDA that were introduced in
Part I. This is not how models are usually taught, but as you will see,
models are an important tool for exploration. Traditionally, the
focus of modeling is on inference, or for confirming that a hypothe‐
sis is true. Doing this correctly is not complicated, but it is hard.

There is a pair of ideas that you must understand in order to do
inference correctly:

• Each observation can either be used for exploration or confir‐
mation, not both.

• You can use an observation as many times as you like for explo‐
ration, but you can only use it once for confirmation. As soon as
you use an observation twice, you’ve switched from confirma‐
tion to exploration.

This is necessary because to confirm a hypothesis you must use data
independent of the data that you used to generate the hypothesis.
Otherwise you will be overoptimistic. There is absolutely nothing
wrong with exploration, but you should never sell an exploratory
analysis as a confirmatory analysis because it is fundamentally mis‐
leading.

If you are serious about doing a confirmatory analysis, one
approach is to split your data into three pieces before you begin the
analysis:

• 60% of your data goes into a training (or exploration) set. You’re
allowed to do anything you like with this data: visualize it and
fit tons of models to it.

• 20% goes into a query set. You can use this data to compare
models or visualizations by hand, but you’re not allowed to use
it as part of an automated process.

• 20% is held back for a test set. You can only use this data ONCE,
to test your final model.

This partitioning allows you to explore the training data, occasion‐
ally generating candidate hypotheses that you check with the query
set. When you are confident you have the right model, you can
check it once with the test data.

(Note that even when doing confirmatory modeling, you will still
need to do EDA. If you don’t do any EDA you will remain blind to
the quality problems with your data.)

CHAPTER 18

Model Basics with modelr

Introduction
The goal of a model is to provide a simple low-dimensional sum‐
mary of a dataset. In the context of this book we’re going to use
models to partition data into patterns and residuals. Strong patterns
will hide subtler trends, so we’ll use models to help peel back layers
of structure as we explore a dataset.

However, before we can start using models on interesting, real data‐
sets, you need to understand the basics of how models work. For
that reason, this chapter of the book is unique because it uses only
simulated datasets. These datasets are very simple, and not at all
interesting, but they will help you understand the essence of model‐
ing before you apply the same techniques to real data in the next
chapter.

There are two parts to a model:

1. First, you define a family of models that express a precise, but
generic, pattern that you want to capture. For example, the pat‐
tern might be a straight line, or a quadatric curve. You will
express the model family as an equation like y = a_1 * x +
a_2 or y = a_1 * x ^ a_2. Here, x and y are known variables
from your data, and a_1 and a_2 are parameters that can vary to
capture different patterns.

2. Next, you generate a fitted model by finding the model from the
family that is the closest to your data. This takes the generic

345

model family and makes it specific, like y = 3 * x + 7 or y =
9 * x ^ 2.

It’s important to understand that a fitted model is just the closest
model from a family of models. That implies that you have the
“best” model (according to some criteria); it doesn’t imply that you
have a good model and it certainly doesn’t imply that the model is
“true.” George Box puts this well in his famous aphorism:

All models are wrong, but some are useful.

It’s worth reading the fuller context of the quote:
Now it would be very remarkable if any system existing in the real
world could be exactly represented by any simple model. However,
cunningly chosen parsimonious models often do provide remarka‐
bly useful approximations. For example, the law PV = RT relating
pressure P, volume V and temperature T of an “ideal” gas via a con‐
stant R is not exactly true for any real gas, but it frequently provides
a useful approximation and furthermore its structure is informative
since it springs from a physical view of the behavior of gas mole‐
cules.
For such a model there is no need to ask the question “Is the model
true?” If “truth” is to be the “whole truth” the answer must be “No.”
The only question of interest is “Is the model illuminating and use‐
ful?”

The goal of a model is not to uncover truth, but to discover a simple
approximation that is still useful.

Prerequisites
In this chapter we’ll use the modelr package, which wraps around
base R’s modeling functions to make them work naturally in a pipe.

library(tidyverse)

library(modelr)
options(na.action = na.warn)

A Simple Model
Let’s take a look at the simulated dataset sim1. It contains two con‐
tinuous variables, x and y. Let’s plot them to see how they’re related:

ggplot(sim1, aes(x, y)) +
 geom_point()

346 | Chapter 18: Model Basics with modelr

You can see a strong pattern in the data. Let’s use a model to capture
that pattern and make it explicit. It’s our job to supply the basic form
of the model. In this case, the relationship looks linear, i.e., y = a_0
+ a_1 * x. Let’s start by getting a feel for what models from that
family look like by randomly generating a few and overlaying them
on the data. For this simple case, we can use geom_abline(), which
takes a slope and intercept as parameters. Later on we’ll learn more
general techniques that work with any model:

models <- tibble(
 a1 = runif(250, -20, 40),
 a2 = runif(250, -5, 5)
)

ggplot(sim1, aes(x, y)) +
 geom_abline(
 aes(intercept = a1, slope = a2),
 data = models, alpha = 1/4
) +
 geom_point()

A Simple Model | 347

There are 250 models on this plot, but a lot are really bad! We need
to find the good models by making precise our intuition that a good
model is “close” to the data. We need a way to quantify the distance
between the data and a model. Then we can fit the model by finding
the values of a_0 and a_1 that generate the model with the smallest
distance from this data.

One easy place to start is to find the vertical distance between each
point and the model, as in the following diagram. (Note that I’ve
shifted the x values slightly so you can see the individual distances.)

This distance is just the difference between the y value given by the
model (the prediction), and the actual y value in the data (the
response).

To compute this distance, we first turn our model family into an R
function. This takes the model parameters and the data as inputs,
and gives values predicted by the model as output:

model1 <- function(a, data) {
 a[1] + data$x * a[2]
}
model1(c(7, 1.5), sim1)
#> [1] 8.5 8.5 8.5 10.0 10.0 10.0 11.5 11.5 11.5 13.0 13.0
#> [12] 13.0 14.5 14.5 14.5 16.0 16.0 16.0 17.5 17.5 17.5 19.0
#> [23] 19.0 19.0 20.5 20.5 20.5 22.0 22.0 22.0

Next, we need some way to compute an overall distance between the
predicted and actual values. In other words, the plot shows 30 dis‐
tances: how do we collapse that into a single number?

348 | Chapter 18: Model Basics with modelr

One common way to do this in statistics is to use the “root-mean-
squared deviation.” We compute the difference between actual and
predicted, square them, average them, and then take the square root.
This distance has lots of appealing mathematical properties, which
we’re not going to talk about here. You’ll just have to take my word
for it!

measure_distance <- function(mod, data) {
 diff <- data$y - model1(mod, data)
 sqrt(mean(diff ^ 2))
}
measure_distance(c(7, 1.5), sim1)
#> [1] 2.67

Now we can use purrr to compute the distance for all the models
defined previously. We need a helper function because our distance
function expects the model as a numeric vector of length 2:

sim1_dist <- function(a1, a2) {
 measure_distance(c(a1, a2), sim1)
}

models <- models %>%
 mutate(dist = purrr::map2_dbl(a1, a2, sim1_dist))
models
#> # A tibble: 250 × 3
#> a1 a2 dist
#> <dbl> <dbl> <dbl>
#> 1 -15.15 0.0889 30.8
#> 2 30.06 -0.8274 13.2
#> 3 16.05 2.2695 13.2
#> 4 -10.57 1.3769 18.7
#> 5 -19.56 -1.0359 41.8
#> 6 7.98 4.5948 19.3
#> # ... with 244 more rows

Next, let’s overlay the 10 best models on to the data. I’ve colored the
models by -dist: this is an easy way to make sure that the best mod‐
els (i.e., the ones with the smallest distance) get the brighest colors:

ggplot(sim1, aes(x, y)) +
 geom_point(size = 2, color = "grey30") +
 geom_abline(
 aes(intercept = a1, slope = a2, color = -dist),
 data = filter(models, rank(dist) <= 10)
)

A Simple Model | 349

We can also think about these models as observations, and visualize
them with a scatterplot of a1 versus a2, again colored by -dist. We
can no longer directly see how the model compares to the data, but
we can see many models at once. Again, I’ve highlighted the 10 best
models, this time by drawing red circles underneath them:

ggplot(models, aes(a1, a2)) +
 geom_point(
 data = filter(models, rank(dist) <= 10),
 size = 4, color = "red"
) +
 geom_point(aes(colour = -dist))

350 | Chapter 18: Model Basics with modelr

Instead of trying lots of random models, we could be more system‐
atic and generate an evenly spaced grid of points (this is called a grid
search). I picked the parameters of the grid roughly by looking at
where the best models were in the preceding plot:

grid <- expand.grid(
 a1 = seq(-5, 20, length = 25),
 a2 = seq(1, 3, length = 25)
) %>%
 mutate(dist = purrr::map2_dbl(a1, a2, sim1_dist))

grid %>%
 ggplot(aes(a1, a2)) +
 geom_point(
 data = filter(grid, rank(dist) <= 10),
 size = 4, colour = "red"
) +
 geom_point(aes(color = -dist))

When you overlay the best 10 models back on the original data, they
all look pretty good:

ggplot(sim1, aes(x, y)) +
 geom_point(size = 2, color = "grey30") +
 geom_abline(
 aes(intercept = a1, slope = a2, color = -dist),
 data = filter(grid, rank(dist) <= 10)
)

A Simple Model | 351

You could imagine iteratively making the grid finer and finer until
you narrowed in on the best model. But there’s a better way to tackle
that problem: a numerical minimization tool called Newton–Raph‐
son search. The intuition of Newton–Raphson is pretty simple: you
pick a starting point and look around for the steepest slope. You
then ski down that slope a little way, and then repeat again and
again, until you can’t go any lower. In R, we can do that with
optim():

best <- optim(c(0, 0), measure_distance, data = sim1)
best$par
#> [1] 4.22 2.05

ggplot(sim1, aes(x, y)) +
 geom_point(size = 2, color = "grey30") +
 geom_abline(intercept = best$par[1], slope = best$par[2])

352 | Chapter 18: Model Basics with modelr

Don’t worry too much about the details of how optim() works. It’s
the intuition that’s important here. If you have a function that
defines the distance between a model and a dataset, and an algo‐
rithm that can minimize that distance by modifying the parameters
of the model, you can find the best model. The neat thing about this
approach is that it will work for any family of models that you can
write an equation for.

There’s one more approach that we can use for this model, because it
is a special case of a broader family: linear models. A linear model
has the general form y = a_1 + a_2 * x_1 + a_3 * x_2 + ... +
a_n * x_(n - 1). So this simple model is equivalent to a general
linear model where n is 2 and x_1 is x. R has a tool specifically
designed for fitting linear models called lm(). lm() has a special way
to specify the model family: formulas. Formulas look like y ~ x,
which lm() will translate to a function like y = a_1 + a_2 * x. We
can fit the model and look at the output:

sim1_mod <- lm(y ~ x, data = sim1)
coef(sim1_mod)
#> (Intercept) x
#> 4.22 2.05

These are exactly the same values we got with optim()! Behind the
scenes lm() doesn’t use optim() but instead takes advantage of the
mathematical structure of linear models. Using some connections
between geometry, calculus, and linear algebra, lm() actually finds
the closest model in a single step, using a sophisticated algorithm.
This approach is faster and guarantees that there is a global mini‐
mum.

Exercises
1. One downside of the linear model is that it is sensitive to

unusual values because the distance incorporates a squared
term. Fit a linear model to the following simulated data, and vis‐
ualize the results. Rerun a few times to generate different simu‐
lated datasets. What do you notice about the model?

sim1a <- tibble(
 x = rep(1:10, each = 3),
 y = x * 1.5 + 6 + rt(length(x), df = 2)
)

A Simple Model | 353

2. One way to make linear models more robust is to use a different
distance measure. For example, instead of root-mean-squared
distance, you could use mean-absolute distance:

measure_distance <- function(mod, data) {
 diff <- data$y - make_prediction(mod, data)
 mean(abs(diff))
}

Use optim() to fit this model to the previous simulated data and
compare it to the linear model.

3. One challenge with performing numerical optimization is that
it’s only guaranteed to find one local optima. What’s the prob‐
lem with optimizing a three-parameter model like this?

model1 <- function(a, data) {
 a[1] + data$x * a[2] + a[3]
}

Visualizing Models
For simple models, like the one in the previous section, you can fig‐
ure out what pattern the model captures by carefully studying the
model family and the fitted coefficients. And if you ever take a sta‐
tistics course on modeling, you’re likely to spend a lot of time doing
just that. Here, however, we’re going to take a different tack. We’re
going to focus on understanding a model by looking at its predic‐
tions. This has a big advantage: every type of predictive model
makes predictions (otherwise what use would it be?) so we can use
the same set of techniques to understand any type of predictive
model.

It’s also useful to see what the model doesn’t capture, the so-called
residuals that are left after subtracting the predictions from the data.
Residuals are powerful because they allow us to use models to
remove striking patterns so we can study the subtler trends that
remain.

Predictions
To visualize the predictions from a model, we start by generating an
evenly spaced grid of values that covers the region where our data
lies. The easiest way to do that is to use modelr::data_grid(). Its

354 | Chapter 18: Model Basics with modelr

first argument is a data frame, and for each subsequent argument it
finds the unique variables and then generates all combinations:

grid <- sim1 %>%
 data_grid(x)
grid
#> # A tibble: 10 × 1
#> x
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
#> # ... with 4 more rows

(This will get more interesting when we start to add more variables
to our model.)

Next we add predictions. We’ll use modelr::add_predictions(),
which takes a data frame and a model. It adds the predictions from
the model to a new column in the data frame:

grid <- grid %>%
 add_predictions(sim1_mod)
grid
#> # A tibble: 10 × 2
#> x pred
#> <int> <dbl>
#> 1 1 6.27
#> 2 2 8.32
#> 3 3 10.38
#> 4 4 12.43
#> 5 5 14.48
#> 6 6 16.53
#> # ... with 4 more rows

(You can also use this function to add predictions to your original
dataset.)

Next, we plot the predictions. You might wonder about all this extra
work compared to just using geom_abline(). But the advantage of
this approach is that it will work with any model in R, from the sim‐
plest to the most complex. You’re only limited by your visualization
skills. For more ideas about how to visualize more complex model
types, you might try http://vita.had.co.nz/papers/model-vis.html.

ggplot(sim1, aes(x)) +
 geom_point(aes(y = y)) +

Visualizing Models | 355

http://vita.had.co.nz/papers/model-vis.html

 geom_line(
 aes(y = pred),
 data = grid,
 colour = "red",
 size = 1
)

Residuals
The flip side of predictions are residuals. The predictions tell you the
pattern that the model has captured, and the residuals tell you what
the model has missed. The residuals are just the distances between
the observed and predicted values that we computed earlier.

We add residuals to the data with add_residuals(), which works
much like add_predictions(). Note, however, that we use the origi‐
nal dataset, not a manufactured grid. This is because to compute
residuals we need actual y values:

sim1 <- sim1 %>%
 add_residuals(sim1_mod)
sim1
#> # A tibble: 30 × 3
#> x y resid
#> <int> <dbl> <dbl>
#> 1 1 4.20 -2.072
#> 2 1 7.51 1.238
#> 3 1 2.13 -4.147
#> 4 2 8.99 0.665
#> 5 2 10.24 1.919

356 | Chapter 18: Model Basics with modelr

#> 6 2 11.30 2.973
#> # ... with 24 more rows

There are a few different ways to understand what the residuals tell
us about the model. One way is to simply draw a frequency polygon
to help us understand the spread of the residuals:

ggplot(sim1, aes(resid)) +
 geom_freqpoly(binwidth = 0.5)

This helps you calibrate the quality of the model: how far away are
the predictions from the observed values? Note that the average of
the residual will always be 0.

You’ll often want to re-create plots using the residuals instead of the
original predictor. You’ll see a lot of that in the next chapter:

ggplot(sim1, aes(x, resid)) +
 geom_ref_line(h = 0) +
 geom_point()

Visualizing Models | 357

This looks like random noise, suggesting that our model has done a
good job of capturing the patterns in the dataset.

Exercises
1. Instead of using lm() to fit a straight line, you can use loess()

to fit a smooth curve. Repeat the process of model fitting, grid
generation, predictions, and visualization on sim1 using
loess() instead of lm(). How does the result compare to
geom_smooth()?

2. add_predictions() is paired with gather_predictions() and
spread_predictions(). How do these three functions differ?

3. What does geom_ref_line() do? What package does it come
from? Why is displaying a reference line in plots showing resid‐
uals useful and important?

4. Why might you want to look at a frequency polygon of absolute
residuals? What are the pros and cons compared to looking at
the raw residuals?

Formulas and Model Families
You’ve seen formulas before when using facet_wrap() and
facet_grid(). In R, formulas provide a general way of getting “spe‐
cial behavior.” Rather than evaluating the values of the variables
right away, they capture them so they can be interpreted by the func‐
tion.

The majority of modeling functions in R use a standard conversion
from formulas to functions. You’ve seen one simple conversion
already: y ~ x is translated to y = a_1 + a_2 * x. If you want to
see what R actually does, you can use the model_matrix() function.
It takes a data frame and a formula and returns a tibble that defines
the model equation: each column in the output is associated with
one coefficient in the model, and the function is always y = a_1 *
out1 + a_2 * out_2. For the simplest case of y ~ x1 this shows us
something interesting:

df <- tribble(
 ~y, ~x1, ~x2,
 4, 2, 5,
 5, 1, 6

358 | Chapter 18: Model Basics with modelr

)
model_matrix(df, y ~ x1)
#> # A tibble: 2 × 2
#> `(Intercept)` x1
#> <dbl> <dbl>
#> 1 1 2
#> 2 1 1

The way that R adds the intercept to the model is just by having a
column that is full of ones. By default, R will always add this col‐
umn. If you don’t want that, you need to explicitly drop it with -1:

model_matrix(df, y ~ x1 - 1)
#> # A tibble: 2 × 1
#> x1
#> <dbl>
#> 1 2
#> 2 1

The model matrix grows in an unsurprising way when you add
more variables to the model:

model_matrix(df, y ~ x1 + x2)
#> # A tibble: 2 × 3
#> `(Intercept)` x1 x2
#> <dbl> <dbl> <dbl>
#> 1 1 2 5
#> 2 1 1 6

This formula notation is sometimes called “Wilkinson-Rogers nota‐
tion,” and was initially described in Symbolic Description of Factorial
Models for Analysis of Variance, by G. N. Wilkinson and C. E. Rog‐
ers. It’s worth digging up and reading the original paper if you’d like
to understand the full details of the modeling algebra.

The following sections expand on how this formula notation works
for categorcal variables, interactions, and transformation.

Categorical Variables
Generating a function from a formula is straightforward when the
predictor is continuous, but things get a bit more complicated when
the predictor is categorical. Imagine you have a formula like y ~
sex, where sex could either be male or female. It doesn’t make sense
to convert that to a formula like y = x_0 + x_1 * sex because sex
isn’t a number—you can’t multiply it! Instead what R does is convert
it to y = x_0 + x_1 * sex_male where sex_male is one if sex is
male and zero otherwise:

Formulas and Model Families | 359

http://bit.ly/wilkrog
http://bit.ly/wilkrog

df <- tribble(
 ~ sex, ~ response,
 "male", 1,
 "female", 2,
 "male", 1
)
model_matrix(df, response ~ sex)
#> # A tibble: 3 × 2
#> `(Intercept)` sexmale
#> <dbl> <dbl>
#> 1 1 1
#> 2 1 0
#> 3 1 1

You might wonder why R also doesn’t create a sexfemale column.
The problem is that would create a column that is perfectly predicta‐
ble based on the other columns (i.e., sexfemale = 1 - sexmale).
Unfortunately the exact details of why this is a problem is beyond
the scope of this book, but basically it creates a model family that is
too flexible, and will have infinitely many models that are equally
close to the data.

Fortunately, however, if you focus on visualizing predictions you
don’t need to worry about the exact parameterization. Let’s look at
some data and models to make that concrete. Here’s the sim2 dataset
from modelr:

ggplot(sim2) +
 geom_point(aes(x, y))

We can fit a model to it, and generate predictions:

mod2 <- lm(y ~ x, data = sim2)

360 | Chapter 18: Model Basics with modelr

grid <- sim2 %>%
 data_grid(x) %>%
 add_predictions(mod2)
grid
#> # A tibble: 4 × 2
#> x pred
#> <chr> <dbl>
#> 1 a 1.15
#> 2 b 8.12
#> 3 c 6.13
#> 4 d 1.91

Effectively, a model with a categorical x will predict the mean value
for each category. (Why? Because the mean minimizes the root-
mean-squared distance.) That’s easy to see if we overlay the predic‐
tions on top of the original data:

ggplot(sim2, aes(x)) +
 geom_point(aes(y = y)) +
 geom_point(
 data = grid,
 aes(y = pred),
 color = "red",
 size = 4
)

You can’t make predictions about levels that you didn’t observe.
Sometimes you’ll do this by accident so it’s good to recognize this
error message:

tibble(x = "e") %>%
 add_predictions(mod2)

Formulas and Model Families | 361

#> Error in model.frame.default(Terms, newdata, na.action =
#> na.action, xlev = object$xlevels): factor x has new level e

Interactions (Continuous and Categorical)
What happens when you combine a continuous and a categorical
variable? sim3 contains a categorical predictor and a continuous
predictor. We can visualize it with a simple plot:

ggplot(sim3, aes(x1, y)) +
 geom_point(aes(color = x2))

There are two possible models you could fit to this data:

mod1 <- lm(y ~ x1 + x2, data = sim3)
mod2 <- lm(y ~ x1 * x2, data = sim3)

When you add variables with +, the model will estimate each effect
independent of all the others. It’s possible to fit the so-called interac‐
tion by using *. For example, y ~ x1 * x2 is translated to y = a_0
+ a_1 * a1 + a_2 * a2 + a_12 * a1 * a2. Note that whenever
you use *, both the interaction and the individual components are
included in the model.

To visualize these models we need two new tricks:

• We have two predictors, so we need to give data_grid() both
variables. It finds all the unique values of x1 and x2 and then
generates all combinations.

362 | Chapter 18: Model Basics with modelr

• To generate predictions from both models simultaneously, we
can use gather_predictions(), which adds each prediction as
a row. The complement of gather_predictions() is
spread_predictions(), which adds each prediction to a new
column.

Together this gives us:

grid <- sim3 %>%
 data_grid(x1, x2) %>%
 gather_predictions(mod1, mod2)
grid
#> # A tibble: 80 × 4
#> model x1 x2 pred
#> <chr> <int> <fctr> <dbl>
#> 1 mod1 1 a 1.67
#> 2 mod1 1 b 4.56
#> 3 mod1 1 c 6.48
#> 4 mod1 1 d 4.03
#> 5 mod1 2 a 1.48
#> 6 mod1 2 b 4.37
#> # ... with 74 more rows

We can visualize the results for both models on one plot using facet‐
ing:

ggplot(sim3, aes(x1, y, color = x2)) +
 geom_point() +
 geom_line(data = grid, aes(y = pred)) +
 facet_wrap(~ model)

Note that the model that uses + has the same slope for each line, but
different intercepts. The model that uses * has a different slope and
intercept for each line.

Formulas and Model Families | 363

Which model is better for this data? We can take look at the residu‐
als. Here I’ve faceted by both model and x2 because it makes it easier
to see the pattern within each group:

sim3 <- sim3 %>%
 gather_residuals(mod1, mod2)

ggplot(sim3, aes(x1, resid, color = x2)) +
 geom_point() +
 facet_grid(model ~ x2)

There is little obvious pattern in the residuals for mod2. The residuals
for mod1 show that the model has clearly missed some pattern in b,
and less so, but still present, is pattern in c, and d. You might wonder
if there’s a precise way to tell which of mod1 or mod2 is better. There
is, but it requires a lot of mathematical background, and we don’t
really care. Here, we’re interested in a qualitative assessment of
whether or not the model has captured the pattern that we’re inter‐
ested in.

Interactions (Two Continuous)
Let’s take a look at the equivalent model for two continuous vari‐
ables. Initially things proceed almost identically to the previous
example:

mod1 <- lm(y ~ x1 + x2, data = sim4)
mod2 <- lm(y ~ x1 * x2, data = sim4)

grid <- sim4 %>%
 data_grid(
 x1 = seq_range(x1, 5),

364 | Chapter 18: Model Basics with modelr

 x2 = seq_range(x2, 5)
) %>%
 gather_predictions(mod1, mod2)
grid
#> # A tibble: 50 × 4
#> model x1 x2 pred
#> <chr> <dbl> <dbl> <dbl>
#> 1 mod1 -1.0 -1.0 0.996
#> 2 mod1 -1.0 -0.5 -0.395
#> 3 mod1 -1.0 0.0 -1.786
#> 4 mod1 -1.0 0.5 -3.177
#> 5 mod1 -1.0 1.0 -4.569
#> 6 mod1 -0.5 -1.0 1.907
#> # ... with 44 more rows

Note my use of seq_range() inside data_grid(). Instead of using
every unique value of x, I’m going to use a regularly spaced grid of
five values between the minimum and maximum numbers. It’s prob‐
ably not super important here, but it’s a useful technique in general.
There are three other useful arguments to seq_range():

• pretty = TRUE will generate a “pretty” sequence, i.e., something
that looks nice to the human eye. This is useful if you want to
produce tables of output:

seq_range(c(0.0123, 0.923423), n = 5)
#> [1] 0.0123 0.2401 0.4679 0.6956 0.9234
seq_range(c(0.0123, 0.923423), n = 5, pretty = TRUE)
#> [1] 0.0 0.2 0.4 0.6 0.8 1.0

• trim = 0.1 will trim off 10% of the tail values. This is useful if
the variable has a long-tailed distribution and you want to focus
on generating values near the center:

x1 <- rcauchy(100)
seq_range(x1, n = 5)
#> [1] -115.9 -83.5 -51.2 -18.8 13.5
seq_range(x1, n = 5, trim = 0.10)
#> [1] -13.84 -8.71 -3.58 1.55 6.68
seq_range(x1, n = 5, trim = 0.25)
#> [1] -2.1735 -1.0594 0.0547 1.1687 2.2828
seq_range(x1, n = 5, trim = 0.50)
#> [1] -0.725 -0.268 0.189 0.647 1.104

• expand = 0.1 is in some sense the opposite of trim(); it
expands the range by 10%:

x2 <- c(0, 1)
seq_range(x2, n = 5)
#> [1] 0.00 0.25 0.50 0.75 1.00

Formulas and Model Families | 365

seq_range(x2, n = 5, expand = 0.10)
#> [1] -0.050 0.225 0.500 0.775 1.050
seq_range(x2, n = 5, expand = 0.25)
#> [1] -0.125 0.188 0.500 0.812 1.125
seq_range(x2, n = 5, expand = 0.50)
#> [1] -0.250 0.125 0.500 0.875 1.250

Next let’s try and visualize that model. We have two continuous pre‐
dictors, so you can imagine the model like a 3D surface. We could
display that using geom_tile():

ggplot(grid, aes(x1, x2)) +
 geom_tile(aes(fill = pred)) +
 facet_wrap(~ model)

That doesn’t suggest that the models are very different! But that’s
partly an illusion: our eyes and brains are not very good at accu‐
rately comparing shades of color. Instead of looking at the surface
from the top, we could look at it from either side, showing multiple
slices:

ggplot(grid, aes(x1, pred, color = x2, group = x2)) +
 geom_line() +
 facet_wrap(~ model)
ggplot(grid, aes(x2, pred, color = x1, group = x1)) +
 geom_line() +
 facet_wrap(~ model)

366 | Chapter 18: Model Basics with modelr

This shows you that interaction between two continuous variables
works basically the same way as for a categorical and continuous
variable. An interaction says that there’s not a fixed offset: you need
to consider both values of x1 and x2 simultaneously in order to pre‐
dict y.

You can see that even with just two continuous variables, coming up
with good visualizations are hard. But that’s reasonable: you
shouldn’t expect it will be easy to understand how three or more
variables simultaneously interact! But again, we’re saved a little
because we’re using models for exploration, and you can gradually

Formulas and Model Families | 367

build up your model over time. The model doesn’t have to be per‐
fect, it just has to help you reveal a little more about your data.

I spent some time looking at the residuals to see if I could figure if
mod2 did better than mod1. I think it does, but it’s pretty subtle. You’ll
have a chance to work on it in the exercises.

Transformations
You can also perform transformations inside the model formula. For
example, log(y) ~ sqrt(x1) + x2 is transformed to y = a_1 +
a_2 * x1 * sqrt(x) + a_3 * x2. If your transformation involves
+, *, ^, or -, you’ll need to wrap it in I() so R doesn’t treat it like part
of the model specification. For example, y ~ x + I(x ^ 2) is trans‐
lated to y = a_1 + a_2 * x + a_3 * x^2. If you forget the I() and
specify y ~ x ^ 2 + x, R will compute y ~ x * x + x. x * x
means the interaction of x with itself, which is the same as x. R auto‐
matically drops redundant variables so x + x becomes x, meaning
that y ~ x ^ 2 + x specifies the function y = a_1 + a_2 * x.
That’s probably not what you intended!

Again, if you get confused about what your model is doing, you can
always use model_matrix() to see exactly what equation lm() is fit‐
ting:

df <- tribble(
 ~y, ~x,
 1, 1,
 2, 2,
 3, 3
)
model_matrix(df, y ~ x^2 + x)
#> # A tibble: 3 × 2
#> `(Intercept)` x
#> <dbl> <dbl>
#> 1 1 1
#> 2 1 2
#> 3 1 3
model_matrix(df, y ~ I(x^2) + x)
#> # A tibble: 3 × 3
#> `(Intercept)` `I(x^2)` x
#> <dbl> <dbl> <dbl>
#> 1 1 1 1
#> 2 1 4 2
#> 3 1 9 3

368 | Chapter 18: Model Basics with modelr

Transformations are useful because you can use them to approxi‐
mate nonlinear functions. If you’ve taken a calculus class, you may
have heard of Taylor’s theorem, which says you can approximate any
smooth function with an infinite sum of polynomials. That means
you can use a linear function to get arbitrarily close to a smooth
function by fitting an equation like y = a_1 + a_2 * x + a_3 *
x^2 + a_4 * x ^ 3. Typing that sequence by hand is tedious, so R
provides a helper function, poly():

model_matrix(df, y ~ poly(x, 2))
#> # A tibble: 3 × 3
#> `(Intercept)` `poly(x, 2)1` `poly(x, 2)2`
#> <dbl> <dbl> <dbl>
#> 1 1 -7.07e-01 0.408
#> 2 1 -7.85e-17 -0.816
#> 3 1 7.07e-01 0.408

However there’s one major problem with using poly(): outside the
range of the data, polynomials rapidly shoot off to positive or nega‐
tive infinity. One safer alternative is to use the natural spline,
splines::ns():

library(splines)
model_matrix(df, y ~ ns(x, 2))
#> # A tibble: 3 × 3
#> `(Intercept)` `ns(x, 2)1` `ns(x, 2)2`
#> <dbl> <dbl> <dbl>
#> 1 1 0.000 0.000
#> 2 1 0.566 -0.211
#> 3 1 0.344 0.771

Let’s see what that looks like when we try and approximate a non-
linear function:

sim5 <- tibble(
 x = seq(0, 3.5 * pi, length = 50),
 y = 4 * sin(x) + rnorm(length(x))
)

ggplot(sim5, aes(x, y)) +
 geom_point()

Formulas and Model Families | 369

I’m going to fit five models to this data:

mod1 <- lm(y ~ ns(x, 1), data = sim5)
mod2 <- lm(y ~ ns(x, 2), data = sim5)
mod3 <- lm(y ~ ns(x, 3), data = sim5)
mod4 <- lm(y ~ ns(x, 4), data = sim5)
mod5 <- lm(y ~ ns(x, 5), data = sim5)

grid <- sim5 %>%
 data_grid(x = seq_range(x, n = 50, expand = 0.1)) %>%
 gather_predictions(mod1, mod2, mod3, mod4, mod5, .pred = "y")

ggplot(sim5, aes(x, y)) +
 geom_point() +
 geom_line(data = grid, color = "red") +
 facet_wrap(~ model)

370 | Chapter 18: Model Basics with modelr

Notice that the extrapolation outside the range of the data is clearly
bad. This is the downside to approximating a function with a poly‐
nomial. But this is a very real problem with every model: the model
can never tell you if the behavior is true when you start extrapolat‐
ing outside the range of the data that you have seen. You must rely
on theory and science.

Exercises
1. What happens if you repeat the analysis of sim2 using a model

without an intercept? What happens to the model equation?
What happens to the predictions?

2. Use model_matrix() to explore the equations generated for the
models I fit to sim3 and sim4. Why is * a good shorthand for
interaction?

3. Using the basic principles, convert the formulas in the following
two models into functions. (Hint: start by converting the cate‐
gorical variable into 0-1 variables.)

mod1 <- lm(y ~ x1 + x2, data = sim3)
mod2 <- lm(y ~ x1 * x2, data = sim3)

4. For sim4, which of mod1 and mod2 is better? I think mod2 does a
slightly better job at removing patterns, but it’s pretty subtle.
Can you come up with a plot to support my claim?

Missing Values
Missing values obviously cannot convey any information about the
relationship between the variables, so modeling functions will drop
any rows that contain missing values. R’s default behavior is to
silently drop them, but options(na.action = na.warn) (run in the
prerequisites), makes sure you get a warning:

df <- tribble(
 ~x, ~y,
 1, 2.2,
 2, NA,
 3, 3.5,
 4, 8.3,
 NA, 10
)

Missing Values | 371

mod <- lm(y ~ x, data = df)
#> Warning: Dropping 2 rows with missing values

To suppress the warning, set na.action = na.exclude:

mod <- lm(y ~ x, data = df, na.action = na.exclude)

You can always see exactly how many observations were used with
nobs():

nobs(mod)
#> [1] 3

Other Model Families
This chapter has focused exclusively on the class of linear models,
which assume a relationship of the form y = a_1 * x1 + a_2 * x2
+ ... + a_n * xn. Linear models additionally assume that the
residuals have a normal distribution, which we haven’t talked about.
There is a large set of model classes that extend the linear model in
various interesting ways. Some of them are:

• Generalized linear models, e.g., stats::glm(). Linear models
assume that the response is continuous and the error has a nor‐
mal distribution. Generalized linear models extend linear mod‐
els to include noncontinuous responses (e.g., binary data or
counts). They work by defining a distance metric based on the
statistical idea of likelihood.

• Generalized additive models, e.g., mgcv::gam(), extend general‐
ized linear models to incorporate arbitrary smooth functions.
That means you can write a formula like y ~ s(x), which
becomes an equation like y = f(x), and let gam() estimate what
that function is (subject to some smoothness constraints to
make the problem tractable).

• Penalized linear models, e.g., glmnet::glmnet(), add a penalty
term to the distance that penalizes complex models (as defined
by the distance between the parameter vector and the origin).
This tends to make models that generalize better to new datasets
from the same population.

• Robust linear models, e.g., MASS:rlm(), tweak the distance to
downweight points that are very far away. This makes them less
sensitive to the presence of outliers, at the cost of being not
quite as good when there are no outliers.

372 | Chapter 18: Model Basics with modelr

• Trees, e.g., rpart::rpart(), attack the problem in a completely
different way than linear models. They fit a piece-wise constant
model, splitting the data into progressively smaller and smaller
pieces. Trees aren’t terribly effective by themselves, but they are
very powerful when used in aggregate by models like random
forests (e.g., randomForest::randomForest()) or gradient boost‐
ing machines (e.g., xgboost::xgboost.)

These models all work similarly from a programming perspective.
Once you’ve mastered linear models, you should find it easy to mas‐
ter the mechanics of these other model classes. Being a skilled mod‐
eler is a mixture of some good general principles and having a big
toolbox of techniques. Now that you’ve learned some general tools
and one useful class of models, you can go on and learn more classes
from other sources.

Other Model Families | 373

CHAPTER 19

Model Building

Introduction
In the previous chapter you learned how linear models worked, and
learned some basic tools for understanding what a model is telling
you about your data. The previous chapter focused on simulated
datasets to help you learn about how models work. This chapter will
focus on real data, showing you how you can progressively build up
a model to aid your understanding of the data.

We will take advantage of the fact that you can think about a model
partitioning your data into patterns and residuals. We’ll find pat‐
terns with visualization, then make them concrete and precise with a
model. We’ll then repeat the process, but replace the old response
variable with the residuals from the model. The goal is to transition
from implicit knowledge in the data and your head to explicit
knowledge in a quantitative model. This makes it easier to apply to
new domains, and easier for others to use.

For very large and complex datasets this will be a lot of work. There
are certainly alternative approaches—a more machine learning
approach is simply to focus on the predictive ability of the model.
These approaches tend to produce black boxes: the model does a
really good job at generating predictions, but you don’t know why.
This is a totally reasonable approach, but it does make it hard to
apply your real-world knowledge to the model. That, in turn, makes
it difficult to assess whether or not the model will continue to work
in the long term, as fundamentals change. For most real models, I’d

375

expect you to use some combination of this approach and a more
classic automated approach.

It’s a challenge to know when to stop. You need to figure out when
your model is good enough, and when additional investment is
unlikely to pay off. I particularly like this quote from reddit user
Broseidon241:

A long time ago in art class, my teacher told me “An artist needs to
know when a piece is done. You can’t tweak something into perfec‐
tion—wrap it up. If you don’t like it, do it over again. Otherwise
begin something new.” Later in life, I heard “A poor seamstress
makes many mistakes. A good seamstress works hard to correct
those mistakes. A great seamstress isn’t afraid to throw out the gar‐
ment and start over.”

—Broseidon241

Prerequisites
We’ll use the same tools as in the previous chapter, but add in some
real datasets: diamonds from ggplot2, and flights from nyc‐
flights13. We’ll also need lubridate in order to work with the date/
times in flights.

library(tidyverse)
library(modelr)
options(na.action = na.warn)

library(nycflights13)
library(lubridate)

Why Are Low-Quality Diamonds More
Expensive?
In previous chapters we’ve seen a surprising relationship between
the quality of diamonds and their price: low-quality diamonds (poor
cuts, bad colors, and inferior clarity) have higher prices:

ggplot(diamonds, aes(cut, price)) + geom_boxplot()
ggplot(diamonds, aes(color, price)) + geom_boxplot()
ggplot(diamonds, aes(clarity, price)) + geom_boxplot()

376 | Chapter 19: Model Building

https://www.reddit.com/r/datascience/comments/4irajq

Note that the worst diamond color is J (slightly yellow), and the
worst clarity is I1 (inclusions visible to the naked eye).

Price and Carat
It looks like lower-quality diamonds have higher prices because
there is an important confounding variable: the weight (carat) of

Why Are Low-Quality Diamonds More Expensive? | 377

the diamond. The weight of the diamond is the single most impor‐
tant factor for determining the price of the diamond, and lower-
quality diamonds tend to be larger:

ggplot(diamonds, aes(carat, price)) +
 geom_hex(bins = 50)

We can make it easier to see how the other attributes of a diamond
affect its relative price by fitting a model to separate out the effect
of carat. But first, let’s make a couple of tweaks to the diamonds
dataset to make it easier to work with:

1. Focus on diamonds smaller than 2.5 carats (99.7% of the data).
2. Log-transform the carat and price variables:

diamonds2 <- diamonds %>%
 filter(carat <= 2.5) %>%
 mutate(lprice = log2(price), lcarat = log2(carat))

Together, these changes make it easier to see the relationship
between carat and price:

ggplot(diamonds2, aes(lcarat, lprice)) +
 geom_hex(bins = 50)

378 | Chapter 19: Model Building

The log transformation is particularly useful here because it makes
the pattern linear, and linear patterns are the easiest to work with.
Let’s take the next step and remove that strong linear pattern. We
first make the pattern explicit by fitting a model:

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)

Then we look at what the model tells us about the data. Note that I
back-transform the predictions, undoing the log transformation, so
I can overlay the predictions on the raw data:

grid <- diamonds2 %>%
 data_grid(carat = seq_range(carat, 20)) %>%
 mutate(lcarat = log2(carat)) %>%
 add_predictions(mod_diamond, "lprice") %>%
 mutate(price = 2 ^ lprice)

ggplot(diamonds2, aes(carat, price)) +
 geom_hex(bins = 50) +
 geom_line(data = grid, color = "red", size = 1)

Why Are Low-Quality Diamonds More Expensive? | 379

That tells us something interesting about our data. If we believe our
model, then the large diamonds are much cheaper than expected.
This is probably because no diamond in this dataset costs more than
$19,000.

Now we can look at the residuals, which verifies that we’ve success‐
fully removed the strong linear pattern:

diamonds2 <- diamonds2 %>%
 add_residuals(mod_diamond, "lresid")

ggplot(diamonds2, aes(lcarat, lresid)) +
 geom_hex(bins = 50)

Importantly, we can now redo our motivating plots using those
residuals instead of price:

ggplot(diamonds2, aes(cut, lresid)) + geom_boxplot()
ggplot(diamonds2, aes(color, lresid)) + geom_boxplot()
ggplot(diamonds2, aes(clarity, lresid)) + geom_boxplot()

380 | Chapter 19: Model Building

Now we see the relationship we expect: as the quality of the dia‐
mond increases, so to does its relative price. To interpret the y-axis,
we need to think about what the residuals are telling us, and what
scale they are on. A residual of –1 indicates that lprice was 1 unit
lower than a prediction based solely on its weight. 2-1 is 1/2, so
points with a value of –1 are half the expected price, and residuals
with value 1 are twice the predicted price.

A More Complicated Model
If we wanted to, we could continue to build up our model, moving
the effects we’ve observed into the model to make them explicit. For
example, we could include color, cut, and clarity into the model
so that we also make explicit the effect of these three categorical
variables:

mod_diamond2 <- lm(
 lprice ~ lcarat + color + cut + clarity,
 data = diamonds2
)

Why Are Low-Quality Diamonds More Expensive? | 381

This model now includes four predictors, so it’s getting harder to
visualize. Fortunately, they’re currently all independent, which
means that we can plot them individually in four plots. To make the
process a little easier, we’re going to use the .model argument to
data_grid:

grid <- diamonds2 %>%
 data_grid(cut, .model = mod_diamond2) %>%
 add_predictions(mod_diamond2)
grid
#> # A tibble: 5 × 5
#> cut lcarat color clarity pred
#> <ord> <dbl> <chr> <chr> <dbl>
#> 1 Fair -0.515 G SI1 11.0
#> 2 Good -0.515 G SI1 11.1
#> 3 Very Good -0.515 G SI1 11.2
#> 4 Premium -0.515 G SI1 11.2
#> 5 Ideal -0.515 G SI1 11.2

ggplot(grid, aes(cut, pred)) +
 geom_point()

If the model needs variables that you haven’t explicitly supplied,
data_grid() will automatically fill them in with the “typical” value.
For continuous variables, it uses the median, and for categorical
variables, it uses the most common value (or values, if there’s a tie):

diamonds2 <- diamonds2 %>%
 add_residuals(mod_diamond2, "lresid2")

382 | Chapter 19: Model Building

ggplot(diamonds2, aes(lcarat, lresid2)) +
 geom_hex(bins = 50)

This plot indicates that there are some diamonds with quite large
residuals—remember a residual of 2 indicates that the diamond is 4x
the price that we expected. It’s often useful to look at unusual values
individually:

diamonds2 %>%
 filter(abs(lresid2) > 1) %>%
 add_predictions(mod_diamond2) %>%
 mutate(pred = round(2 ^ pred)) %>%
 select(price, pred, carat:table, x:z) %>%
 arrange(price)
#> # A tibble: 16 × 11
#> price pred carat cut color clarity depth table x
#> <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl>
#> 1 1013 264 0.25 Fair F SI2 54.4 64 4.30
#> 2 1186 284 0.25 Premium G SI2 59.0 60 5.33
#> 3 1186 284 0.25 Premium G SI2 58.8 60 5.33
#> 4 1262 2644 1.03 Fair E I1 78.2 54 5.72
#> 5 1415 639 0.35 Fair G VS2 65.9 54 5.57
#> 6 1415 639 0.35 Fair G VS2 65.9 54 5.57
#> # ... with 10 more rows, and 2 more variables: y <dbl>,
#> # z <dbl>

Nothing really jumps out at me here, but it’s probably worth spend‐
ing time considering if this indicates a problem with our model, or if
there are errors in the data. If there are mistakes in the data, this
could be an opportunity to buy diamonds that have been priced low
incorrectly.

Why Are Low-Quality Diamonds More Expensive? | 383

Exercises
1. In the plot of lcarat versus lprice, there are some bright verti‐

cal strips. What do they represent?
2. If log(price) = a_0 + a_1 * log(carat), what does that say

about the relationship between price and carat?
3. Extract the diamonds that have very high and very low residu‐

als. Is there anything unusual about these diamonds? Are they
particularly bad or good, or do you think these are pricing
errors?

4. Does the final model, mod_diamonds2, do a good job of predict‐
ing diamond prices? Would you trust it to tell you how much to
spend if you were buying a diamond?

What Affects the Number of Daily Flights?
Let’s work through a similar process for a dataset that seems even
simpler at first glance: the number of flights that leave NYC per day.
This is a really small dataset—only 365 rows and 2 columns—and
we’re not going to end up with a fully realized model, but as you’ll
see, the steps along the way will help us better understand the data.
Let’s get started by counting the number of flights per day and visu‐
alizing it with ggplot2:

daily <- flights %>%
 mutate(date = make_date(year, month, day)) %>%
 group_by(date) %>%
 summarize(n = n())
daily
#> # A tibble: 365 × 2
#> date n
#> <date> <int>
#> 1 2013-01-01 842
#> 2 2013-01-02 943
#> 3 2013-01-03 914
#> 4 2013-01-04 915
#> 5 2013-01-05 720
#> 6 2013-01-06 832
#> # ... with 359 more rows

ggplot(daily, aes(date, n)) +
 geom_line()

384 | Chapter 19: Model Building

Day of Week
Understanding the long-term trend is challenging because there’s a
very strong day-of-week effect that dominates the subtler patterns.
Let’s start by looking at the distribution of flight numbers by day of
week:

daily <- daily %>%
 mutate(wday = wday(date, label = TRUE))
ggplot(daily, aes(wday, n)) +
 geom_boxplot()

What Affects the Number of Daily Flights? | 385

There are fewer flights on weekends because most travel is for busi‐
ness. The effect is particularly pronounced on Saturday: you might
sometimes leave on Sunday for a Monday morning meeting, but it’s
very rare that you’d leave on Saturday as you’d much rather be at
home with your family.

One way to remove this strong pattern is to use a model. First, we fit
the model, and display its predictions overlaid on the original data:

mod <- lm(n ~ wday, data = daily)

grid <- daily %>%
 data_grid(wday) %>%
 add_predictions(mod, "n")

ggplot(daily, aes(wday, n)) +
 geom_boxplot() +
 geom_point(data = grid, color = "red", size = 4)

Next we compute and visualize the residuals:

daily <- daily %>%
 add_residuals(mod)
daily %>%
 ggplot(aes(date, resid)) +
 geom_ref_line(h = 0) +
 geom_line()

386 | Chapter 19: Model Building

Note the change in the y-axis: now we are seeing the deviation from
the expected number of flights, given the day of week. This plot is
useful because now that we’ve removed much of the large day-of-
week effect, we can see some of the subtler patterns that remain:

• Our model seems to fail starting in June: you can still see a
strong regular pattern that our model hasn’t captured. Drawing
a plot with one line for each day of the week makes the cause
easier to see:

ggplot(daily, aes(date, resid, color = wday)) +
 geom_ref_line(h = 0) +
 geom_line()

What Affects the Number of Daily Flights? | 387

Our model fails to accurately predict the number of flights on
Saturday: during summer there are more flights than we expect,
and during fall there are fewer. We’ll see how we can do better
to capture this pattern in the next section.

• There are some days with far fewer flights than expected:
daily %>%
 filter(resid < -100)
#> # A tibble: 11 × 4
#> date n wday resid
#> <date> <int> <ord> <dbl>
#> 1 2013-01-01 842 Tues -109
#> 2 2013-01-20 786 Sun -105
#> 3 2013-05-26 729 Sun -162
#> 4 2013-07-04 737 Thurs -229
#> 5 2013-07-05 822 Fri -145
#> 6 2013-09-01 718 Sun -173
#> # ... with 5 more rows

If you’re familiar with American public holidays, you might spot
New Year’s Day, July 4th, Thanksgiving, and Christmas. There
are some others that don’t seem to correspond to public holi‐
days. You’ll work on those in one of the exercises.

• There seems to be some smoother long-term trend over the
course of a year. We can highlight that trend with
geom_smooth():

daily %>%
 ggplot(aes(date, resid)) +
 geom_ref_line(h = 0) +
 geom_line(color = "grey50") +
 geom_smooth(se = FALSE, span = 0.20)
#> `geom_smooth()` using method = 'loess'

388 | Chapter 19: Model Building

There are fewer flights in January (and December), and more in
summer (May–Sep). We can’t do much with this pattern quanti‐
tatively, because we only have a single year of data. But we can
use our domain knowledge to brainstorm potential explana‐
tions.

Seasonal Saturday Effect
Let’s first tackle our failure to accurately predict the number of
flights on Saturday. A good place to start is to go back to the raw
numbers, focusing on Saturdays:

daily %>%
 filter(wday == "Sat") %>%
 ggplot(aes(date, n)) +
 geom_point() +
 geom_line() +
 scale_x_date(
 NULL,
 date_breaks = "1 month",
 date_labels = "%b"
)

(I’ve used both points and lines to make it more clear what is data
and what is interpolation.)

I suspect this pattern is caused by summer holidays: many people go
on holiday in the summer, and people don’t mind travelling on Sat‐
urdays for vacation. Looking at this plot, we might guess that sum‐
mer holidays are from early June to late August. That seems to line
up fairly well with the state’s school terms: summer break in 2013
was June 26–September 9.

What Affects the Number of Daily Flights? | 389

http://on.nyc.gov/2gWAbBR

Why are there more Saturday flights in the spring than the fall? I
asked some American friends and they suggested that it’s less com‐
mon to plan family vacations during the fall because of the big
Thanksgiving and Christmas holidays. We don’t have the data to
know for sure, but it seems like a plausible working hypothesis.

Let’s create a “term” variable that roughly captures the three school
terms, and check our work with a plot:

term <- function(date) {
 cut(date,
 breaks = ymd(20130101, 20130605, 20130825, 20140101),
 labels = c("spring", "summer", "fall")
)
}

daily <- daily %>%
 mutate(term = term(date))

daily %>%
 filter(wday == "Sat") %>%
 ggplot(aes(date, n, color = term)) +
 geom_point(alpha = 1/3) +
 geom_line() +
 scale_x_date(
 NULL,
 date_breaks = "1 month",
 date_labels = "%b"
)

390 | Chapter 19: Model Building

(I manually tweaked the dates to get nice breaks in the plot. Using a
visualization to help you understand what your function is doing is
a really powerful and general technique.)

It’s useful to see how this new variable affects the other days of the
week:

daily %>%
 ggplot(aes(wday, n, color = term)) +
 geom_boxplot()

It looks like there is significant variation across the terms, so fitting a
separate day-of-week effect for each term is reasonable. This
improves our model, but not as much as we might hope:

mod1 <- lm(n ~ wday, data = daily)
mod2 <- lm(n ~ wday * term, data = daily)

daily %>%
 gather_residuals(without_term = mod1, with_term = mod2) %>%
 ggplot(aes(date, resid, color = model)) +
 geom_line(alpha = 0.75)

What Affects the Number of Daily Flights? | 391

We can see the problem by overlaying the predictions from the
model onto the raw data:

grid <- daily %>%
 data_grid(wday, term) %>%
 add_predictions(mod2, "n")

ggplot(daily, aes(wday, n)) +
 geom_boxplot() +
 geom_point(data = grid, color = "red") +
 facet_wrap(~ term)

Our model is finding the mean effect, but we have a lot of big outli‐
ers, so the mean tends to be far away from the typical value. We can

392 | Chapter 19: Model Building

alleviate this problem by using a model that is robust to the effect of
outliers: MASS::rlm(). This greatly reduces the impact of the outli‐
ers on our estimates, and gives a model that does a good job of
removing the day-of-week pattern:

mod3 <- MASS::rlm(n ~ wday * term, data = daily)

daily %>%
 add_residuals(mod3, "resid") %>%
 ggplot(aes(date, resid)) +
 geom_hline(yintercept = 0, size = 2, color = "white") +
 geom_line()

It’s now much easier to see the long-term trend, and the positive and
negative outliers.

Computed Variables
If you’re experimenting with many models and many visualizations,
it’s a good idea to bundle the creation of variables up into a function
so there’s no chance of accidentally applying a different transforma‐
tion in different places. For example, we could write:

compute_vars <- function(data) {
 data %>%
 mutate(
 term = term(date),
 wday = wday(date, label = TRUE)
)
}

What Affects the Number of Daily Flights? | 393

Another option is to put the transformations directly in the model
formula:

wday2 <- function(x) wday(x, label = TRUE)
mod3 <- lm(n ~ wday2(date) * term(date), data = daily)

Either approach is reasonable. Making the transformed variable
explicit is useful if you want to check your work, or use them in a
visualization. But you can’t easily use transformations (like splines)
that return multiple columns. Including the transformations in the
model function makes life a little easier when you’re working with
many different datasets because the model is self-contained.

Time of Year: An Alternative Approach
In the previous section we used our domain knowledge (how the US
school term affects travel) to improve the model. An alternative to
making our knowledge explicit in the model is to give the data more
room to speak. We could use a more flexible model and allow that to
capture the pattern we’re interested in. A simple linear trend isn’t
adequate, so we could try using a natural spline to fit a smooth
curve across the year:

library(splines)
mod <- MASS::rlm(n ~ wday * ns(date, 5), data = daily)

daily %>%
 data_grid(wday, date = seq_range(date, n = 13)) %>%
 add_predictions(mod) %>%
 ggplot(aes(date, pred, color = wday)) +
 geom_line() +
 geom_point()

394 | Chapter 19: Model Building

We see a strong pattern in the numbers of Saturday flights. This is
reassuring, because we also saw that pattern in the raw data. It’s a
good sign when you get the same signal from different approaches.

Exercises
1. Use your Google sleuthing skills to brainstorm why there were

fewer than expected flights on January 20, May 26, and Septem‐
ber 1. (Hint: they all have the same explanation.) How would
these days generalize to another year?

2. What do the three days with high positive residuals represent?
How would these days generalize to another year?

daily %>%
 top_n(3, resid)
#> # A tibble: 3 × 5
#> date n wday resid term
#> <date> <int> <ord> <dbl> <fctr>
#> 1 2013-11-30 857 Sat 112.4 fall
#> 2 2013-12-01 987 Sun 95.5 fall
#> 3 2013-12-28 814 Sat 69.4 fall

3. Create a new variable that splits the wday variable into terms,
but only for Saturdays, i.e., it should have Thurs, Fri, but Sat-
summer, Sat-spring, Sat-fall. How does this model compare
with the model with every combination of wday and term?

4. Create a new wday variable that combines the day of week, term
(for Saturdays), and public holidays. What do the residuals of
that model look like?

5. What happens if you fit a day-of-week effect that varies by
month (i.e., n ~ wday * month)? Why is this not very helpful?

6. What would you expect the model n ~ wday + ns(date, 5) to
look like? Knowing what you know about the data, why would
you expect it to be not particularly effective?

7. We hypothesized that people leaving on Sundays are more likely
to be business travelers who need to be somewhere on Monday.
Explore that hypothesis by seeing how it breaks down based on
distance and time: if it’s true, you’d expect to see more Sunday
evening flights to places that are far away.

What Affects the Number of Daily Flights? | 395

8. It’s a little frustrating that Sunday and Saturday are on separate
ends of the plot. Write a small function to set the levels of the
factor so that the week starts on Monday.

Learning More About Models
We have only scratched the absolute surface of modeling, but you
have hopefully gained some simple, but general-purpose tools that
you can use to improve your own data analyses. It’s OK to start sim‐
ple! As you’ve seen, even very simple models can make a dramatic
difference in your ability to tease out interactions between variables.

These modeling chapters are even more opinionated than the rest of
the book. I approach modeling from a somewhat different perspec‐
tive to most others, and there is relatively little space devoted to it.
Modeling really deserves a book on its own, so I’d highly recom‐
mend that you read at least one of these three books:

• Statistical Modeling: A Fresh Approach by Danny Kaplan. This
book provides a gentle introduction to modeling, where you
build your intuition, mathematical tools, and R skills in parallel.
The book replaces a traditional “introduction to statistics”
course, providing a curriculum that is up-to-date and relevant
to data science.

• An Introduction to Statistical Learning by Gareth James, Daniela
Witten, Trevor Hastie, and Robert Tibshirani (available online
for free). This book presents a family of modern modeling tech‐
niques collectively known as statistical learning. For an even
deeper understanding of the math behind the models, read the
classic Elements of Statistical Learning by Trevor Hastie, Robert
Tibshirani, and Jerome Friedman (also available online for free).

• Applied Predictive Modeling by Max Kuhn and Kjell Johnson.
This book is a companion to the caret package and provides
practical tools for dealing with real-life predictive modeling
challenges.

396 | Chapter 19: Model Building

http://bit.ly/statmodfresh
http://bit.ly/introstatlearn
http://stanford.io/1ycOXbo
http://appliedpredictivemodeling.com

CHAPTER 20

Many Models with
purrr and broom

Introduction
In this chapter you’re going to learn three powerful ideas that help
you to work with large numbers of models with ease:

• Using many simple models to better understand complex
datasets.

• Using list-columns to store arbitrary data structures in a data
frame. For example, this will allow you to have a column that
contains linear models.

• Using the broom package, by David Robinson, to turn models
into tidy data. This is a powerful technique for working with
large numbers of models because once you have tidy data, you
can apply all of the techniques that you’ve learned about earlier
in the book.

We’ll start by diving into a motivating example using data about life
expectancy around the world. It’s a small dataset but it illustrates
how important modeling can be for improving your visualizations.
We’ll use a large number of simple models to partition out some of
the strongest signals so we can see the subtler signals that remain.
We’ll also see how model summaries can help us pick out outliers
and unusual trends.

397

The following sections will dive into more detail about the individ‐
ual techniques:

• In “gapminder” on page 398, you’ll see a motivating example
that puts list-columns to use to fit per-county models to world
economic data.

• In “List-Columns” on page 402, you’ll learn more about the list-
column data structure, and why it’s valid to put lists in data
frames.

• In “Creating List-Columns” on page 411, you’ll learn the three
main ways in which you’ll create list-columns.

• In “Simplifying List-Columns” on page 416 you’ll learn how to
convert list-columns back to regular atomic vectors (or sets of
atomic vectors) so you can work with them more easily.

• In “Making Tidy Data with broom” on page 419, you’ll learn
about the full set of tools provided by broom, and see how they
can be applied to other types of data structure.

This chapter is somewhat aspirational: if this book is your first
introduction to R, this chapter is likely to be a struggle. It requires
you to have deeply internalized ideas about modeling, data struc‐
tures, and iteration. So don’t worry if you don’t get it—just put this
chapter aside for a few months, and come back when you want to
stretch your brain.

Prerequisites
Working with many models requires many of the packages of the
tidyverse (for data exploration, wrangling, and programming) and
modelr to facilitate modeling.

library(modelr)
library(tidyverse)

gapminder
To motivate the power of many simple models, we’re going to look
into the “gapminder” data. This data was popularized by Hans Ros‐
ling, a Swedish doctor and statistician. If you’ve never heard of him,
stop reading this chapter right now and go watch one of his videos!
He is a fantastic data presenter and illustrates how you can use data

398 | Chapter 20: Many Models with purrr and broom

to present a compelling story. A good place to start is this short
video filmed in conjunction with the BBC.

The gapminder data summarizes the progression of countries over
time, looking at statistics like life expectancy and GDP. The data is
easy to access in R, thanks to Jenny Bryan, who created the gap‐
minder package:

library(gapminder)
gapminder
#> # A tibble: 1,704 × 6
#> country continent year lifeExp pop gdpPercap
#> <fctr> <fctr> <int> <dbl> <int> <dbl>
#> 1 Afghanistan Asia 1952 28.8 8425333 779
#> 2 Afghanistan Asia 1957 30.3 9240934 821
#> 3 Afghanistan Asia 1962 32.0 10267083 853
#> 4 Afghanistan Asia 1967 34.0 11537966 836
#> 5 Afghanistan Asia 1972 36.1 13079460 740
#> 6 Afghanistan Asia 1977 38.4 14880372 786
#> # ... with 1,698 more rows

In this case study, we’re going to focus on just three variables to
answer the question “How does life expectancy (lifeExp) change
over time (year) for each country (country)?” A good place to start
is with a plot:

gapminder %>%
 ggplot(aes(year, lifeExp, group = country)) +
 geom_line(alpha = 1/3)

This is a small dataset: it only has ~1,700 observations and 3 vari‐
ables. But it’s still hard to see what’s going on! Overall, it looks like

gapminder | 399

https://youtu.be/jbkSRLYSojo
https://youtu.be/jbkSRLYSojo

life expectancy has been steadily improving. However, if you look
closely, you might notice some countries that don’t follow this pat‐
tern. How can we make those countries easier to see?

One way is to use the same approach as in the last chapter: there’s a
strong signal (overall linear growth) that makes it hard to see subtler
trends. We’ll tease these factors apart by fitting a model with a linear
trend. The model captures steady growth over time, and the residu‐
als will show what’s left.

You already know how to do that if we had a single country:

nz <- filter(gapminder, country == "New Zealand")
nz %>%
 ggplot(aes(year, lifeExp)) +
 geom_line() +
 ggtitle("Full data = ")

nz_mod <- lm(lifeExp ~ year, data = nz)
nz %>%
 add_predictions(nz_mod) %>%
 ggplot(aes(year, pred)) +
 geom_line() +
 ggtitle("Linear trend + ")

nz %>%
 add_residuals(nz_mod) %>%
 ggplot(aes(year, resid)) +
 geom_hline(yintercept = 0, color = "white", size = 3) +
 geom_line() +
 ggtitle("Remaining pattern")

How can we easily fit that model to every country?

Nested Data
You could imagine copying and pasting that code multiple times;
but you’ve already learned a better way! Extract out the common

400 | Chapter 20: Many Models with purrr and broom

code with a function and repeat using a map function from purrr.
This problem is structured a little differently to what you’ve seen
before. Instead of repeating an action for each variable, we want to
repeat an action for each country, a subset of rows. To do that, we
need a new data structure: the nested data frame. To create a nested
data frame we start with a grouped data frame, and “nest” it:

by_country <- gapminder %>%
 group_by(country, continent) %>%
 nest()

by_country
#> # A tibble: 142 × 3
#> country continent data
#> <fctr> <fctr> <list>
#> 1 Afghanistan Asia <tibble [12 × 4]>
#> 2 Albania Europe <tibble [12 × 4]>
#> 3 Algeria Africa <tibble [12 × 4]>
#> 4 Angola Africa <tibble [12 × 4]>
#> 5 Argentina Americas <tibble [12 × 4]>
#> 6 Australia Oceania <tibble [12 × 4]>
#> # ... with 136 more rows

(I’m cheating a little by grouping on both continent and country.
Given country, continent is fixed, so this doesn’t add any more
groups, but it’s an easy way to carry an extra variable along for the
ride.)

This creates a data frame that has one row per group (per country),
and a rather unusual column: data. data is a list of data frames (or
tibbles, to be precise). This seems like a crazy idea: we have a data
frame with a column that is a list of other data frames! I’ll explain
shortly why I think this is a good idea.

The data column is a little tricky to look at because it’s a moderately
complicated list, and we’re still working on good tools to explore
these objects. Unfortunately using str() is not recommended as it
will often produce very long output. But if you pluck out a single
element from the data column you’ll see that it contains all the data
for that country (in this case, Afghanistan):

by_country$data[[1]]
#> # A tibble: 12 × 4
#> year lifeExp pop gdpPercap
#> <int> <dbl> <int> <dbl>
#> 1 1952 28.8 8425333 779
#> 2 1957 30.3 9240934 821
#> 3 1962 32.0 10267083 853

gapminder | 401

#> 4 1967 34.0 11537966 836
#> 5 1972 36.1 13079460 740
#> 6 1977 38.4 14880372 786
#> # ... with 6 more rows

Note the difference between a standard grouped data frame and a
nested data frame: in a grouped data frame, each row is an observa‐
tion; in a nested data frame, each row is a group. Another way to
think about a nested dataset is we now have a meta-observation: a
row that represents the complete time course for a country, rather
than a single point in time.

List-Columns
Now that we have our nested data frame, we’re in a good position to
fit some models. We have a model-fitting function:

country_model <- function(df) {
 lm(lifeExp ~ year, data = df)
}

And we want to apply it to every data frame. The data frames are in
a list, so we can use purrr::map() to apply country_model to each
element:

models <- map(by_country$data, country_model)

However, rather than leaving the list of models as a free-floating
object, I think it’s better to store it as a column in the by_country
data frame. Storing related objects in columns is a key part of the
value of data frames, and why I think list-columns are such a good
idea. In the course of working with these countries, we are going to
have lots of lists where we have one element per country. So why not
store them all together in one data frame?

In other words, instead of creating a new object in the global envi‐
ronment, we’re going to create a new variable in the by_country
data frame. That’s a job for dplyr::mutate():

by_country <- by_country %>%
 mutate(model = map(data, country_model))
by_country
#> # A tibble: 142 × 4
#> country continent data model
#> <fctr> <fctr> <list> <list>
#> 1 Afghanistan Asia <tibble [12 × 4]> <S3: lm>
#> 2 Albania Europe <tibble [12 × 4]> <S3: lm>
#> 3 Algeria Africa <tibble [12 × 4]> <S3: lm>

402 | Chapter 20: Many Models with purrr and broom

#> 4 Angola Africa <tibble [12 × 4]> <S3: lm>
#> 5 Argentina Americas <tibble [12 × 4]> <S3: lm>
#> 6 Australia Oceania <tibble [12 × 4]> <S3: lm>
#> # ... with 136 more rows

This has a big advantage: because all the related objects are stored
together, you don’t need to manually keep them in sync when you
filter or arrange. The semantics of the data frame takes care of that
for you:

by_country %>%
 filter(continent == "Europe")
#> # A tibble: 30 × 4
#> country continent data model
#> <fctr> <fctr> <list> <list>
#> 1 Albania Europe <tibble [12 × 4]> <S3: lm>
#> 2 Austria Europe <tibble [12 × 4]> <S3: lm>
#> 3 Belgium Europe <tibble [12 × 4]> <S3: lm>
#> 4 Bosnia and Herzegovina Europe <tibble [12 × 4]> <S3: lm>
#> 5 Bulgaria Europe <tibble [12 × 4]> <S3: lm>
#> 6 Croatia Europe <tibble [12 × 4]> <S3: lm>
#> # ... with 24 more rows
by_country %>%
 arrange(continent, country)
#> # A tibble: 142 × 4
#> country continent data model
#> <fctr> <fctr> <list> <list>
#> 1 Algeria Africa <tibble [12 × 4]> <S3: lm>
#> 2 Angola Africa <tibble [12 × 4]> <S3: lm>
#> 3 Benin Africa <tibble [12 × 4]> <S3: lm>
#> 4 Botswana Africa <tibble [12 × 4]> <S3: lm>
#> 5 Burkina Faso Africa <tibble [12 × 4]> <S3: lm>
#> 6 Burundi Africa <tibble [12 × 4]> <S3: lm>
#> # ... with 136 more rows

If your list of data frames and list of models were separate objects,
you have to remember that whenever you reorder or subset one vec‐
tor, you need to reorder or subset all the others in order to keep
them in sync. If you forget, your code will continue to work, but it
will give the wrong answer!

Unnesting
Previously we computed the residuals of a single model with a single
dataset. Now we have 142 data frames and 142 models. To compute
the residuals, we need to call add_residuals() with each model–
data pair:

gapminder | 403

by_country <- by_country %>%
 mutate(
 resids = map2(data, model, add_residuals)
)
by_country
#> # A tibble: 142 × 5
#> country continent data model
#> <fctr> <fctr> <list> <list>
#> 1 Afghanistan Asia <tibble [12 × 4]> <S3: lm>
#> 2 Albania Europe <tibble [12 × 4]> <S3: lm>
#> 3 Algeria Africa <tibble [12 × 4]> <S3: lm>
#> 4 Angola Africa <tibble [12 × 4]> <S3: lm>
#> 5 Argentina Americas <tibble [12 × 4]> <S3: lm>
#> 6 Australia Oceania <tibble [12 × 4]> <S3: lm>
#> # ... with 136 more rows, and 1 more variable:
#> # resids <list>

But how can you plot a list of data frames? Instead of struggling to
answer that question, let’s turn the list of data frames back into a
regular data frame. Previously we used nest() to turn a regular data
frame into a nested data frame, and now we do the opposite with
unnest():

resids <- unnest(by_country, resids)
resids
#> # A tibble: 1,704 × 7
#> country continent year lifeExp pop gdpPercap
#> <fctr> <fctr> <int> <dbl> <int> <dbl>
#> 1 Afghanistan Asia 1952 28.8 8425333 779
#> 2 Afghanistan Asia 1957 30.3 9240934 821
#> 3 Afghanistan Asia 1962 32.0 10267083 853
#> 4 Afghanistan Asia 1967 34.0 11537966 836
#> 5 Afghanistan Asia 1972 36.1 13079460 740
#> 6 Afghanistan Asia 1977 38.4 14880372 786
#> # ... with 1,698 more rows, and 1 more variable: resid <dbl>

Note that each regular column is repeated once for each row in the
nested column.

Now that we have regular data frame, we can plot the residuals:

resids %>%
 ggplot(aes(year, resid)) +
 geom_line(aes(group = country), alpha = 1 / 3) +
 geom_smooth(se = FALSE)
#> `geom_smooth()` using method = 'gam'

404 | Chapter 20: Many Models with purrr and broom

Faceting by continent is particularly revealing:

resids %>%
 ggplot(aes(year, resid, group = country)) +
 geom_line(alpha = 1 / 3) +
 facet_wrap(~continent)

It looks like we’ve missed some mild pattern. There’s also something
interesting going on in Africa: we see some very large residuals,
which suggests our model isn’t fitting so well there. We’ll explore
that more in the next section, attacking it from a slightly different
angle.

gapminder | 405

Model Quality
Instead of looking at the residuals from the model, we could look at
some general measurements of model quality. You learned how to
compute some specific measures in the previous chapter. Here we’ll
show a different approach using the broom package. The broom
package provides a general set of functions to turn models into tidy
data. Here we’ll use broom::glance() to extract some model quality
metrics. If we apply it to a model, we get a data frame with a single
row:

broom::glance(nz_mod)
#> r.squared adj.r.squared sigma statistic p.value df logLik
#> AIC BIC
#> 1 0.954 0.949 0.804 205 5.41e-08 2 -13.3
#> 32.6 34.1
#> deviance df.residual
#> 1 6.47 10

We can use mutate() and unnest() to create a data frame with a
row for each country:

by_country %>%
 mutate(glance = map(model, broom::glance)) %>%
 unnest(glance)
#> # A tibble: 142 × 16
#> country continent data model
#> <fctr> <fctr> <list> <list>
#> 1 Afghanistan Asia <tibble [12 × 4]> <S3: lm>
#> 2 Albania Europe <tibble [12 × 4]> <S3: lm>
#> 3 Algeria Africa <tibble [12 × 4]> <S3: lm>
#> 4 Angola Africa <tibble [12 × 4]> <S3: lm>
#> 5 Argentina Americas <tibble [12 × 4]> <S3: lm>
#> 6 Australia Oceania <tibble [12 × 4]> <S3: lm>
#> # ... with 136 more rows, and 12 more variables:
#> # resids <list>, r.squared <dbl>, adj.r.squared <dbl>,
#> # sigma <dbl>, statistic <dbl>, p.value <dbl>, df <int>,
#> # logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
#> # df.residual <int>

This isn’t quite the output we want, because it still includes all the
list-columns. This is default behavior when unnest() works on
single-row data frames. To suppress these columns we use .drop =
TRUE:

glance <- by_country %>%
 mutate(glance = map(model, broom::glance)) %>%
 unnest(glance, .drop = TRUE)
glance

406 | Chapter 20: Many Models with purrr and broom

#> # A tibble: 142 × 13
#> country continent r.squared adj.r.squared sigma
#> <fctr> <fctr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 0.948 0.942 1.223
#> 2 Albania Europe 0.911 0.902 1.983
#> 3 Algeria Africa 0.985 0.984 1.323
#> 4 Angola Africa 0.888 0.877 1.407
#> 5 Argentina Americas 0.996 0.995 0.292
#> 6 Australia Oceania 0.980 0.978 0.621
#> # ... with 136 more rows, and 8 more variables:
#> # statistic <dbl>, p.value <dbl>, df <int>, logLik <dbl>,
#> # AIC <dbl>, BIC <dbl>, deviance <dbl>, df.residual <int>

(Pay attention to the variables that aren’t printed: there’s a lot of use‐
ful stuff there.)

With this data frame in hand, we can start to look for models that
don’t fit well:

glance %>%
 arrange(r.squared)
#> # A tibble: 142 × 13
#> country continent r.squared adj.r.squared sigma
#> <fctr> <fctr> <dbl> <dbl> <dbl>
#> 1 Rwanda Africa 0.0172 -0.08112 6.56
#> 2 Botswana Africa 0.0340 -0.06257 6.11
#> 3 Zimbabwe Africa 0.0562 -0.03814 7.21
#> 4 Zambia Africa 0.0598 -0.03418 4.53
#> 5 Swaziland Africa 0.0682 -0.02497 6.64
#> 6 Lesotho Africa 0.0849 -0.00666 5.93
#> # ... with 136 more rows, and 8 more variables:
#> # statistic <dbl>, p.value <dbl>, df <int>, logLik <dbl>,
#> # AIC <dbl>, BIC <dbl>, deviance <dbl>, df.residual <int>

The worst models all appear to be in Africa. Let’s double-check that
with a plot. Here we have a relatively small number of observations
and a discrete variable, so geom_jitter() is effective:

glance %>%
 ggplot(aes(continent, r.squared)) +
 geom_jitter(width = 0.5)

gapminder | 407

We could pull out the countries with particularly bad R2 and plot the
data:

bad_fit <- filter(glance, r.squared < 0.25)

gapminder %>%
 semi_join(bad_fit, by = "country") %>%
 ggplot(aes(year, lifeExp, color = country)) +
 geom_line()

We see two main effects here: the tragedies of the HIV/AIDS epi‐
demic and the Rwandan genocide.

408 | Chapter 20: Many Models with purrr and broom

Exercises
1. A linear trend seems to be slightly too simple for the overall

trend. Can you do better with a quadratic polynomial? How can
you interpret the coefficients of the quadratic? (Hint: you might
want to transform year so that it has mean zero.)

2. Explore other methods for visualizing the distribution of R2 per
continent. You might want to try the ggbeeswarm package,
which provides similar methods for avoiding overlaps as jitter,
but uses deterministic methods.

3. To create the last plot (showing the data for the countries with
the worst model fits), we needed two steps: we created a data
frame with one row per country and then semi-joined it to the
original dataset. It’s possible avoid this join if we use unnest()
instead of unnest(.drop = TRUE). How?

List-Columns
Now that you’ve seen a basic workflow for managing many models,
let’s dive back into some of the details. In this section, we’ll explore
the list-column data structure in a little more detail. It’s only recently
that I’ve really appreciated the idea of the list-column. List-columns
are implicit in the definition of the data frame: a data frame is a
named list of equal length vectors. A list is a vector, so it’s always
been legitimate to use a list as a column of a data frame. However,
base R doesn’t make it easy to create list-columns, and
data.frame() treats a list as a list of columns:

data.frame(x = list(1:3, 3:5))
#> x.1.3 x.3.5
#> 1 1 3
#> 2 2 4
#> 3 3 5

You can prevent data.frame() from doing this with I(), but the
result doesn’t print particularly well:

data.frame(
 x = I(list(1:3, 3:5)),
 y = c("1, 2", "3, 4, 5")
)
#> x y

List-Columns | 409

#> 1 1, 2, 3 1, 2
#> 2 3, 4, 5 3, 4, 5

Tibble alleviates this problem by being lazier (tibble() doesn’t
modify its inputs) and by providing a better print method:

tibble(
 x = list(1:3, 3:5),
 y = c("1, 2", "3, 4, 5")
)
#> # A tibble: 2 × 2
#> x y
#> <list> <chr>
#> 1 <int [3]> 1, 2
#> 2 <int [3]> 3, 4, 5

It’s even easier with tribble() as it can automatically work out that
you need a list:

tribble(
 ~x, ~y,
 1:3, "1, 2",
 3:5, "3, 4, 5"
)
#> # A tibble: 2 × 2
#> x y
#> <list> <chr>
#> 1 <int [3]> 1, 2
#> 2 <int [3]> 3, 4, 5

List-columns are often most useful as an intermediate data struc‐
ture. They’re hard to work with directly, because most R functions
work with atomic vectors or data frames, but the advantage of keep‐
ing related items together in a data frame is worth a little hassle.

Generally there are three parts of an effective list-column pipeline:

1. You create the list-column using one of nest(), summarize() +
list(), or mutate() + a map function, as described in “Creat‐
ing List-Columns” on page 411.

2. You create other intermediate list-columns by transforming
existing list columns with map(), map2(), or pmap(). For exam‐
ple, in the previous case study, we created a list-column of mod‐
els by transforming a list-column of data frames.

3. You simplify the list-column back down to a data frame or
atomic vector, as described in “Simplifying List-Columns” on
page 416.

410 | Chapter 20: Many Models with purrr and broom

Creating List-Columns
Typically, you won’t create list-columns with tibble(). Instead,
you’ll create them from regular columns, using one of three meth‐
ods:

1. With tidyr::nest() to convert a grouped data frame into a
nested data frame where you have list-column of data frames.

2. With mutate() and vectorized functions that return a list.
3. With summarize() and summary functions that return multiple

results.

Alternatively, you might create them from a named list, using tib
ble::enframe().

Generally, when creating list-columns, you should make sure they’re
homogeneous: each element should contain the same type of thing.
There are no checks to make sure this is true, but if you use purrr
and remember what you’ve learned about type-stable functions, you
should find it happens naturally.

With Nesting
nest() creates a nested data frame, which is a data frame with a list-
column of data frames. In a nested data frame each row is a meta-
observation: the other columns give variables that define the
observation (like country and continent earlier), and the list-column
of data frames gives the individual observations that make up the
meta-observation.

There are two ways to use nest(). So far you’ve seen how to use it
with a grouped data frame. When applied to a grouped data frame,
nest() keeps the grouping columns as is, and bundles everything
else into the list-column:

gapminder %>%
 group_by(country, continent) %>%
 nest()
#> # A tibble: 142 × 3
#> country continent data
#> <fctr> <fctr> <list>
#> 1 Afghanistan Asia <tibble [12 × 4]>
#> 2 Albania Europe <tibble [12 × 4]>
#> 3 Algeria Africa <tibble [12 × 4]>

Creating List-Columns | 411

#> 4 Angola Africa <tibble [12 × 4]>
#> 5 Argentina Americas <tibble [12 × 4]>
#> 6 Australia Oceania <tibble [12 × 4]>
#> # ... with 136 more rows

You can also use it on an ungrouped data frame, specifying which
columns you want to nest:

gapminder %>%
 nest(year:gdpPercap)
#> # A tibble: 142 × 3
#> country continent data
#> <fctr> <fctr> <list>
#> 1 Afghanistan Asia <tibble [12 × 4]>
#> 2 Albania Europe <tibble [12 × 4]>
#> 3 Algeria Africa <tibble [12 × 4]>
#> 4 Angola Africa <tibble [12 × 4]>
#> 5 Argentina Americas <tibble [12 × 4]>
#> 6 Australia Oceania <tibble [12 × 4]>
#> # ... with 136 more rows

From Vectorized Functions
Some useful functions take an atomic vector and return a list. For
example, in Chapter 11 you learned about stringr::str_split(),
which takes a character vector and returns a list of character vectors.
If you use that inside mutate, you’ll get a list-column:

df <- tribble(
 ~x1,
 "a,b,c",
 "d,e,f,g"
)

df %>%
 mutate(x2 = stringr::str_split(x1, ","))
#> # A tibble: 2 × 2
#> x1 x2
#> <chr> <list>
#> 1 a,b,c <chr [3]>
#> 2 d,e,f,g <chr [4]>

unnest() knows how to handle these lists of vectors:

df %>%
 mutate(x2 = stringr::str_split(x1, ",")) %>%
 unnest()
#> # A tibble: 7 × 2
#> x1 x2
#> <chr> <chr>
#> 1 a,b,c a

412 | Chapter 20: Many Models with purrr and broom

#> 2 a,b,c b
#> 3 a,b,c c
#> 4 d,e,f,g d
#> 5 d,e,f,g e
#> 6 d,e,f,g f
#> # ... with 1 more rows

(If you find yourself using this pattern a lot, make sure to check out
tidyr:separate_rows(), which is a wrapper around this common
pattern).

Another example of this pattern is using the map(), map2(), pmap()
functions from purrr. For example, we could take the final example
from “Invoking Different Functions” on page 334 and rewrite it to
use mutate():

sim <- tribble(
 ~f, ~params,
 "runif", list(min = -1, max = -1),
 "rnorm", list(sd = 5),
 "rpois", list(lambda = 10)
)

sim %>%
 mutate(sims = invoke_map(f, params, n = 10))
#> # A tibble: 3 × 3
#> f params sims
#> <chr> <list> <list>
#> 1 runif <list [2]> <dbl [10]>
#> 2 rnorm <list [1]> <dbl [10]>
#> 3 rpois <list [1]> <int [10]>

Note that technically sim isn’t homogeneous because it contains
both double and integer vectors. However, this is unlikely to cause
many problems since integers and doubles are both numeric vec‐
tors.

From Multivalued Summaries
One restriction of summarize() is that it only works with summary
functions that return a single value. That means that you can’t use it
with functions like quantile() that return a vector of arbitrary
length:

mtcars %>%
 group_by(cyl) %>%
 summarize(q = quantile(mpg))
#> Error in eval(expr, envir, enclos): expecting a single value

Creating List-Columns | 413

You can however, wrap the result in a list! This obeys the contract of
summarize(), because each summary is now a list (a vector) of
length 1:

mtcars %>%
 group_by(cyl) %>%
 summarize(q = list(quantile(mpg)))
#> # A tibble: 3 × 2
#> cyl q
#> <dbl> <list>
#> 1 4 <dbl [5]>
#> 2 6 <dbl [5]>
#> 3 8 <dbl [5]>

To make useful results with unnest(), you’ll also need to capture the
probabilities:

probs <- c(0.01, 0.25, 0.5, 0.75, 0.99)
mtcars %>%
 group_by(cyl) %>%
 summarize(p = list(probs), q = list(quantile(mpg, probs))) %>%
 unnest()
#> # A tibble: 15 × 3
#> cyl p q
#> <dbl> <dbl> <dbl>
#> 1 4 0.01 21.4
#> 2 4 0.25 22.8
#> 3 4 0.50 26.0
#> 4 4 0.75 30.4
#> 5 4 0.99 33.8
#> 6 6 0.01 17.8
#> # ... with 9 more rows

From a Named List
Data frames with list-columns provide a solution to a common
problem: what do you do if you want to iterate over both the con‐
tents of a list and its elements? Instead of trying to jam everything
into one object, it’s often easier to make a data frame: one column
can contain the elements, and one column can contain the list.
An easy way to create such a data frame from a list is
tibble::enframe():

x <- list(
 a = 1:5,
 b = 3:4,
 c = 5:6
)

414 | Chapter 20: Many Models with purrr and broom

df <- enframe(x)
df
#> # A tibble: 3 × 2
#> name value
#> <chr> <list>
#> 1 a <int [5]>
#> 2 b <int [2]>
#> 3 c <int [2]>

The advantage of this structure is that it generalizes in a straightfor‐
ward way—names are useful if you have a character vector of meta‐
data, but don’t help if you have other types of data, or multiple
vectors.

Now if you want to iterate over names and values in parallel, you
can use map2():

df %>%
 mutate(
 smry = map2_chr(
 name,
 value,
 ~ stringr::str_c(.x, ": ", .y[1])
)
)
#> # A tibble: 3 × 3
#> name value smry
#> <chr> <list> <chr>
#> 1 a <int [5]> a: 1
#> 2 b <int [2]> b: 3
#> 3 c <int [2]> c: 5

Exercises
1. List all the functions that you can think of that take an atomic

vector and return a list.
2. Brainstorm useful summary functions that, like quantile(),

return multiple values.
3. What’s missing in the following data frame? How does quan

tile() return that missing piece? Why isn’t that helpful here?
mtcars %>%
 group_by(cyl) %>%
 summarize(q = list(quantile(mpg))) %>%
 unnest()
#> # A tibble: 15 × 2
#> cyl q
#> <dbl> <dbl>

Creating List-Columns | 415

#> 1 4 21.4
#> 2 4 22.8
#> 3 4 26.0
#> 4 4 30.4
#> 5 4 33.9
#> 6 6 17.8
#> # ... with 9 more rows

4. What does this code do? Why might might it be useful?
mtcars %>%
 group_by(cyl) %>%
 summarize_each(funs(list))

Simplifying List-Columns
To apply the techniques of data manipulation and visualization
you’ve learned in this book, you’ll need to simplify the list-column
back to a regular column (an atomic vector), or set of columns. The
technique you’ll use to collapse back down to a simpler structure
depends on whether you want a single value per element, or multi‐
ple values:

• If you want a single value, use mutate() with map_lgl(),
map_int(), map_dbl(), and map_chr() to create an atomic vec‐
tor.

• If you want many values, use unnest() to convert list-columns
back to regular columns, repeating the rows as many times as
necessary.

These are described in more detail in the following sections.

List to Vector
If you can reduce your list column to an atomic vector then it will be
a regular column. For example, you can always summarize an object
with it’s type and length, so this code will work regardless of what
sort of list-column you have:

df <- tribble(
 ~x,
 letters[1:5],
 1:3,
 runif(5)
)

416 | Chapter 20: Many Models with purrr and broom

df %>% mutate(
 type = map_chr(x, typeof),
 length = map_int(x, length)
)
#> # A tibble: 3 × 3
#> x type length
#> <list> <chr> <int>
#> 1 <chr [5]> character 5
#> 2 <int [3]> integer 3
#> 3 <dbl [5]> double 5

This is the same basic information that you get from the default tbl
print method, but now you can use it for filtering. This is a useful
technique if you have a heterogeneous list, and want to filter out the
parts that aren’t working for you.

Don’t forget about the map_*() shortcuts—you can use map_chr(x,
"apple") to extract the string stored in apple for each element of x.
This is useful for pulling apart nested lists into regular columns. Use
the .null argument to provide a value to use if the element is miss‐
ing (instead of returning NULL):

df <- tribble(
 ~x,
 list(a = 1, b = 2),
 list(a = 2, c = 4)
)
df %>% mutate(
 a = map_dbl(x, "a"),
 b = map_dbl(x, "b", .null = NA_real_)
)
#> # A tibble: 2 × 3
#> x a b
#> <list> <dbl> <dbl>
#> 1 <list [2]> 1 2
#> 2 <list [2]> 2 NA

Unnesting
unnest() works by repeating the regular columns once for each ele‐
ment of the list-column. For example, in the following very simple
example we repeat the first row four times (because there the first
element of y has length four), and the second row once:

tibble(x = 1:2, y = list(1:4, 1)) %>% unnest(y)
#> # A tibble: 5 × 2
#> x y
#> <int> <dbl>

Simplifying List-Columns | 417

#> 1 1 1
#> 2 1 2
#> 3 1 3
#> 4 1 4
#> 5 2 1

This means that you can’t simultaneously unnest two columns that
contain a different number of elements:

Ok, because y and z have the same number of elements in
every row
df1 <- tribble(
 ~x, ~y, ~z,
 1, c("a", "b"), 1:2,
 2, "c", 3
)
df1
#> # A tibble: 2 × 3
#> x y z
#> <dbl> <list> <list>
#> 1 1 <chr [2]> <int [2]>
#> 2 2 <chr [1]> <dbl [1]>
df1 %>% unnest(y, z)
#> # A tibble: 3 × 3
#> x y z
#> <dbl> <chr> <dbl>
#> 1 1 a 1
#> 2 1 b 2
#> 3 2 c 3

Doesn't work because y and z have different number of elements
df2 <- tribble(
 ~x, ~y, ~z,
 1, "a", 1:2,
 2, c("b", "c"), 3
)
df2
#> # A tibble: 2 × 3
#> x y z
#> <dbl> <list> <list>
#> 1 1 <chr [1]> <int [2]>
#> 2 2 <chr [2]> <dbl [1]>
df2 %>% unnest(y, z)
#> Error: All nested columns must have
#> the same number of elements.

The same principle applies when unnesting list-columns of data
frames. You can unnest multiple list-columns as long as all the data
frames in each row have the same number of rows.

418 | Chapter 20: Many Models with purrr and broom

Exercises
1. Why might the lengths() function be useful for creating

atomic vector columns from list-columns?
2. List the most common types of vector found in a data frame.

What makes lists different?

Making Tidy Data with broom
The broom package provides three general tools for turning models
into tidy data frames:

• broom::glance(model) returns a row for each model. Each col‐
umn gives a model summary: either a measure of model quality,
or complexity, or a combination of the two.

• broom::tidy(model) returns a row for each coefficient in the
model. Each column gives information about the estimate or its
variability.

• broom::augment(model, data) returns a row for each row in
data, adding extra values like residuals, and influence statistics.

Broom works with a wide variety of models produced by the most
popular modelling packages. See https://github.com/tidyverse/broom
for a list of currently supported models.

Making Tidy Data with broom | 419

https://github.com/tidyverse/broom

PART V

Communicate

So far, you’ve learned the tools to get your data into R, tidy it into a
form convenient for analysis, and then understand your data
through transformation, visualization, and modeling. However, it
doesn’t matter how great your analysis is unless you can explain it to
others: you need to communicate your results.

Communication is the theme of the following four chapters:

• In Chapter 21, you will learn about R Markdown, a tool for inte‐
grating prose, code, and results. You can use R Markdown in
notebook mode for analyst-to-analyst communication, and in
report mode for analyst-to-decision-maker communication.
Thanks to the power of R Markdown formats, you can even use
the same document for both purposes.

• In Chapter 22, you will learn how to take your exploratory
graphics and turn them into expository graphics, graphics that
help the newcomer to your analysis understand what’s going on
as quickly and easily as possible.

• In Chapter 23, you’ll learn a little about the many other varieties
of outputs you can produce using R Markdown, including dash‐
boards, websites, and books.

• We’ll finish up with Chapter 24, where you’ll learn about the
“analysis notebook” and how to systematically record your suc‐
cesses and failures so that you can learn from them.

Unfortunately, these chapters focus mostly on the technical mechan‐
ics of communication, not the really hard problems of communicat‐
ing your thoughts to other humans. However, there are lot of other
great books about communication, which we’ll point you to at the
end of each chapter.

CHAPTER 21

R Markdown

Introduction
R Markdown provides a unified authoring framework for data sci‐
ence, combining your code, its results, and your prose commentary.
R Markdown documents are fully reproducible and support dozens
of output formats, like PDFs, Word files, slideshows, and more.

R Markdown files are designed to be used in three ways:

• For communicating to decision makers, who want to focus on
the conclusions, not the code behind the analysis.

• For collaborating with other data scientists (including future
you!), who are interested in both your conclusions, and how
you reached them (i.e., the code).

• As an environment in which to do data science, as a modern day
lab notebook where you can capture not only what you did, but
also what you were thinking.

R Markdown integrates a number of R packages and external tools.
This means that help is, by and large, not available through ?.
Instead, as you work through this chapter, and use R Markdown in
the future, keep these resources close to hand:

• R Markdown Cheat Sheet: available in the RStudio IDE under
Help → Cheatsheets → R Markdown Cheat Sheet

423

• R Markdown Reference Guide: available in the RStudio IDE
under Help → Cheatsheets → R Markdown Reference Guide

Both cheatsheets are also available at http://rstudio.com/cheatsheets.

Prerequisites
You need the rmarkdown package, but you don’t need to explicitly
install it or load it, as RStudio automatically does both when needed.

R Markdown Basics
This is an R Markdown file, a plain-text file that has the exten‐
sion .Rmd:

title: "Diamond sizes"
date: 2016-08-25
output: html_document

```{r setup, include = FALSE}
library(ggplot2)
library(dplyr)

smaller <- diamonds %>%
  filter(carat <= 2.5)
```

We have data about `r nrow(diamonds)` diamonds. Only
`r nrow(diamonds) - nrow(smaller)` are larger than
2.5 carats. The distribution of the remainder is shown
below:

```{r, echo = FALSE}
smaller %>%
  ggplot(aes(carat)) +
  geom_freqpoly(binwidth = 0.01)
```

It contains three important types of content:

1. An (optional) YAML header surrounded by ---s.
2. Chunks of R code surrounded by ```.
3. Text mixed with simple text formatting like # heading and

italics.

424 | Chapter 21: R Markdown

http://rstudio.com/cheatsheets

When you open an .Rmd, you get a notebook interface where code
and output are interleaved. You can run each code chunk by clicking
the Run icon (it looks like a play button at the top of the chunk), or
by pressing Cmd/Ctrl-Shift-Enter. RStudio executes the code and
displays the results inline with the code:

To produce a complete report containing all text, code, and results,
click “Knit” or press Cmd/Ctrl-Shift-K. You can also do this pro‐
grammatically with rmarkdown::render("1-example.Rmd"). This
will display the report in the viewer pane, and create a self-contained
HTML file that you can share with others.

R Markdown Basics | 425

When you knit the document R Markdown sends the .Rmd file to
knitr, which executes all of the code chunks and creates a new
Markdown (.md) document that includes the code and its output.
The Markdown file generated by knitr is then processed by pandoc,
which is responsible for creating the finished file. The advantage of
this two-step workflow is that you can create a very wide range of
output formats, as you’ll learn about in Chapter 23.

To get started with your own .Rmd file, select File → New File → R
Markdown… in the menu bar. RStudio will launch a wizard that you
can use to pre-populate your file with useful content that reminds
you how the key features of R Markdown work.

The following sections dive into the three components of an R
Markdown document in more detail: the Markdown text, the code
chunks, and the YAML header.

Exercises
1. Create a new notebook using File → New File → R Notebook.

Read the instructions. Practice running the chunks. Verify that
you can modify the code, rerun it, and see modified output.

2. Create a new R Markdown document with File → New File → R
Markdown… Knit it by clicking the appropriate button. Knit it
by using the appropriate keyboard shortcut. Verify that you can
modify the input and see the output update.

3. Compare and contrast the R Notebook and R Markdown files
you created earlier. How are the outputs similar? How are they
different? How are the inputs similar? How are they different?
What happens if you copy the YAML header from one to the
other?

4. Create one new R Markdown document for each of the three
built-in formats: HTML, PDF, and Word. Knit each of the three
documents. How does the output differ? How does the input

426 | Chapter 21: R Markdown

http://yihui.name/knitr/
http://pandoc.org/

differ? (You may need to install LaTeX in order to build the PDF
output—RStudio will prompt you if this is necessary.)

Text Formatting with Markdown
Prose in .Rmd files is written in Markdown, a lightweight set of con‐
ventions for formatting plain-text files. Markdown is designed to be
easy to read and easy to write. It is also very easy to learn. The fol‐
lowing guide shows how to use Pandoc’s Markdown, a slightly
extended version of Markdown that R Markdown understands:

Text formatting
--

italic or _italic_
bold __bold__
`code`
superscript^2^ and subscript~2~

Headings
--

1st Level Header

2nd Level Header

3rd Level Header

Lists
--

* Bulleted list item 1

* Item 2

 * Item 2a

 * Item 2b

1. Numbered list item 1

1. Item 2. The numbers are incremented automatically in
the output.

Links and images
--

<http://example.com>

Text Formatting with Markdown | 427

[linked phrase](http://example.com)

![optional caption text](path/to/img.png)

Tables
--

First Header	Second Header
Content Cell | Content Cell
Content Cell | Content Cell

The best way to learn these is simply to try them out. It will take a
few days, but soon they will become second nature, and you won’t
need to think about them. If you forget, you can get to a handy ref‐
erence sheet with Help → Markdown Quick Reference.

Exercises
1. Practice what you’ve learned by creating a brief CV. The title

should be your name, and you should include headings for (at
least) education or employment. Each of the sections should
include a bulleted list of jobs/degrees. Highlight the year in
bold.

2. Using the R Markdown quick reference, figure out how to:
a. Add a footnote.
b. Add a horizontal rule.
c. Add a block quote.

3. Copy and paste the contents of diamond-sizes.Rmd from https://
github.com/hadley/r4ds/tree/master/rmarkdown into a local R
Markdown document. Check that you can run it, then add text
after the frequency polygon that describes its most striking fea‐
tures.

Code Chunks
To run code inside an R Markdown document, you need to insert a
chunk. There are three ways to do so:

428 | Chapter 21: R Markdown

https://github.com/hadley/r4ds/tree/master/rmarkdown
https://github.com/hadley/r4ds/tree/master/rmarkdown

1. The keyboard shortcut Cmd/Ctrl-Alt-I
2. The “Insert” button icon in the editor toolbar
3. By manually typing the chunk delimiters ```{r} and ```

Obviously, I’d recommend you learn the keyboard shortcut. It will
save you a lot of time in the long run!

You can continue to run the code using the keyboard shortcut that
by now (I hope!) you know and love: Cmd/Ctrl-Enter. However,
chunks get a new keyboard shortcut: Cmd/Ctrl-Shift-Enter, which
runs all the code in the chunk. Think of a chunk like a function. A
chunk should be relatively self-contained, and focused around a sin‐
gle task.

The following sections describe the chunk header, which consists of
```{r, followed by an optional chunk name, followed by comma-
separated options, followed by }. Next comes your R code and the
chunk end is indicated by a final ```.

Chunk Name
Chunks can be given an optional name: ```{r by-name}. This has
three advantages:

• You can more easily navigate to specific chunks using the drop-
down code navigator in the bottom-left of the script editor:

• Graphics produced by the chunks will have useful names that
make them easier to use elsewhere. More on that in “Other
Important Options” on page 467.

Code Chunks | 429



• You can set up networks of cached chunks to avoid re-
performing expensive computations on every run. More on that
in a bit.

There is one chunk name that imbues special behavior: setup.
When you’re in a notebook mode, the chunk named setup will be
run automatically once, before any other code is run.

Chunk Options
Chunk output can be customized with options, arguments supplied
to the chunk header. knitr provides almost 60 options that you can
use to customize your code chunks. Here we’ll cover the most
important chunk options that you’ll use frequently. You can see the
full list at http://yihui.name/knitr/options/.

The most important set of options controls if your code block is exe‐
cuted and what results are inserted in the finished report:

• eval = FALSE prevents code from being evaluated. (And obvi‐
ously if the code is not run, no results will be generated.) This is
useful for displaying example code, or for disabling a large block
of code without commenting each line.

• include = FALSE runs the code, but doesn’t show the code or
results in the final document. Use this for setup code that you
don’t want cluttering your report.

• echo = FALSE prevents code, but not the results from appearing
in the finished file. Use this when writing reports aimed at peo‐
ple who don’t want to see the underlying R code.

• message = FALSE or warning = FALSE prevents messages or
warnings from appearing in the finished file.

• results = 'hide' hides printed output; fig.show = 'hide'
hides plots.

• error = TRUE causes the render to continue even if code
returns an error. This is rarely something you’ll want to include
in the final version of your report, but can be very useful if you
need to debug exactly what is going on inside your .Rmd. It’s
also useful if you’re teaching R and want to deliberately include
an error. The default, error = FALSE, causes knitting to fail if
there is a single error in the document.

430 | Chapter 21: R Markdown

http://yihui.name/knitr/options/


The following table summarizes which types of output each option
suppressess:

Option Run code Show code Output Plots Messages Warnings

eval = FALSE x x x x x

include = FALSE x x x x x

echo = FALSE x

results = "hide" x

fig.show = "hide" x

message = FALSE x

warning = FALSE x

Table
By default, R Markdown prints data frames and matrices as you’d see
them in the console:

mtcars[1:5, 1:10]
#>                    mpg cyl disp  hp drat   wt qsec vs am gear
#> Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  0  1    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  0  1    4
#> Datsun 710        22.8   4  108  93 3.85 2.32 18.6  1  1    4
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1  0    3
#> Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0  0    3

If you prefer that data be displayed with additional formatting you
can use the knitr::kable function. The following code generates
Table 21-1:

knitr::kable(
  mtcars[1:5, ],
  caption = "A knitr kable."
)

Table 21-1. A knitr kable

 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.62 16.5 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.88 17.0 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.21 19.4 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2

Code Chunks | 431



Read the documentation for ?knitr::kable to see the other ways in
which you can customize the table. For even deeper customization,
consider the xtable, stargazer, pander, tables, and ascii packages.
Each provides a set of tools for returning formatted tables from R
code.

There is also a rich set of options for controlling how figures are
embedded. You’ll learn about these in “Saving Your Plots” on page
464.

Caching
Normally, each knit of a document starts from a completely clean
slate. This is great for reproducibility, because it ensures that you’ve
captured every important computation in code. However, it can be
painful if you have some computations that take a long time. The
solution is cache = TRUE. When set, this will save the output of the
chunk to a specially named file on disk. On subsequent runs, knitr
will check to see if the code has changed, and if it hasn’t, it will reuse
the cached results.

The caching system must be used with care, because by default it is
based on the code only, not its dependencies. For example, here the
processed_data chunk depends on the raw_data chunk:

```{r raw_data}
rawdata <- readr::read_csv("a_very_large_file.csv")
```

```{r processed_data, cached = TRUE}
processed_data <- rawdata %>%
 filter(!is.na(import_var)) %>%
 mutate(new_variable = complicated_transformation(x, y, z))
```

Caching the processed_data chunk means that it will get rerun if
the dplyr pipeline is changed, but it won’t get rerun if the
read_csv() call changes. You can avoid that problem with the
dependson chunk option:

```{r processed_data, cached = TRUE, dependson = "raw_data"}
processed_data <- rawdata %>%
 filter(!is.na(import_var)) %>%
 mutate(new_variable = complicated_transformation(x, y, z))
```

432 | Chapter 21: R Markdown



dependson should contain a character vector of every chunk that the
cached chunk depends on. knitr will update the results for the
cached chunk whenever it detects that one of its dependencies has
changed.

Note that the chunks won’t update if a_very_large_file.csv changes,
because knitr caching only tracks changes within the .Rmd file. If
you want to also track changes to that file you can use the
cache.extra option. This is an arbitrary R expression that will inva‐
lidate the cache whenever it changes. A good function to use is
file.info(): it returns a bunch of information about the file
including when it was last modified. Then you can write:

```{r raw_data, cache.extra = file.info("a_very_large_file.csv")}
rawdata <- readr::read_csv("a_very_large_file.csv")
```

As your caching strategies get progressively more complicated, it’s
a good idea to regularly clear out all your caches with
knitr::clean_cache().

I’ve used the advice of David Robinson to name these chunks: each
chunk is named after the primary object that it creates. This makes
it easier to understand the dependson specification.

Global Options
As you work more with knitr, you will discover that some of the
default chunk options don’t fit your needs, and want to change
them. You can do that by calling knitr::opts_chunk$set() in a
code chunk. For example, when writing books and tutorials I set:

knitr::opts_chunk$set(
  comment = "#>",
  collapse = TRUE
)

This uses my preferred comment formatting, and ensures that the
code and output are kept closely entwined. On the other hand, if
you were preparing a report, you might set:

knitr::opts_chunk$set(
  echo = FALSE
)

That will hide the code by default, only showing the chunks you
deliberately choose to show (with echo = TRUE). You might con‐

Code Chunks | 433

http://bit.ly/DavidRobinsonTwitter


sider setting message = FALSE and warning = FALSE, but that
would make it harder to debug problems because you wouldn’t see
any messages in the final document.

Inline Code
There is one other way to embed R code into an R Markdown docu‐
ment: directly into the text, with: `r `. This can be very useful if you
mention properties of your data in the text. For example, in the
example document I used at the start of the chapter I had:

We have data about `r nrow(diamonds)` diamonds. Only `r
nrow(diamonds) - nrow(smaller)` are larger than 2.5 carats. The
distribution of the remainder is shown below:

When the report is knit, the results of these computations are inser‐
ted into the text:

We have data about 53940 diamonds. Only 126 are larger than 2.5
carats. The distribution of the remainder is shown below:

When inserting numbers into text, format() is your friend. It allows
you to set the number of digits so you don’t print to a ridiculous
degree of accuracy, and a big.mark to make numbers easier to read.
I’ll often combine these into a helper function:

comma <- function(x) format(x, digits = 2, big.mark = ",")
comma(3452345)
#> [1] "3,452,345"
comma(.12358124331)
#> [1] "0.12"

Exercises
1. Add a section that explores how diamond sizes vary by cut,

color, and clarity. Assume you’re writing a report for someone
who doesn’t know R, and instead of setting echo = FALSE on
each chunk, set a global option.

2. Download diamond-sizes.Rmd from https://github.com/hadley/
r4ds/tree/master/rmarkdown. Add a section that describes the
largest 20 diamonds, including a table that displays their most
important attributes.

3. Modify diamonds-sizes.Rmd to use comma() to produce nicely
formatted output. Also include the percentage of diamonds that
are larger than 2.5 carats.

434 | Chapter 21: R Markdown

https://github.com/hadley/r4ds/tree/master/rmarkdown
https://github.com/hadley/r4ds/tree/master/rmarkdown


4. Set up a network of chunks where d depends on c and b,
and both b and c depend on a. Have each chunk print
lubridate::now(), set cache = TRUE, then verify your under‐
standing of caching.

Troubleshooting
Troubleshooting R Markdown documents can be challenging
because you are no longer in an interactive R environment, and you
will need to learn some new tricks. The first thing you should always
try is to re-create the problem in an interactive session. Restart R,
then “Run all chunks” (either from the the Code menu, under the
Run region, or with the keyboard shortcut Ctrl-Alt-R). If you’re
lucky, that will re-create the problem, and you can figure out what’s
going on interactively.

If that doesn’t help, there must be something different between your
interactive environment and the R Markdown environment. You’re
going to need to systematically explore the options. The most com‐
mon difference is the working directory: the working directory of
an R Markdown document is the directory in which it lives. Check
that the working directory is what you expect by including getwd()
in a chunk.

Next, brainstorm all of the things that might cause the bug. You’ll
need to systematically check that they’re the same in your R session
and your R Markdown session. The easiest way to do that is to set
error = TRUE on the chunk causing the problem, then use print()
and str() to check that settings are as you expect.

YAML Header
You can control many other “whole document” settings by tweaking
the parameters of the YAML header. You might wonder what YAML
stands for: it’s “yet another markup language,” which is designed for
representing hierarchical data in a way that’s easy for humans to
read and write. R Markdown uses it to control many details of the
output. Here we’ll discuss two: document parameters and bibliogra‐
phies.

Troubleshooting | 435



Parameters
R Markdown documents can include one or more parameters whose
values can be set when you render the report. Parameters are useful
when you want to re-render the same report with distinct values for
various key inputs. For example, you might be producing sales
reports per branch, exam results by student, or demographic sum‐
maries by country. To declare one or more parameters, use the par
ams field.

This example use a my_class parameter to determine which class of
cars to display:

---
output: html_document
params:
  my_class: "suv"
---

```{r setup, include = FALSE}
library(ggplot2)
library(dplyr)

class <- mpg %>% filter(class == params$my_class)
```

# Fuel economy for `r params$my_class`s

```{r, message = FALSE}
ggplot(class, aes(displ, hwy)) +
 geom_point() +
 geom_smooth(se = FALSE)
```

As you can see, parameters are available within the code chunks as a
read-only list named params.

You can write atomic vectors directly into the YAML header. You
can also run arbitrary R expressions by prefacing the parameter
value with !r. This is a good way to specify date/time parameters:

params:
  start: !r lubridate::ymd("2015-01-01")
  snapshot: !r lubridate::ymd_hms("2015-01-01 12:30:00")

In RStudio, you can click the “Knit with Parameters” option in the
Knit drop-down menu to set parameters, render, and preview the
report in a single user-friendly step. You can customize the dialog by

436 | Chapter 21: R Markdown



setting other options in the header. See http://bit.ly/ParamReports
for more details.

Alternatively, if you need to produce many such parameterized
reports, you can call rmarkdown::render() with a list of params:

rmarkdown::render(
  "fuel-economy.Rmd",
  params = list(my_class = "suv")
)

This is particularly powerful in conjunction with purrr:pwalk().
The following example creates a report for each value of class
found in mpg. First we create a data frame that has one row for each
class, giving the filename of report and the params it should be
given:

reports <- tibble(
  class = unique(mpg$class),
  filename = stringr::str_c("fuel-economy-", class, ".html"),
  params = purrr::map(class, ~ list(my_class = .))
)
reports
#> # A tibble: 7 × 3
#>     class                  filename     params
#>     <chr>                     <chr>     <list>
#> 1 compact fuel-economy-compact.html <list [1]>
#> 2 midsize fuel-economy-midsize.html <list [1]>
#> 3     suv     fuel-economy-suv.html <list [1]>
#> 4 2seater fuel-economy-2seater.html <list [1]>
#> 5 minivan fuel-economy-minivan.html <list [1]>
#> 6  pickup  fuel-economy-pickup.html <list [1]>
#> # ... with 1 more rows

Then we match the column names to the argument names of ren
der(), and use purrr’s parallel walk to call render() once for each
row:

reports %>%
  select(output_file = filename, params) %>%
  purrr::pwalk(rmarkdown::render, input = "fuel-economy.Rmd")

Bibliographies and Citations
Pandoc can automatically generate citations and a bibliography in a
number of styles. To use this feature, specify a bibliography file using
the bibliography field in your file’s header. The field should contain
a path from the directory that contains your .Rmd file to the file that
contains the bibliography file:

YAML Header | 437

http://bit.ly/ParamReports


bibliography: rmarkdown.bib

You can use many common bibliography formats including BibLa‐
TeX, BibTeX, endnote, and medline.

To create a citation within your .Rmd file, use a key composed of
“@” and the citation identifier from the bibliography file. Then place
the citation in square brackets. Here are some examples:

Separate multiple citations with a `;`:
Blah blah [@smith04; @doe99].

You can add arbitrary comments inside the square brackets:
Blah blah [see @doe99, pp. 33-35; also @smith04, ch. 1].

Remove the square brackets to create an in-text citation:
@smith04 says blah, or @smith04 [p. 33] says blah.

Add a `-` before the citation to suppress the author's name:
Smith says blah [-@smith04].

When R Markdown renders your file, it will build and append a bib‐
liography to the end of your document. The bibliography will con‐
tain each of the cited references from your bibliography file, but it
will not contain a section heading. As a result it is common practice
to end your file with a section header for the bibliography, such as
# References or # Bibliography.

You can change the style of your citations and bibliography by refer‐
encing a CSL (citation style language) file to the csl field:

bibliography: rmarkdown.bib
csl: apa.csl

As with the bibliography field, your CSL file should contain a path
to the file. Here I assume that the CSL file is in the same directory as
the .Rmd file. A good place to find CSL style files for common bib‐
liography styles is http://github.com/citation-style-language/styles.

Learning More
R Markdown is still relatively young, and is still growing rapidly.
The best place to stay on top of innovations is the official R Mark‐
down website: http://rmarkdown.rstudio.com.

There are two important topics that we haven’t covered here: collab‐
oration, and the details of accurately communicating your ideas to
other humans. Collaboration is a vital part of modern data science,

438 | Chapter 21: R Markdown

http://github.com/citation-style-language/styles
http://rmarkdown.rstudio.com


and you can make your life much easier by using version control
tools, like Git and GitHub. We recommend two free resources that
will teach you about Git:

• “Happy Git with R”: a user-friendly introduction to Git and Git‐
Hub from R users, by Jenny Bryan. The book is freely available
online.

• The “Git and GitHub” chapter of R Packages, by Hadley. You can
also read it for free online: http://r-pkgs.had.co.nz/git.html.

I have also not talked about what you should actually write in order
to clearly communicate the results of your analysis. To improve your
writing, I highly recommend reading either Style: Lessons in Clarity
and Grace by Joseph M. Williams and Joseph Bizup, or The Sense of
Structure: Writing from the Reader’s Perspective by George Gopen.
Both books will help you understand the structure of sentences and
paragraphs, and give you the tools to make your writing more clear.
(These books are rather expensive if purchased new, but they’re used
by many English classes so there are plenty of cheap secondhand
copies). George Gopen also has a number of short articles on writ‐
ing. They are aimed at lawyers, but almost everything applies to data 
scientists too.

Learning More | 439

http://happygitwithr.com
http://happygitwithr.com
http://r-pkgs.had.co.nz/git.html
http://georgegopen.com/articles/litigation/
http://georgegopen.com/articles/litigation/




CHAPTER 22

Graphics for Communication
with ggplot2

Introduction
In Chapter 5, you learned how to use plots as tools for exploration.
When you make exploratory plots, you know—even before looking
—which variables the plot will display. You made each plot for a
purpose, could quickly look at it, and then move on to the next plot.
In the course of most analyses, you’ll produce tens or hundreds of
plots, most of which are immediately thrown away.

Now that you understand your data, you need to communicate your
understanding to others. Your audience will likely not share your
background knowledge and will not be deeply invested in the data.
To help others quickly build up a good mental model of the data,
you will need to invest considerable effort in making your plots as
self-explanatory as possible. In this chapter, you’ll learn some of the
tools that ggplot2 provides to do so.

This chapter focuses on the tools you need to create good graphics. I
assume that you know what you want, and just need to know how to
do it. For that reason, I highly recommend pairing this chapter with
a good general visualization book. I particularly like The Truthful
Art, by Albert Cairo. It doesn’t teach the mechanics of creating visu‐
alizations, but instead focuses on what you need to think about in
order to create effective graphics.

441



Prerequisites
In this chapter, we’ll focus once again on ggplot2. We’ll also use a
little dplyr for data manipulation, and a few ggplot2 extension
packages, including ggrepel and viridis. Rather than loading those
extensions here, we’ll refer to their functions explicitly, using the ::
notation. This will help make it clear which functions are built into
ggplot2, and which come from other packages. Don’t forget you’ll
need to install those packages with install.packages() if you don’t
already have them.

library(tidyverse)

Label
The easiest place to start when turning an exploratory graphic into
an expository graphic is with good labels. You add labels with the
labs() function. This example adds a plot title:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
   title = paste(
     "Fuel efficiency generally decreases with"
     "engine size"
  )

442 | Chapter 22: Graphics for Communication with ggplot2



The purpose of a plot title is to summarize the main finding. Avoid
titles that just describe what the plot is, e.g., “A scatterplot of engine
displacement vs. fuel economy.”

If you need to add more text, there are two other useful labels that
you can use in ggplot2 2.2.0 and above (which should be available
by the time you’re reading this book):

• subtitle adds additional detail in a smaller font beneath the
title.

• caption adds text at the bottom right of the plot, often used to
describe the source of the data:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
    title = paste(
      "Fuel efficiency generally decreases with"
      "engine size",
    )
    subtitle = paste(
      "Two seaters (sports cars) are an exception"
      "because of their light weight",
    )
    caption = "Data from fueleconomy.gov"
  )

Label | 443



You can also use labs() to replace the axis and legend titles. It’s usu‐
ally a good idea to replace short variable names with more detailed
descriptions, and to include the units:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
    x = "Engine displacement (L)",
    y = "Highway fuel economy (mpg)",
    colour = "Car type"
  )

It’s possible to use mathematical equations instead of text strings.
Just switch "" out for quote() and read about the available options
in ?plotmath:

df <- tibble(
  x = runif(10),
  y = runif(10)
)
ggplot(df, aes(x, y)) +
  geom_point() +
  labs(
    x = quote(sum(x[i] ^ 2, i == 1, n)),
    y = quote(alpha + beta + frac(delta, theta))
  )

444 | Chapter 22: Graphics for Communication with ggplot2



Exercises
1. Create one plot on the fuel economy data with customized

title, subtitle, caption, x, y, and colour labels.
2. The geom_smooth() is somewhat misleading because the hwy for

large engines is skewed upwards due to the inclusion of light‐
weight sports cars with big engines. Use your modeling tools to
fit and display a better model.

3. Take an exploratory graphic that you’ve created in the last
month, and add informative titles to make it easier for others to
understand.

Annotations
In addition to labeling major components of your plot, it’s often use‐
ful to label individual observations or groups of observations. The
first tool you have at your disposal is geom_text(). geom_text() is
similar to geom_point(), but it has an additional aesthetic: label.
This makes it possible to add textual labels to your plots.

There are two possible sources of labels. First, you might have a tib‐
ble that provides labels. The following plot isn’t terribly useful, but it
illustrates a useful approach—pull out the most efficient car in each
class with dplyr, and then label it on the plot:

best_in_class <- mpg %>%
  group_by(class) %>%
  filter(row_number(desc(hwy)) == 1)

Annotations | 445



ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_text(aes(label = model), data = best_in_class)

This is hard to read because the labels overlap with each other, and
with the points. We can make things a little better by switching to
geom_label(), which draws a rectangle behind the text. We also use
the nudge_y parameter to move the labels slightly above the corre‐
sponding points:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_label(
    aes(label = model),
    data = best_in_class,
    nudge_y = 2,
    alpha = 0.5
  )

446 | Chapter 22: Graphics for Communication with ggplot2



That helps a bit, but if you look closely in the top lefthand corner,
you’ll notice that there are two labels practically on top of each
other. This happens because the highway mileage and displacement
for the best cars in the compact and subcompact categories are
exactly the same. There’s no way that we can fix these by applying
the same transformation for every label. Instead, we can use the
ggrepel package by Kamil Slowikowski. This useful package will
automatically adjust labels so that they don’t overlap:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_point(size = 3, shape = 1, data = best_in_class) +
  ggrepel::geom_label_repel(
    aes(label = model),
    data = best_in_class
  )

Note another handy technique used here: I added a second layer of
large, hollow points to highlight the points that I’ve labeled.

You can sometimes use the same idea to replace the legend with
labels placed directly on the plot. It’s not wonderful for this plot, but
it isn’t too bad. (theme(legend.position = "none") turns the leg‐
end off—we’ll talk about it more shortly.)

class_avg <- mpg %>%
  group_by(class) %>%
  summarize(
    displ = median(displ),
    hwy = median(hwy)
  )

Annotations | 447



ggplot(mpg, aes(displ, hwy, color = class)) +
  ggrepel::geom_label_repel(aes(label = class),
    data = class_avg,
    size = 6,
    label.size = 0,
    segment.color = NA
  ) +
  geom_point() +
  theme(legend.position = "none")

Alternatively, you might just want to add a single label to the plot,
but you’ll still need to create a data frame. Often, you want the label
in the corner of the plot, so it’s convenient to create a new data
frame using summarize() to compute the maximum values of x and
y:

label <- mpg %>%
  summarize(
    displ = max(displ),
    hwy = max(hwy),
    label = paste(
      "Increasing engine size is \nrelated to"
      "decreasing fuel economy."
    )
  )

ggplot(mpg, aes(displ, hwy)) +
  geom_point() +
  geom_text(
    aes(label = label),
    data = label,
    vjust = "top",
    hjust = "right"
  )

448 | Chapter 22: Graphics for Communication with ggplot2



If you want to place the text exactly on the borders of the plot, you
can use +Inf and -Inf. Since we’re no longer computing the posi‐
tions from mpg, we can use tibble() to create the data frame:

label <- tibble(
  displ = Inf,
  hwy = Inf,
  label = paste(
    "Increasing engine size is \nrelated to"
    "decreasing fuel economy."
  )
)

ggplot(mpg, aes(displ, hwy)) +
  geom_point() +
  geom_text(
    aes(label = label),
    data = label,
    vjust = "top",
    hjust = "right"
  )

Annotations | 449



In these examples, I manually broke the label up into lines using
"\n". Another approach is to use stringr::str_wrap() to automat‐
ically add line breaks, given the number of characters you want per
line:

"Increasing engine size related to decreasing fuel economy." %>%
  stringr::str_wrap(width = 40) %>%
  writeLines()
#> Increasing engine size is related to
#> decreasing fuel economy.

Note the use of hjust and vjust to control the alignment of the
label. Figure 22-1 shows all nine possible combinations.

Figure 22-1. All nine combinations of hjust and vjust

Remember, in addition to geom_text(), you have many other geoms
in ggplot2 available to help annotate your plot. A few ideas:

• Use geom_hline() and geom_vline() to add reference lines. I
often make them thick (size = 2) and white (color = white),
and draw them underneath the primary data layer. That makes
them easy to see, without drawing attention away from the data.

• Use geom_rect() to draw a rectangle around points of interest.
The boundaries of the rectangle are defined by the xmin, xmax,
ymin, and ymax aesthetics.

• Use geom_segment() with the arrow argument to draw attention
to a point with an arrow. Use the x and y aesthetics to define the
starting location, and xend and yend to define the end location.

450 | Chapter 22: Graphics for Communication with ggplot2



The only limit is your imagination (and your patience with position‐
ing annotations to be aesthetically pleasing)!

Exercises
1. Use geom_text() with infinite positions to place text at the four

corners of the plot.
2. Read the documentation for annotate(). How can you use it to

add a text label to a plot without having to create a tibble?
3. How do labels with geom_text() interact with faceting? How

can you add a label to a single facet? How can you put a differ‐
ent label in each facet? (Hint: think about the underlying data.)

4. What arguments to geom_label() control the appearance of the
background box?

5. What are the four arguments to arrow()? How do they work?
Create a series of plots that demonstrate the most important 
options.

Scales
The third way you can make your plot better for communication is
to adjust the scales. Scales control the mapping from data values to
things that you can perceive. Normally, ggplot2 automatically adds
scales for you. For example, when you type:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class))

ggplot2 automatically adds default scales behind the scenes:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  scale_x_continuous() +
  scale_y_continuous() +
  scale_color_discrete()

Note the naming scheme for scales: scale_ followed by the name of
the aesthetic, then _, then the name of the scale. The default scales
are named according to the type of variable they align with: continu‐
ous, discrete, datetime, or date. There are lots of nondefault scales,
which you’ll learn about next.

Scales | 451



The default scales have been carefully chosen to do a good job for a
wide range of inputs. Nevertheless, you might want to override the
defaults for two reasons:

• You might want to tweak some of the parameters of the default
scale. This allows you to do things like change the breaks on the
axes, or the key labels on the legend.

• You might want to replace the scale altogether, and use a com‐
pletely different algorithm. Often you can do better than the
default because you know more about the data.

Axis Ticks and Legend Keys
There are two primary arguments that affect the appearance of the
ticks on the axes and the keys on the legend: breaks and labels.
breaks controls the position of the ticks, or the values associated
with the keys. labels controls the text label associated with each
tick/key. The most common use of breaks is to override the default
choice:

ggplot(mpg, aes(displ, hwy)) +
  geom_point() +
  scale_y_continuous(breaks = seq(15, 40, by = 5))

You can use labels in the same way (a character vector the same
length as breaks), but you can also set it to NULL to suppress the

452 | Chapter 22: Graphics for Communication with ggplot2



labels altogether. This is useful for maps, or for publishing plots
where you can’t share the absolute numbers:

ggplot(mpg, aes(displ, hwy)) +
  geom_point() +
  scale_x_continuous(labels = NULL) +
  scale_y_continuous(labels = NULL)

You can also use breaks and labels to control the appearance of
legends. Collectively axes and legends are called guides. Axes are
used for the x and y aesthetics; legends are used for everything else.

Another use of breaks is when you have relatively few data points
and want to highlight exactly where the observations occur. For
example, take this plot that shows when each US president started
and ended their term:

presidential %>%
  mutate(id = 33 + row_number()) %>%
  ggplot(aes(start, id)) +
    geom_point() +
    geom_segment(aes(xend = end, yend = id)) +
    scale_x_date(
      NULL,
      breaks = presidential$start,
      date_labels = "'%y"
    )

Scales | 453



Note that the specification of breaks and labels for date and date-
time scales is a little different:

• date_labels takes a format specification, in the same form as
parse_datetime().

• date_breaks (not shown here) takes a string like “2 days” or “1
month”.

Legend Layout
You will most often use breaks and labels to tweak the axes. While
they both also work for legends, there are a few other techniques
you are more likely to use.

To control the overall position of the legend, you need to use a
theme() setting. We’ll come back to themes at the end of the chapter,
but in brief, they control the nondata parts of the plot. The theme
setting legend.position controls where the legend is drawn:

base <- ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class))

base + theme(legend.position = "left")
base + theme(legend.position = "top")
base + theme(legend.position = "bottom")
base + theme(legend.position = "right") # the default

454 | Chapter 22: Graphics for Communication with ggplot2



You can also use legend.position = "none" to suppress the dis‐
play of the legend altogether.

To control the display of individual legends, use guides() along
with guide_legend() or guide_colorbar(). The following example
shows two important settings: controlling the number of rows the
legend uses with nrow, and overriding one of the aesthetics to make
the points bigger. This is particularly useful if you have used a low
alpha to display many points on a plot:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  theme(legend.position = "bottom") +
  guides(
    color = guide_legend(
      nrow = 1,
      override.aes = list(size = 4)
    )
  )
#> `geom_smooth()` using method = 'loess'

Replacing a Scale
Instead of just tweaking the details a little, you can replace the scale
altogether. There are two types of scales you’re most likely to want to
switch out: continuous position scales and color scales. Fortunately,
the same principles apply to all the other aesthetics, so once you’ve
mastered position and color, you’ll be able to quickly pick up other
scale replacements.

Scales | 455



It’s very useful to plot transformations of your variable. For example,
as we’ve seen in “Why Are Low-Quality Diamonds More Expen‐
sive?” on page 376, it’s easier to see the precise relationship between
carat and price if we log-transform them:

ggplot(diamonds, aes(carat, price)) +
  geom_bin2d()

ggplot(diamonds, aes(log10(carat), log10(price))) +
  geom_bin2d()

However, the disadvantage of this transformation is that the axes are
now labeled with the transformed values, making it hard to interpret
the plot. Instead of doing the transformation in the aesthetic map‐
ping, we can instead do it with the scale. This is visually identical,
except the axes are labeled on the original data scale:

ggplot(diamonds, aes(carat, price)) +
  geom_bin2d() +
  scale_x_log10() +
  scale_y_log10()

Another scale that is frequently customized is color. The default cat‐
egorical scale picks colors that are evenly spaced around the color
wheel. Useful alternatives are the ColorBrewer scales, which have
been hand-tuned to work better for people with common types of
color blindness. The following two plots look similar, but there is
enough difference in the shades of red and green that the dots on
the right can be distinguished even by people with red-green color
blindness:

456 | Chapter 22: Graphics for Communication with ggplot2



ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = drv))

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = drv)) +
  scale_color_brewer(palette = "Set1")

Don’t forget simpler techniques. If there are just a few colors, you
can add a redundant shape mapping. This will also help ensure your
plot is interpretable in black and white:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = drv, shape = drv)) +
  scale_color_brewer(palette = "Set1")

The ColorBrewer scales are documented online at http://color
brewer2.org/ and made available in R via the RColorBrewer pack‐
age, by Erich Neuwirth. Figure 22-2 shows the complete list of all
palettes. The sequential (top) and diverging (bottom) palettes are
particularly useful if your categorical values are ordered, or have a
“middle.” This often arises if you’ve used cut() to make a continu‐
ous variable into a categorical variable.

Scales | 457

http://colorbrewer2.org/
http://colorbrewer2.org/


Figure 22-2. All ColorBrewer scales

458 | Chapter 22: Graphics for Communication with ggplot2



When you have a predefined mapping between values and colors,
use scale_color_manual(). For example, if we map presidential
party to color, we want to use the standard mapping of red for
Republicans and blue for Democrats:

presidential %>%
  mutate(id = 33 + row_number()) %>%
  ggplot(aes(start, id, color = party)) +
    geom_point() +
    geom_segment(aes(xend = end, yend = id)) +
    scale_colour_manual(
      values = c(Republican = "red", Democratic = "blue")
    )

For continuous color, you can use the built-in scale_color_gradi
ent() or scale_fill_gradient(). If you have a diverging scale, you
can use scale_color_gradient2(). That allows you to give, for
example, positive and negative values different colors. That’s some‐
times also useful if you want to distinguish points above or below
the mean.

Another option is scale_color_viridis() provided by the viridis
package. It’s a continuous analog of the categorical ColorBrewer
scales. The designers, Nathaniel Smith and Stéfan van der Walt,
carefully tailored a continuous color scheme that has good percep‐
tual properties. Here’s an example from the viridis vignette:

df <- tibble(
  x = rnorm(10000),
  y = rnorm(10000)

Scales | 459



)
ggplot(df, aes(x, y)) +
  geom_hex() +
  coord_fixed()
#> Loading required package: methods

ggplot(df, aes(x, y)) +
  geom_hex() +
  viridis::scale_fill_viridis() +
  coord_fixed()

Note that all color scales come in two varieties: scale_color_x()
and scale_fill_x() for the color and fill aesthetics, respectively
(the color scales are available in both UK and US spellings).

Exercises
1. Why doesn’t the following code override the default scale?

ggplot(df, aes(x, y)) +
  geom_hex() +
  scale_color_gradient(low = "white", high = "red") +
  coord_fixed()

2. What is the first argument to every scale? How does it compare
to labs()?

3. Change the display of the presidential terms by:
a. Combining the two variants shown above.
b. Improving the display of the y-axis.
c. Labeling each term with the name of the president.
d. Adding informative plot labels.
e. Placing breaks every four years (this is trickier than it

seems!).
4. Use override.aes to make the legend on the following plot eas‐

ier to see:
ggplot(diamonds, aes(carat, price)) +
  geom_point(aes(color = cut), alpha = 1/20)

460 | Chapter 22: Graphics for Communication with ggplot2



Zooming
There are three ways to control the plot limits:

• Adjusting what data is plotted
• Setting the limits in each scale
• Setting xlim and ylim in coord_cartesian()

To zoom in on a region of the plot, it’s generally best to use
coord_cartesian(). Compare the following two plots:

ggplot(mpg, mapping = aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth() +
  coord_cartesian(xlim = c(5, 7), ylim = c(10, 30))

mpg %>%
  filter(displ >= 5, displ <= 7, hwy >= 10, hwy <= 30) %>%
  ggplot(aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth()

You can also set the limits on individual scales. Reducing the limits
is basically equivalent to subsetting the data. It is generally more
useful if you want expand the limits, for example, to match scales
across different plots. For example, if we extract two classes of cars
and plot them separately, it’s difficult to compare the plots because
all three scales (the x-axis, the y-axis, and the color aesthetic) have
different ranges:

Zooming | 461



suv <- mpg %>% filter(class == "suv")
compact <- mpg %>% filter(class == "compact")

ggplot(suv, aes(displ, hwy, color = drv)) +
  geom_point()

ggplot(compact, aes(displ, hwy, color = drv)) +
  geom_point()

One way to overcome this problem is to share scales across multiple
plots, training the scales with the limits of the full data:

x_scale <- scale_x_continuous(limits = range(mpg$displ))
y_scale <- scale_y_continuous(limits = range(mpg$hwy))
col_scale <- scale_color_discrete(limits = unique(mpg$drv))

ggplot(suv, aes(displ, hwy, color = drv)) +
  geom_point() +
  x_scale +
  y_scale +
  col_scale

ggplot(compact, aes(displ, hwy, color = drv)) +
  geom_point() +
  x_scale +
  y_scale +
  col_scale

In this particular case, you could have simply used faceting, but this
technique is useful more generally if, for instance, you want to
spread plots over multiple pages of a report.

Themes
Finally, you can customize the nondata elements of your plot with a
theme:

ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  theme_bw()

462 | Chapter 22: Graphics for Communication with ggplot2



ggplot2 includes eight themes by default, as shown in Figure 22-3.
Many more are included in add-on packages like ggthemes, by Jef‐
frey Arnold.

Figure 22-3. The eight themes built into ggplot2

Themes | 463

https://github.com/jrnold/ggthemes


Many people wonder why the default theme has a gray background.
This was a deliberate choice because it puts the data forward while
still making the grid lines visible. The white grid lines are visible
(which is important because they significantly aid position judg‐
ments), but they have little visual impact and we can easily tune
them out. The gray background gives the plot a similar typographic
color to the text, ensuring that the graphics fit in with the flow of a
document without jumping out with a bright white background.
Finally, the gray background creates a continuous field of color,
which ensures that the plot is perceived as a single visual entity.

It’s also possible to control individual components of each theme,
like the size and color of the font used for the y-axis. Unfortunately,
this level of detail is outside the scope of this book, so you’ll need to
read the ggplot2 book for the full details. You can also create your
own themes, if you are trying to match a particular corporate or
journal style.

Saving Your Plots
There are two main ways to get your plots out of R and into your
final write-up: ggsave() and knitr. ggsave() will save the most
recent plot to disk:

ggplot(mpg, aes(displ, hwy)) + geom_point()

ggsave("my-plot.pdf")
#> Saving 6 x 3.71 in image

464 | Chapter 22: Graphics for Communication with ggplot2

http://ggplot2.org/book/


If you don’t specify the width and height they will be taken from
the dimensions of the current plotting device. For reproducible
code, you’ll want to specify them.

Generally, however, I think you should be assembling your final
reports using R Markdown, so I want to focus on the important
code chunk options that you should know about for graphics. You
can learn more about ggsave() in the documentation.

Figure Sizing
The biggest challenge of graphics in R Markdown is getting your fig‐
ures the right size and shape. There are five main options that con‐
trol figure sizing: fig.width, fig.height, fig.asp, out.width, and
out.height. Image sizing is challenging because there are two sizes
(the size of the figure created by R and the size at which it is inserted
in the output document), and multiple ways of specifying the size
(i.e., height, width, and aspect ratio: pick two of three).

I only ever use three of the five options:

• I find it most aesthetically pleasing for plots to have a consistent
width. To enforce this, I set fig.width = 6 (6”) and fig.asp =
0.618 (the golden ratio) in the defaults. Then in individual
chunks, I only adjust fig.asp.

• I control the output size with out.width and set it to a percent‐
age of the line width). I default to out.width = "70%" and
fig.align = "center". That give plots room to breathe,
without taking up too much space.

• To put multiple plots in a single row I set the out.width to 50%
for two plots, 33% for three plots, or 25% to four plots, and set
fig.align = "default". Depending on what I’m trying to
illustrate (e.g., show data or show plot variations), I’ll also tweak
fig.width, as discussed next.

If you find that you’re having to squint to read the text in your plot,
you need to tweak fig.width. If fig.width is larger than the size
the figure is rendered in the final doc, the text will be too small; if
fig.width is smaller, the text will be too big. You’ll often need to do
a little experimentation to figure out the right ratio between the
fig.width and the eventual width in your document. To illustrate

Saving Your Plots | 465



the principle, the following three plots have fig.width of 4, 6, and
8, respectively:

466 | Chapter 22: Graphics for Communication with ggplot2



If you want to make sure the font size is consistent across all your
figures, whenever you set out.width, you’ll also need to adjust
fig.width to maintain the same ratio with your default out.width.
For example, if your default fig.width is 6 and out.width is 0.7,
when you set out.width = "50%" you’ll need to set fig.width to
4.3 (6 * 0.5 / 0.7).

Other Important Options
When mingling code and text, like I do in this book, I recommend
setting fig.show = "hold" so that plots are shown after the code.
This has the pleasant side effect of forcing you to break up large
blocks of code with their explanations.

To add a caption to the plot, use fig.cap. In R Markdown this will
change the figure from inline to “floating.”

If you’re producing PDF output, the default graphics type is PDF.
This is a good default because PDFs are high-quality vector graph‐
ics. However, they can produce very large and slow plots if you are
displaying thousands of points. In that case, set dev = "png" to
force the use of PNGs. They are slightly lower quality, but will be
much more compact.

It’s a good idea to name code chunks that produce figures, even if
you don’t routinely label other chunks. The chunk label is used to
generate the filename of the graphic on disk, so naming your chunks
makes it much easier to pick out plots and reuse them in other cir‐
cumstances (i.e., if you want to quickly drop a single plot into an
email or a tweet).

Learning More
The absolute best place to learn more is the ggplot2 book: ggplot2:
Elegant graphics for data analysis. It goes into much more depth
about the underlying theory, and has many more examples of how
to combine the individual pieces to solve practical problems.
Unfortunately, the book is not available online for free, although you
can find the source code at https://github.com/hadley/ggplot2-book.

Learning More | 467

https://github.com/hadley/ggplot2-book


Another great resource is the ggplot2 extensions guide. This site
lists many of the packages that extend ggplot2 with new geoms and
scales. It’s a great place to start if you’re trying to do something that
seems hard with ggplot2.

468 | Chapter 22: Graphics for Communication with ggplot2

http://www.ggplot2-exts.org/


CHAPTER 23

R Markdown Formats

Introduction
So far you’ve seen R Markdown used to produce HTML documents.
This chapter gives a brief overview of some of the many other types
of output you can produce with R Markdown. There are two ways to
set the output of a document:

1. Permanently, by modifying the the YAML header:
title: "Viridis Demo"
output: html_document

2. Transiently, by calling rmarkdown::render() by hand:
rmarkdown::render(
  "diamond-sizes.Rmd",
  output_format = "word_document"
)

This is useful if you want to programmatically produce multiple
types of output.

RStudio’s knit button renders a file to the first format listed in its
output field. You can render to additional formats by clicking the
drop-down menu beside the knit button.

469



Output Options
Each output format is associated with an R function. You can either
write foo or pkg::foo. If you omit pkg, the default is assumed to be
rmarkdown. It’s important to know the name of the function that
makes the output because that’s where you get help. For example, to
figure out what parameters you can set with html_document, look
at ?rmarkdown:html_document().

To override the default parameter values, you need to use an expan‐
ded output field. For example, if you wanted to render an
html_document with a floating table of contents, you’d use:

output:
  html_document:
    toc: true
    toc_float: true

You can even render to multiple outputs by supplying a list of for‐
mats:

output:
  html_document:
    toc: true
    toc_float: true
  pdf_document: default

Note the special syntax if you don’t want to override any of the
default options.

Documents
The previous chapter focused on the default html_document output.
There are number of basic variations on that theme, generating dif‐
ferent types of documents:

• pdf_document makes a PDF with LaTeX (an open source docu‐
ment layout system), which you’ll need to install. RStudio will
prompt you if you don’t already have it.

470 | Chapter 23: R Markdown Formats



• word_document for Microsoft Word documents (.docx).
• odt_document for OpenDocument Text documents (.odt).
• rtf_document for Rich Text Format (.rtf) documents.
• md_document for a Markdown document. This isn’t typically

useful by itself, but you might use it if, for example, your corpo‐
rate CMS or lab wiki uses Markdown.

• github_document is a tailored version of md_document designed
for sharing on GitHub.

Remember, when generating a document to share with decision
makers, you can turn off the default display of code by setting global
options in the setup chunk:

knitr::opts_chunk$set(echo = FALSE)

For html_documents another option is to make the code chunks hid‐
den by default, but visible with a click:

output:
  html_document:
    code_folding: hide

Notebooks
A notebook, html_notebook, is a variation on an html_document.
The rendered outputs are very similar, but the purpose is different.
An html_document is focused on communicating with decision
makers, while a notebook is focused on collaborating with other
data scientists. These different purposes lead to using the HTML
output in different ways. Both HTML outputs will contain the fully
rendered output, but the notebook also contains the full source
code. That means you can use the .nb.html generated by the note‐
book in two ways:

• You can view it in a web browser, and see the rendered output.
Unlike html_document, this rendering always includes an
embedded copy of the source code that generated it.

• You can edit it in RStudio. When you open an .nb.html file,
RStudio will automatically re-create the .Rmd file that generated
it. In the future, you can also include supporting files (e.g., .csv
data files), which will be automatically extracted when needed.

Notebooks | 471



Emailing .nb.html files is a simple way to share analyses with your
colleagues. But things will get painful as soon as they want to make
changes. If this starts to happen, it’s a good time to learn Git and
GitHub. Learning Git and GitHub is definitely painful at first, but
the collaboration payoff is huge. As mentioned earlier, Git and Git‐
Hub are outside the scope of the book, but there’s one tip that’s use‐
ful if you’re already using them: use both html_notebook and
github_document outputs:

output:
  html_notebook: default
  github_document: default

html_notebook gives you a local preview, and a file that you can
share via email. github_document creates a minimal MD file that
you can check into Git. You can easily see how the results of your
analysis (not just the code) change over time, and GitHub will ren‐
der it for you nicely online.

Presentations
You can also use R Markdown to produce presentations. You get less
visual control than with a tool like Keynote or PowerPoint, but auto‐
matically inserting the results of your R code into a presentation can
save a huge amount of time. Presentations work by dividing your
content into slides, with a new slide beginning at each first (#) or
second (##) level header. You can also insert a horizontal rule (***)
to create a new slide without a header.

R Markdown comes with three presentations formats built in:

ioslides_presentation

HTML presentation with ioslides.

slidy_presentation

HTML presentation with W3C Slidy.

beamer_presentation

PDF presentation with LaTeX Beamer.

Two other popular formats are provided by packages:

revealjs::revealjs_presentation

HTML presentation with reveal.js. Requires the revealjs pack‐
age.

472 | Chapter 23: R Markdown Formats



rmdshower

Provides a wrapper around the shower presentation engine.

Dashboards
Dashboards are a useful way to communicate large amounts of
information visually and quickly. flexdashboard makes it particu‐
larly easy to create dashboards using R Markdown and a convention
for how the headers affect the layout:

• Each level 1 header (#) begins a new page in the dashboard.
• Each level 2 header (##) begins a new column.
• Each level 3 header (###) begins a new row.

For example, you can produce this dashboard:

Using this code:

---
title: "Diamonds distribution dashboard"
output: flexdashboard::flex_dashboard
---

```{r setup, include = FALSE}
library(ggplot2)
library(dplyr)

Dashboards | 473

https://github.com/MangoTheCat/rmdshower
https://github.com/shower/shower

knitr::opts_chunk$set(fig.width = 5, fig.asp = 1/3)
```

## Column 1

### Carat

```{r}
ggplot(diamonds, aes(carat)) + geom_histogram(binwidth = 0.1)
```

### Cut

```{r}
ggplot(diamonds, aes(cut)) + geom_bar()
```

### Color

```{r}
ggplot(diamonds, aes(color)) + geom_bar()
```

## Column 2

### The largest diamonds

```{r}
diamonds %>%
 arrange(desc(carat)) %>%
 head(100) %>%
 select(carat, cut, color, price) %>%
 DT::datatable()
```

flexdashboard also provides simple tools for creating sidebars, tab‐
sets, value boxes, and gauges. To learn more about flexdashboard
visit http://rmarkdown.rstudio.com/flexdashboard/.

Interactivity
Any HTML format (document, notebook, presentation, or dash‐
board) can contain interactive components.

htmlwidgets
HTML is an interactive format, and you can take advantage of that
interactivity with htmlwidgets, R functions that produce interactive
HTML visualizations. For example, take the following leaflet map. If

474 | Chapter 23: R Markdown Formats

http://rmarkdown.rstudio.com/flexdashboard/


you’re viewing this page on the web, you can drag the map around,
zoom in and out, etc. You obviously can’t do that on a book, so
rmarkdown automatically inserts a static screenshot for you:

library(leaflet)
leaflet() %>%
  setView(174.764, -36.877, zoom = 16) %>%
  addTiles() %>%
  addMarkers(174.764, -36.877, popup = "Maungawhau")

The great thing about htmlwidgets is that you don’t need to know
anything about HTML or JavaScript to use them. All the details are
wrapped inside the package, so you don’t need to worry about it.

There are many packages that provide htmlwidgets, including:

• dygraphs for interactive time series visualizations.
• DT for interactive tables.
• rthreejs for interactive 3D plots.
• DiagrammeR for diagrams (like flow charts and simple node-

link diagrams).

To learn more about htmlwidgets and see a more complete list of
packages that provide them, visit http://www.htmlwidgets.org/.

Interactivity | 475

http://rstudio.github.io/dygraphs/
http://rstudio.github.io/DT/
https://github.com/bwlewis/rthreejs
http://rich-iannone.github.io/DiagrammeR/
http://www.htmlwidgets.org/


Shiny
htmlwidgets provide client-side interactivity—all the interactivity
happens in the browser, independently of R. On one hand, that’s
great because you can distribute the HTML file without any connec‐
tion to R. However, that fundamentally limits what you can do to
things that have been implemented in HTML and JavaScript. An
alternative approach is to use Shiny, a package that allows you to
create interactivity using R code, not JavaScript.

To call Shiny code from an R Markdown document, add runtime:
shiny to the header:

title: "Shiny Web App"
output: html_document
runtime: shiny

Then you can use the “input” functions to add interactive compo‐
nents to the document:

library(shiny)

textInput("name", "What is your name?")
numericInput("age", "How old are you?", NA, min = 0, max = 150)

You can then refer to the values with input$name and input$age,
and the code that uses them will be automatically rerun whenever
they change.

I can’t show you a live Shiny app here because Shiny interactions
occur on the server side. This means you can write interactive apps
without knowing JavaScript, but it means that you need a server to
run it on. This introduces a logistical issue: Shiny apps need a Shiny
server to be run online. When you run Shiny apps on your own
computer, Shiny automatically sets up a Shiny server for you, but
you need a public-facing Shiny server if you want to publish this
sort of interactivity online. That’s the fundamental trade-off of
Shiny: you can do anything in a Shiny document that you can do in
R, but it requires someone to be running R.

Learn more about Shiny at http://shiny.rstudio.com/.

476 | Chapter 23: R Markdown Formats

http://shiny.rstudio.com/


Websites
With a little additional infrastructure you can use R Markdown to
generate a complete website:

• Put your .Rmd files in a single directory. index.Rmd will become
the home page.

• Add a YAML file named _site.yml that provides the navigation
for the site. For example:

name: "my-website"
navbar:
  title: "My Website"
  left:
    - text: "Home"
      href: index.html
    - text: "Viridis Colors"
      href: 1-example.html
    - text: "Terrain Colors"
      href: 3-inline.html

Execute rmarkdown::render_site() to build _site, a directory of
files ready to deploy as a standalone static website, or if you use an
RStudio Project for your website directory. RStudio will add a Build
tab to the IDE that you can use to build and preview your site.

Read more at http://bit.ly/RMarkdownWebsites.

Other Formats
Other packages provide even more output formats:

• The bookdown package makes it easy to write books, like this
one. To learn more, read Authoring Books with R Markdown, by
Yihui Xie, which is, of course, written in bookdown. Visit http://
www.bookdown.org to see other bookdown books written by the
wider R community.

• The prettydoc package provides lightweight document formats
with a range of attractive themes.

• The rticles package compiles a selection of formats tailored for
specific scientific journals.

Websites | 477

http://bit.ly/RMarkdownWebsites
https://github.com/rstudio/bookdown
https://bookdown.org/yihui/bookdown/
http://www.bookdown.org
http://www.bookdown.org
https://github.com/yixuan/prettydoc/
https://github.com/rstudio/rticles


See http://rmarkdown.rstudio.com/formats.html for a list of even
more formats. You can also create your own by following the
instructions at http://bit.ly/CreatingNewFormats.

Learning More
To learn more about effective communication in these different for‐
mats I recommend the following resources:

• To improve your presentation skills, I recommend Presentation
Patterns by Neal Ford, Matthew McCollough, and Nathaniel
Schutta. It provides a set of effective patterns (both low- and
high-level) that you can apply to improve your presentations.

• If you give academic talks, I recommend reading the Leek group
guide to giving talks.

• I haven’t taken it myself, but I’ve heard good things about Matt
McGarrity’s online course on public speaking.

• If you are creating a lot of dashboards, make sure to read Ste‐
phen Few’s Information Dashboard Design: The Effective Visual
Communication of Data. It will help you create dashboards that
are truly useful, not just pretty to look at.

• Effectively communicating your ideas often benefits from some
knowledge of graphic design. The Non-Designer’s Design Book is
a great place to start.

478 | Chapter 23: R Markdown Formats

http://rmarkdown.rstudio.com/formats.html
http://bit.ly/CreatingNewFormats
https://github.com/jtleek/talkguide
https://github.com/jtleek/talkguide
https://www.coursera.org/learn/public-speaking
https://www.coursera.org/learn/public-speaking


CHAPTER 24

R Markdown Workflow

Earlier, we discussed a basic workflow for capturing your R code
where you work interactively in the console, then capture what
works in the script editor. R Markdown brings together the console
and the script editor, blurring the lines between interactive explora‐
tion and long-term code capture. You can rapidly iterate within a
chunk, editing and re-executing with Cmd/Ctrl-Shift-Enter. When
you’re happy, you move on and start a new chunk.

R Markdown is also important because it so tightly integrates prose
and code. This makes it a great analysis notebook because it lets you
develop code and record your thoughts. An analysis notebook
shares many of the same goals as a classic lab notebook in the physi‐
cal sciences. It:

• Records what you did and why you did it. Regardless of how
great your memory is, if you don’t record what you do, there
will come a time when you have forgotten important details.
Write them down so you don’t forget!

• Supports rigorous thinking. You are more likely to come up
with a strong analysis if you record your thoughts as you go,
and continue to reflect on them. This also saves you time when
you eventually write up your analysis to share with others.

• Helps others understand your work. It is rare to do data analysis
by yourself, and you’ll often be working as part of a team. A lab
notebook helps you share not only what you’ve done, but why
you did it with your colleagues or lab mates.

479



Much of the good advice about using lab notebooks effectively can
also be translated to analysis notebooks. I’ve drawn on my own
experiences and Colin Purrington’s advice on lab notebooks (http://
colinpurrington.com/tips/lab-notebooks) to come up with the follow‐
ing tips:

• Ensure each notebook has a descriptive title, an evocative file‐
name, and a first paragraph that briefly describes the aims of the
analysis.

• Use the YAML header date field to record the date you started
working on the notebook:

date: 2016-08-23

Use ISO8601 YYYY-MM-DD format so that’s there no ambigu‐
ity. Use it even if you don’t normally write dates that way!

• If you spend a lot of time on an analysis idea and it turns out to
be a dead end, don’t delete it! Write up a brief note about why it
failed and leave it in the notebook. That will help you avoid
going down the same dead end when you come back to the
analysis in the future.

• Generally, you’re better off doing data entry outside of R. But if
you do need to record a small snippet of data, clearly lay it out
using tibble::tribble().

• If you discover an error in a data file, never modify it directly,
but instead write code to correct the value. Explain why you
made the fix.

• Before you finish for the day, make sure you can knit the note‐
book (if you’re using caching, make sure to clear the caches).
That will let you fix any problems while the code is still fresh in
your mind.

• If you want your code to be reproducible in the long run (i.e., so
you can come back to run it next month or next year), you’ll
need to track the versions of the packages that your code uses. A
rigorous approach is to use packrat, which stores packages in
your project directory, or checkpoint, which will reinstall pack‐
ages available on a specified date. A quick and dirty hack is to
include a chunk that runs sessionInfo()—that won’t let you
easily re-create your packages as they are today, but at least
you’ll know what they were.

480 | Chapter 24: R Markdown Workflow

http://colinpurrington.com/tips/lab-notebooks
http://colinpurrington.com/tips/lab-notebooks
http://rstudio.github.io/packrat/
https://github.com/RevolutionAnalytics/checkpoint


• You are going to create many, many, many analysis notebooks
over the course of your career. How are you going to organize
them so you can find them again in the future? I recommend
storing them in individual projects, and coming up with a good
naming scheme.

R Markdown Workflow | 481





Index

Symbols
%%, 56
%/%, 56
%>% (see the pipe (%>%))
&, 47
&&, 48, 277
==, 277
|, 47
||, 48, 277
…, 284

A
accumulate(), 337
add_predictions(), 355
add_residuals(), 356
aes(), 10, 229
aesthetic mappings, 7-13
aesthetics, defined, 7
all(), 277
An Introduction to Statistical Learn‐

ing, 396
analysis notebooks, 479-481
annotations, 445-451
anti-joins, 188
anti_join(), 192
any(), 277
apropos(), 221
arguments, 280-285

checking values, 282-284
dot-dot-dot (…), 284
mapping over multiple, 332-335
naming, 282

arithmetic operators, 56

arrange(), 50-51
ASCII, 133
assign(), 265
as_date(), 242
as_datetime(), 242
atomic vectors, 292

character, 295
coercion and, 296-298
logical, 293
missing values, 295
naming, 300
numeric, 294-295
scalars and recycling rules,

298-300
subsetting, 300
test functions, 298

attributes(), 308-309
augmented vectors, 293, 309-312

dates and date-times, 310-311
factors, 310

B
backreferences, 206
bar charts, 22-29, 84
base::merge(), 187
bibliographies, 437
big data problems, xii
bookdown package, 477
boundary(), 221
boxplots, 23, 31, 95
breaks, 452-454
broom package, 397, 406, 419

483



C
caching, 432-433
calling functions (see functions)
caption, 443
categorical variables, 84, 223, 359-364

(see also factors)
character vectors, 295
charToRaw(), 132
checkpoint, 480
chunks (see code chunks)
citations, 437
class, 308
code chunks, 428-435, 467

caching, 432-433
chunk name, 429
chunk options, 430-431
global options, 433
inline code, 434
table, 431

coding basics, 37
coercion, 296-298
coll(), 220
collaboration, 438
color scales, 455
ColorBrewer scales, 456
col_names, 127
col_types, 141
comments, 275
communication, x
comparison operators, 46
conditions, 276-280
confounding variables, 377
contains(), 53
continuous position scales, 455
continuous variables, 84, 362-368
coordinate systems, 31-34
count attributes, 69-71
count variable, 22
count(), 226
counts ( n() ), 62-66
covariation, 93-105

categorical and continuous vari‐
ables, 93-99

categorical variables, 99-101
continuous variables, 101-105

CSV files, 126-129
cumulative aggregates, 57
cut(), 278, 457

D
dashboards, 473-474
data arguments, 281
data exploration, xiv
data frames, 4
data import, ix, 125-145

(see also readr)
parsing a file, 137-143
parsing a vector, 129-137
writing to files, 143-145

data point (see observation)
data transformation, x, 43-76

add new variables (mutate), 45,
54-58

arrange rows, 45, 50-51
filter rows, 45-50
grouped summaries (summarize),

45, 59-73
grouping with mutate() and fil‐

ter(), 73-76
prerequisites, 43-45
select colums, 51-54
select rows, 45

data visualization, 3-35
(see also ggplot2, graphics for

communication)
aesthetic mappings, 7-13
bar charts, 22-29
boxplots, 23, 31
coordinate systems, 31-34
facets, 14-16
geometric objects, 16-22
grammar of graphics, 34-35
position adjustment, 27-31
scatterplots, 6, 7, 16, 29-31
statistical transformations, 22-27

data wrangling, 117
data.frame(), 120-124, 409
data_grid(), 382
dates and times, 134-137, 237-256,

310-311
accessor functions, 243
components, 243-249

getting, 243-246
setting, 247

creating, 238-243
rounding, 246
time spans, 249-254

484 | Index



durations, 249-250
intervals, 252
periods, 250-252

time zones, 254-256
DBI, 145
detail arguments, 281
detect(), 337
dir(), 221
directories, 113
discard(), 336
documents, 470
double vectors, 294-295
dplyr, 43-76

arrange(), 45, 50-51
basics, 45
filter(), 45-50, 73-76
group_by(), 45
integrating ggplot2 with, 64
mutate(), 45, 54-58, 73-76
mutating joins (see joins, mutat‐

ing)
select(), 45, 51-54
summarize(), 45, 59-73

duplicate keys, 183
durations, 249-250

E
encoding, 132
ends_with(), 53
enframe(), 414
equijoin, 181
error messages, xviii
every(), 337
everything(), 53
explicit coercion, 297
exploratory data analysis (EDA),

81-108
covariation, 93-105
ggplot2 calls, 108
missing values, 91-93
patterns and models, 105-108
questions as tools, 82-83
variation, 83-91

exploratory graphics (see data visuali‐
zation)

expository graphics (see graphics, for
communication)

F
facets, 14-16
factors, 134, 223-235, 310

creating, 224-225
modifying level values, 232-235
modifying order of, 227-232

failed operations, 329-332
fct_collapse(), 233
fct_infreq(), 231
fct_lump(), 234
fct_recode(), 232
fct_relevel(), 230
fct_reorder(), 228
fct_rev(), 231
feather package, 144
figure sizing, 465-467
filter(), 45, 45-50, 73-76

comparisons, 46
logical operators, 47-48
missing values (NA), 48

first(), 68
fixed(), 219
flexdashboard, 474
floor_date(), 246
for loops, 314-324

basics of, 314-317
components, 315
versus functionals, 322-324
looping patterns, 318
modifying existing obects, 317
predicate functions, 336-337
reduce and accumulate, 337-338
unknown output length, 319-320
unknown sequence length, 320
while loops, 320

forcats package, 223
(see also factors)

foreign keys, 175
format(), 434
formulas, 358-371

categorical variables, 359-364
continuous variables, 362-368
missing values, 371
transformations within, 368-371
variable interactions, 362-368

frequency plots, 22
frequency polygons, 93-95

Index | 485



functional programming, versus for
loops, 322-324

functions, 39-41, 269-289
advantages over copy and paste,

269
arguments, 280-285
code style, 278
comments, 275
conditions, 276-280
environment, 288-289
naming, 274-275
pipeable, 287
return values, 285-288
side-effect functions, 287
transformation functions, 287
unit testing, 272
when to write, 270-273

G
gapminder data, 398-409
gather(), 152-154, 155
generalized additive models, 372
generalized linear models, 372
generic functions, 308
geoms (geometric objects), 16-22
geom_abline(), 347
geom_bar(), 22-27
geom_boxplot(), 96
geom_count(), 99
geom_freqpoly(), 93
geom_hline(), 450
geom_label(), 446
geom_point(), 6, 101
geom_rect(), 450
geom_segment(), 450
geom_text(), 445
geom_vline(), 450
get(), 265
ggplot2, 3-35

aesthetic mappings, 7-13
annotating, 445-451
cheatsheet, 18
common problems, 13
coordinate systems, 31-34
creating a ggplot, 5-6
and exploratory data analysis

(EDA), 108
facets, 14-16

further reading, 467
geoms, 16-22
grammar of graphics, 34-35
with graphics for communication

(see graphics, for communica‐
tion)

graphing template, 6
integrating with dplyr, 64
model building with, 376
mpg data frame, 4
position adjustment, 27-31
prerequisites, 3
resources for continued learning,

108
statistical transformations, 22-27

ggrepel, 442, 447
ggthemes, 463
Git/GitHub, 439
global options, 433
Google, xviii
gradient boosting machines, 373
grammar of graphics, 34-35
graphics

for communication, 441-468
annotations, 445-451
figure sizing, 465-467
labels, 442-445
saving plots, 464-467
scales, 451-461
themes, 462-464
zooming, 461-462

exploratory (see data visualiza‐
tion)

graphing template, 6
guess_encoding(), 133
guess_parser(), 138
guides(), 455
guide_colorbar(), 455
guide_legend(), 455

H
haven, 145
head_while(), 337
histograms, 22, 84-86
HTML outputs, 471
htmlwidgets, 474
hypothesis generation versus hypoth‐

esis confirmation, xiv

486 | Index



I
identical(), 277
if statements (see conditions)
ifelse(), 91
image sizing, 465
implicit coercion, 297
inline code, 434
inner join, 180
integer vectors, 294-295
invisible(), 287
invoke_map(), 335
ioslides_presentation, 472
IQR(), 67
is.finite(), 294
is.infinite(), 294
is.nan(), 294
is_* (), 298
iteration, 313-339

for loops (see for loops)
mapping (see map functions)
overview, 313-314
walk, 335

J
joins

defining key columns, 184-187
duplicate keys, 183-184
filtering, 188-191
inner, 180
mutating, 178-188
natural, 184
other implementations, 187
outer, 181-182
problems, 191
understanding, 179-180

jsonlite, 145

K
keep(), 336
key columns, 184-187
keys, duplicate, 183-184
knit button, 469
knitr, 426, 431

L
lab notebooks, 480
labels, 442-445, 452-454

lapply(), 327
last(), 68
legends, 453-455
linear models, 353, 372

(see also models)
list-columns, 402-403, 409

creating, 411-416
from vectorized functions,

412-413
nesting and, 411

from a named list, 414
from multivalued summaries, 413
simplifying, 416-419

lists, 292, 302-307
subsetting, 304-305
versus tibbles, 311
visualizing, 303

lm(), 353
load(), 265
location attributes, 66
log transformation, 378
log(), 280
log(2), 57
logarithms (logs), 57
logical operators, 47-48, 57
logical vectors, 293
lubridate package, 238, 376

(see also dates and times)

M
mad(), 67
magrittr package, 261
map functions, 325-335, 417

failures, 329-332
multiple arguments, 332-335
purrr versus Base R, 327
shortcuts, 326-327

mapping argument, 6
matches(), 53
max(), 68
mean(), 66, 281
median(), 66
methods(), 308
min(), 68
min_rank(), 58
missing values (NA), 48, 61-62,

91-93, 161-163
model building, 375-396

Index | 487



book recommendations on, 396
complex examples, 381-383
simple example, 376-381

modelr package, 346
models, x, 105-108

building (see model building)
formulas and, 358-371

categorical variables, 359-364
continuous variables, 362-368
transformations, 368-371
variable interactions, 362-368

gapminder data use in, 398-409
introduction to, 345-346
linear, 353
list-columns, 402-403, 409
missing values, 371
model families, 372
multiple, 397-419
nested data frames, 400-402
purpose of, 341
quality metrics, 406-408
simple, 346-354
transformations, 394
unnesting, 403-405, 417
visualizing, 354-358

predictions, 354-356
residuals, 356-358

model_matrix(), 368
modular arithmetic, 56
mutate(), 45, 54-58, 73-76, 91, 229

N
n(), 69
NA (missing values), 48, 296
nesting, 400-402, 411
Newton-Raphson search, 352
nonsyntactic names, 120
now(), 238
nth(), 68
nudge_y, 446
NULL, 292, 452
numeric vectors, 294-295
num_range(), 53
nycflights13, 43, 376

O
object names, 38-39

object-oriented programming, 308
observation, defined, 83
optim(), 352
outer join, 181-182
outliers, 88-91, 393
overplotting, 30

P
packages, xiv
packrat, 480
pandoc, 426
parameters, 436-437
parse_*() functions, 129-143

parsing a file, 137-143
problems, 139, 141
strategy, 137-138, 141-143

parsing a vector, 129-137
dates, date-times, and times,

134-137
factors, 134
failures, 130
numbers, 131-132
strings, 132-134

paste(), 320
paths and directories, 113
patterns, 105-108
penalized linear models, 372
the pipe (%>%), 59-61, 261-268, 267,

268, 326
alternatives to, 261-264
how to use it, 264-266
when not to use, 266
writing pipeable functions, 287

plot title, 443
plotting charts (see data visualization,

ggplot2)
pmap(), 333
poly(), 369
position attributes, 68
predicate functions, 336-337
predictions, 354-356
presentations, 472
prettydoc package, 477
primary keys, 175
print(), 309
problems(), 130
programming, xi
programming languages, xiii

488 | Index



programming overview, 257-259
project management, 111-116

code capture, 111-112
paths and directories, 113
RStudio projects, 114-116
working directory, 113

purrr package, 291, 298, 314, 328
similarities to Base R, 327

Q
quantile(), 68, 413

R
R code

common problems with, 13
downloading, xv
running, xvii

R Markdown, 421, 423-439, 469-478
as analysis notebook, 479-481
basics, 423-427
bibliographies and citations, 437
caching, 432-433
code chunks, 428-435
collaboration, 438
dashboards, 473-474
documents, 470
formats overview, 469
further learning, 478
global options, 433
inline code, 434
interactivity

htmlwidgets, 474
Shiny, 476

notebooks, 471
output options, 470
parameters, 436-437
presentations, 472
text formatting, 427-428
troubleshooting, 435
uses, 423
for websites, 477
workflow, 479-481
YAML header, 435-438

R packages, xiv
random forests, 373
rank attributes, 68
ranking functions, 58

rbind(), 320
RColorBrewer package, 457
RDBMS (relational database manage‐

ment system), 172
RDS, 144
readr, 125-145

compared to Base R, 128
functions overview, 125-129
locales, 131
parse_*(), 129-143

(see also parse_*() function)
write_csv() and write_tsv(),

143-145
readRDS(), 144
readxl, 145
read_csv(), 125-129
read_file(), 143
read_lines(), 143
read_rds(), 144
rectangular data, xiii
recursive vectors, 292, 302-309

(see also lists)
recycling, 298-300
reduce(), 337
regexps (regular expressions), 195,

200-222
anchors, 202-203
basic matches, 200-202
character classes and alternatives,

203-204
detecting matches, 209-211
extracting matches, 211-213
finding matches, 218
grouped matches, 213-215
grouping and backreferences, 206
repetition, 204-206
replacing matches, 215
splitting strings, 216-218

relational data, 171-193
filtering joins, 188-191
join problems, 191
keys, 175-177
mutating joins, 178-188

(see also joins)
set operations, 192-193

rename(), 53
reorder(), 97
rep(), 299

Index | 489



reprex (reproducible example), xviii
residuals, 356-358, 380-381, 383
resources, xviii-xix
return statements, 286
revealjs_presentation, 472
rmdshower, 473
robust linear models, 372
rolling aggregates, 57
Rosling, Hans, 398
round_date(), 246
RStudio

Cmd/Ctrl-Shift-P shortcut, 65
diagnostics, 79
downloading, xv
knit button, 469
projects, 114-116

RStudio basic features, 37-41
rticles package, 477

S
sapply(), 328
saveRDS(), 144
scalars, 298-300
scales, 451-461

axis ticks and legend keys,
452-454

changing defaults, 451
legend layout, 454
replacing, 455-461

scaling, 8
scatterplots, 6, 7, 16, 29-31, 101
script editor, 77-79
sd(), 67
select(), 45, 51-54
semi-joins, 188
separate(), 157-159
set operations, 192-193
Shiny, 476
side-effect functions, 287
slidy_presentation, 472
smoothers, 22
some(), 337
splines, 394
splines::ns(), 369
spread attributes, 67
spread(), 154-157
stackoverflow, xviii
starts_with(), 53

statistical transformations (stats),
22-27

stat_count(), 23
stat_smooth(), 26
stat_summary(), 25
stopifnot(), 284
stop_for_problems(), 141
str(), 303
stringi, 222
stringr, 195, 275
strings, 132-134, 195-222, 295

anchors, 202-203
basic matches, 200-202
basics, 195-200
character classes and alternatives,

203-204
combining, 197
creating dates/times from, 239
detecting matches, 209-211
extracting matches, 211-213
finding matches, 218
grouped matches, 213-215
grouping and backreferences, 206
length, 197
locales, 199
other types of pattern, 218-222
regular expressions (regexps) for

matching, 200-222
(see also regexps)

repetition, 204-206
replacing matches, 215
splitting, 216-218
subsetting, 198

str_c(), 281, 284
str_wrap(), 450
subsetting, 300, 304-305
subtitle, 443
summarize(), 45, 59-73, 413, 448

combining multiple operations
with the pipe, 59-61

counts ( n() ), 62-66
grouping by multiple variables, 71
location, 66
missing values, 61-62
position, 68
rank, 68
spread, 67
ungrouping, 72

490 | Index



suppressMessages(), 266
suppressWarnings(), 266
surrogate keys, 177
switch(), 278

T
t.test(), 281
tabular data, 83
tail_while(), 337
term variables, 390
test functions, 298
text formatting, 427-428
theme(), 454
themes, 462-464
tibble(), 449
tibbles, 119-124, 410

creating, 119-121
versus data.frame, 121, 123
enframe(), 414
versus lists, 311
older code interactions, 123
printing, 121-122
subsetting, 122

tidy data, x, 147-169
case study, 163-168
gather (), 152-154
missing values, 161-163
nontidy data, 168
rules, 149
separate(), 157-159, 160
spread(), 154-157
unite(), 159-161

tidyverse, xiv, xvi, 3
time spans, 249-254

(see also dates and times)
time zones, 254-256
today(), 238
transformation functions, 287
transformation of data, x
transformations, 368-371, 394
transmute(), 55
trees, 373
troubleshooting, xviii-xix
tryCatch(), 266
typeof(), 298
type_convert(), 142

U
ungroup(), 72
unit testing, 272
unite(), 159-161
unlist(), 320
unnesting, 403-405, 414, 417
update(), 247
UTF-8, 133

V
value, defined, 83
vapply(), 328
variables

categorical, 84, 223, 359-364
(see also factors)

continuous, 84, 362-368
defined, 83
interactions between, 362-368
term, 390
visualizing distributions of, 84-86

variation, 83-91
typical values, 87-88
unusual values, 88-91

vectors, 291-312
atomic, 292, 293-302

character, 295
coercion and, 296-298
logical, 293
missing values, 295
naming, 300
numeric, 294-295
scalars and recycling rules,

298-300
subsetting, 300
test functions, 298

attributes, 307-309
augmented, 293, 309-312

dates and date-times, 310-311
factors, 310

basics, 292-293
hierarchy of, 292
and list-columns, 412-413
NULL, 292
recursive, 292, 302-309

(see also lists)
view(), 54
viridis, 442
visualization, x

Index | 491



(see also data visualization)

W
walk(), 335
websites, R Markdown for, 477
while loops, 320
Wilkinson-Rogers notation, 359-371
workflow, 37-41

coding, 37
functions, 39-41
object names, 38-39
project management, 111-116
R Markdown, 479-481
scripts, 77-79

working directory, 113
wrangling data, x, 117

writeLines(), 196
write_csv(), 143
write_rds(), 144
write_tsv(), 143

X
xml2, 145

Y
YAML header, 435-438
ymd(), 239

Z
zooming, 461-462

492 | Index



About the Authors
Hadley Wickham is Chief Scientist at RStudio and a member of the
R Foundation. He builds tools (both computational and cognitive)
that make data science easier, faster, and more fun. His work
includes packages for data science (the tidyverse: ggplot2, dplyr,
tidyr, purrr, readr, ...), and principled software development (roxy‐
gen2, testthat, devtools). He is also a writer, educator, and frequent
speaker promoting the use of R for data science. Learn more on his
website, http://hadley.nz.

Garrett Grolemund is a statistician, teacher, and R developer who
works for RStudio. He wrote the well-known lubridate R package
and is the author of Hands-On Programming with R (O’Reilly).

Garrett is a popular R instructor at DataCamp.com and oreilly.com/
safari, and has been invited to teach R and Data Science at many
companies, including Google, eBay, Roche, and more. At RStudio,
Garrett develops webinars, workshops, and an acclaimed series of
cheat sheets for R.

Colophon
The animal on the cover of R for Data Science is the kakapo (Strigops
habroptilus). Also known as the owl parrot, the kakapo is a large
flightless bird native to New Zealand. Adult kakapos can grow up to
64 centimeters in height and 4 kilograms in weight. Their feathers
are generally yellow and green, although there is significant varia‐
tion between individuals. Kakapos are nocturnal and use their
robust sense of smell to navigate at night. Although they cannot fly,
kakapos have strong legs that enable them to run and climb much
better than most birds.

The name kakapo comes from the language of the native Maori peo‐
ple of New Zealand. Kakapos were an important part of Maori cul‐
ture, both as a food source and as a part of Maori mythology.
Kakapo skin and feathers were also used to make cloaks and capes.

Due to the introduction of predators to New Zealand during Euro‐
pean colonization, kakapos are now critically endangered, with less
than 200 individuals currently living. The government of New Zea‐
land has been actively attempting to revive the kakapo population by
providing special conservation zones on three predator-free islands.

https://www.datacamp.com/
http://www.oreilly.com/safari
http://www.oreilly.com/safari


Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover image is from Wood’s Animate Creations. The cover fonts
are URW Typewriter and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	What You Will Learn
	How This Book Is Organized
	What You Won’t Learn
	Big Data
	Python, Julia, and Friends
	Nonrectangular Data
	Hypothesis Confirmation

	Prerequisites
	R
	RStudio
	The Tidyverse
	Other Packages

	Running R Code
	Getting Help and Learning More
	Acknowledgments
	Online Version
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	Part I. Explore
	Chapter 1. Data Visualization with ggplot2
	Introduction
	Prerequisites

	First Steps
	The mpg Data Frame
	Creating a ggplot
	A Graphing Template
	Exercises

	Aesthetic Mappings
	Exercises

	Common Problems
	Facets
	Exercises

	Geometric Objects
	Exercises

	Statistical Transformations
	Exercises

	Position Adjustments
	Exercises

	Coordinate Systems
	Exercises

	The Layered Grammar of Graphics

	Chapter 2. Workflow: Basics
	Coding Basics
	What’s in a Name?
	Calling Functions
	Exercises


	Chapter 3. Data Transformation with dplyr
	Introduction
	Prerequisites
	nycflights13
	dplyr Basics

	Filter Rows with filter()
	Comparisons
	Logical Operators
	Missing Values
	Exercises

	Arrange Rows with arrange()
	Exercises

	Select Columns with select()
	Exercises

	Add New Variables with mutate()
	Useful Creation Functions
	Exercises

	Grouped Summaries with summarize()
	Combining Multiple Operations with the Pipe
	Missing Values
	Counts
	Useful Summary Functions
	Grouping by Multiple Variables
	Ungrouping
	Exercises

	Grouped Mutates (and Filters)
	Exercises


	Chapter 4. Workflow: Scripts
	Running Code
	RStudio Diagnostics
	Exercises


	Chapter 5. Exploratory Data Analysis
	Introduction
	Prerequisites

	Questions
	Variation
	Visualizing Distributions
	Typical Values
	Unusual Values
	Exercises

	Missing Values
	Exercises

	Covariation
	A Categorical and Continuous Variable
	Exercises
	Two Categorical Variables
	Exercises
	Two Continuous Variables
	Exercises

	Patterns and Models
	ggplot2 Calls
	Learning More

	Chapter 6. Workflow: Projects
	What Is Real?
	Where Does Your Analysis Live?
	Paths and Directories
	RStudio Projects
	Summary


	Part II. Wrangle
	Chapter 7. Tibbles with tibble
	Introduction
	Prerequisites

	Creating Tibbles
	Tibbles Versus data.frame
	Printing
	Subsetting

	Interacting with Older Code
	Exercises


	Chapter 8. Data Import with readr
	Introduction
	Prerequisites

	Getting Started
	Compared to Base R
	Exercises

	Parsing a Vector
	Numbers
	Strings
	Factors
	Dates, Date-Times, and Times
	Exercises

	Parsing a File
	Strategy
	Problems
	Other Strategies

	Writing to a File
	Other Types of Data

	Chapter 9. Tidy Data with tidyr
	Introduction
	Prerequisites

	Tidy Data
	Exercises

	Spreading and Gathering
	Gathering
	Spreading
	Exercises

	Separating and Pull
	Separate
	Unite
	Exercises

	Missing Values
	Exercises

	Case Study
	Exercises

	Nontidy Data

	Chapter 10. Relational Data with dplyr
	Introduction
	Prerequisites

	nycflights13
	Exercises

	Keys
	Exercises

	Mutating Joins
	Understanding Joins
	Inner Join
	Outer Joins
	Duplicate Keys
	Defining the Key Columns
	Exercises
	Other Implementations

	Filtering Joins
	Exercises

	Join Problems
	Set Operations

	Chapter 11. Strings with stringr
	Introduction
	Prerequisites

	String Basics
	String Length
	Combining Strings
	Subsetting Strings
	Locales
	Exercises

	Matching Patterns with Regular Expressions
	Basic Matches
	Exercises
	Anchors
	Exercises
	Character Classes and Alternatives
	Exercises
	Repetition
	Exercises
	Grouping and Backreferences
	Exercises

	Tools
	Detect Matches
	Exercises
	Extract Matches
	Exercises
	Grouped Matches
	Exercises
	Replacing Matches
	Exercises
	Splitting
	Exercises
	Find Matches

	Other Types of Pattern
	Exercises

	Other Uses of Regular Expressions
	stringi
	Exercises


	Chapter 12. Factors with forcats
	Introduction
	Prerequisites

	Creating Factors
	General Social Survey
	Exercises

	Modifying Factor Order
	Exercises

	Modifying Factor Levels
	Exercises


	Chapter 13. Dates and Times with lubridate
	Introduction
	Prerequisites

	Creating Date/Times
	From Strings
	From Individual Components
	From Other Types
	Exercises

	Date-Time Components
	Getting Components
	Rounding
	Setting Components
	Exercises

	Time Spans
	Durations
	Periods
	Intervals
	Summary
	Exercises

	Time Zones


	Part III. Program
	Chapter 14. Pipes with magrittr
	Introduction
	Prerequisites

	Piping Alternatives
	Intermediate Steps
	Overwrite the Original
	Function Composition
	Use the Pipe

	When Not to Use the Pipe
	Other Tools from magrittr

	Chapter 15. Functions
	Introduction
	Prerequisites

	When Should You Write a Function?
	Exercises

	Functions Are for Humans and Computers
	Exercises

	Conditional Execution
	Conditions
	Multiple Conditions
	Code Style
	Exercises

	Function Arguments
	Choosing Names
	Checking Values
	Dot-Dot-Dot (…)
	Lazy Evaluation
	Exercises

	Return Values
	Explicit Return Statements
	Writing Pipeable Functions

	Environment

	Chapter 16. Vectors
	Introduction
	Prerequisites

	Vector Basics
	Important Types of Atomic Vector
	Logical
	Numeric
	Character
	Missing Values
	Exercises

	Using Atomic Vectors
	Coercion
	Test Functions
	Scalars and Recycling Rules
	Naming Vectors
	Subsetting
	Exercises

	Recursive Vectors (Lists)
	Visualizing Lists
	Subsetting
	Lists of Condiments
	Exercises

	Attributes
	Augmented Vectors
	Factors
	Dates and Date-Times
	Tibbles
	Exercises


	Chapter 17. Iteration with purrr
	Introduction
	Prerequisites

	For Loops
	Exercises

	For Loop Variations
	Modifying an Existing Object
	Looping Patterns
	Unknown Output Length
	Unknown Sequence Length
	Exercises

	For Loops Versus Functionals
	Exercises

	The Map Functions
	Shortcuts
	Base R
	Exercises

	Dealing with Failure
	Mapping over Multiple Arguments
	Invoking Different Functions

	Walk
	Other Patterns of For Loops
	Predicate Functions
	Reduce and Accumulate
	Exercises



	Part IV. Model
	Chapter 18. Model Basics with modelr
	Introduction
	Prerequisites

	A Simple Model
	Exercises

	Visualizing Models
	Predictions
	Residuals
	Exercises

	Formulas and Model Families
	Categorical Variables
	Interactions (Continuous and Categorical)
	Interactions (Two Continuous)
	Transformations
	Exercises

	Missing Values
	Other Model Families

	Chapter 19. Model Building
	Introduction
	Prerequisites

	Why Are Low-Quality Diamonds More Expensive?
	Price and Carat
	A More Complicated Model
	Exercises

	What Affects the Number of Daily Flights?
	Day of Week
	Seasonal Saturday Effect
	Computed Variables
	Time of Year: An Alternative Approach
	Exercises

	Learning More About Models

	Chapter 20. Many Models with purrr and broom
	Introduction
	Prerequisites

	gapminder
	Nested Data
	List-Columns
	Unnesting
	Model Quality
	Exercises

	List-Columns
	Creating List-Columns
	With Nesting
	From Vectorized Functions
	From Multivalued Summaries
	From a Named List
	Exercises

	Simplifying List-Columns
	List to Vector
	Unnesting
	Exercises

	Making Tidy Data with broom


	Part V. Communicate
	Chapter 21. R Markdown
	Introduction
	Prerequisites

	R Markdown Basics
	Exercises

	Text Formatting with Markdown
	Exercises

	Code Chunks
	Chunk Name
	Chunk Options
	Table
	Caching
	Global Options
	Inline Code
	Exercises

	Troubleshooting
	YAML Header
	Parameters
	Bibliographies and Citations

	Learning More

	Chapter 22. Graphics for Communication with ggplot2
	Introduction
	Prerequisites

	Label
	Exercises

	Annotations
	Exercises

	Scales
	Axis Ticks and Legend Keys
	Legend Layout
	Replacing a Scale
	Exercises

	Zooming
	Themes
	Saving Your Plots
	Figure Sizing
	Other Important Options

	Learning More

	Chapter 23. R Markdown Formats
	Introduction
	Output Options
	Documents
	Notebooks
	Presentations
	Dashboards
	Interactivity
	htmlwidgets
	Shiny

	Websites
	Other Formats
	Learning More

	Chapter 24. R Markdown Workflow

	Index
	About the Authors
	Colophon



