Experimental Syntax and Island Effects

EDITED BY JON SPROUSE NORBERT HORNSTEIN

Experimental Syntax and Island Effects

This volume brings together cutting-edge experimental research from leaders in the fields of linguistics and psycholinguistics to explore the nature of a phenomenon that has long been central to syntactic theory – "island effects." The chapters in this volume draw upon recent methodological advances in experimental methods in syntax, also known as "experimental syntax," to investigate the underlying cognitive mechanisms that give rise to island effects. This volume presents a comprehensive empirical review of a contemporary debate in the field by including contributions from researchers representing a variety of points of view on the nature of island effects. This book is ideal for students and researchers interested in cutting-edge experimental techniques in linguistics, psycholinguistics, and psychology.

JON SPROUSE is an associate professor in the Department of Linguistics at the University of Connecticut.

NORBERT HORNSTEIN is a full professor in the Department of Linguistics at the University of Maryland, College Park.

Experimental Syntax and Island Effects

Edited by

Jon Sprouse and Norbert Hornstein

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107008700

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United Kingdom by MPG Printgroup Ltd, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Experimental syntax and island effects / Edited by Jon Sprouse and Norbert Hornstein. pages cm.
Includes bibliographical references and index.
ISBN 978-1-107-00870-0 (hardback)
1. Grammar, Comparative and general – Syntax. 2. Psycholinguistics
3. Acceptability (Linguistics) 4. Creativity (Linguistics) 5. Linguistics – Methodology. I. Sprouse, Jon, 1980– editor of compilation.
P37.5.C74E96 2013
415 – dc23 2013012163
ISBN 978-1-107-00870-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of figures List of tables	page vii ix
1	Experimental syntax and island effects: Toward a comprehensive theory of islands JON SPROUSE AND NORBERT HORNSTEIN	1
	Part 1 Global issues in the investigation of island effect	S
2	Deriving competing predictions from grammatical approaches and reductionist approaches to island effects JON SPROUSE, MATTHEW W. WAGERS, AND COLIN PHILLIPS	21
3	Islands in the grammar? Standards of evidence PHILIP HOFMEISTER, LAURA STAUM CASASANTO, AND IVAN A. SAG	42 D
4	On the nature of island constraints I: Language processing and reductionist accounts COLIN PHILLIPS	64
5	Computational models of acquisition for islands LISA PEARL AND JON SPROUSE	109
6	On the nature of island constraints II: Language learning and innateness COLIN PHILLIPS	d 132
	Part 2 Specific issues in the investigation of island effects	
7	Memory mechanisms for <i>wh</i> -dependency formation and the implications for islandhood MATTHEW W. WAGERS	ir 161

vi Contents

8	What's negative about negative islands? A re-evaluation of extraction from weak island contexts ROBERT KLUENDER AND SIMONE GIESELMAN	186
9	On the structural nature of island constraints BRIAN DILLON AND NORBERT HORNSTEIN	208
10	Backgrounded constituents cannot be "extracted" ADELE E. GOLDBERG	221
11	Microvariation in islands? DAVE KUSH, AKIRA OMAKI, AND NORBERT HORNSTEIN	239
12	Subject islands in German revisited JOHANNES JURKA	265
13	Subject islands are different MARIA POLINSKY, CARLOS G. GALLO, PETER GRAFF, EKATERINA KRAVTCHENKO, ADAM MILTON MORGAN, AND ANNE STURGEON	286
14	What vs. who and which: Kind-denoting fillers and the complexity of <i>whether</i> -islands THEODORA ALEXOPOULOU AND FRANK KELLER	310
15	Resumption in English MARIA POLINSKY, LAUREN EBY CLEMENS, ADAM MILTON MORGAN, MING XIANG, AND DUSTIN HEESTAND	341
16	The island (in)sensitivity of sluicing and sprouting MASAYA YOSHIDA, JIYEON LEE, AND MICHAEL WALSH DICKEY	360
	References	377
	Index	414

Figures

2.1	A graphical example of a linearly additive effect with a	
	2×2 design	page 27
2.2	Results of magnitude estimation experiments for four island	
	types from Sprouse <i>et al.</i> (2012)	27
2.3	Predictions of the capacity-based and grammatical theories	33
2.4	Differences-in-differences scores plotted as a function of serial	
	recall scores $(n = 173)$	38
3.1	Mean acceptability z-score by list position, according to a	
	linear regression model	51
3.2	Effects of reading span on acceptability z-score for sentence	
	types with varying degrees of difficulty	55
5.1	Example graphs showing the presence (left panel) and absence	
	(right panel) of island effects using the factorial definition	112
5.2	Steps in the acquisition process and calculation of	
	grammaticality preferences	118
5.3	The 15 most frequent <i>wh</i> -dependency types in the three	
	corpora types	120
5.4	Experimentally derived acceptability judgments for all four	
	island types from Sprouse <i>et al.</i> (2012) ($N = 173$)	122
5.5	Log probabilities derived from child-directed speech	123
5.6	Log probabilities derived from adult-directed speech and text	124
7.1	Dependency formation in a unitary, content-addressable	
	memory	181
8.1	Mean raw acceptability ratings from Experiment 1	195
8.2	Mean raw acceptability ratings from Experiment 2	196
9.1	By-participant average ratings for Experiment 1	213
9.2	By-participant average ratings for Experiment 2	215
10.1	Correlation between difference scores (dispreference for	
	question scores) and negation test scores (from Ambridge and	
	Goldberg 2008)	226
11.1	Average ratings by condition – Experiment 1a	247

viii	List of	figures
------	---------	---------

11.2	Average ratings collapsed across quantifier factor – Experiment	
	1a considered robust	248
11.3	Average ratings by condition – Experiment 1b	250
11.4	Average ratings by condition – Experiment 2	252
11.5	Average ratings by condition – Experiment 3	253
12.1	Predictions for subextraction out of subjects/objects	268
12.2	Experiment 1: Results	270
12.3	Experiment 1: Individual results of all 31 participants	272
12.4	Experiment 2: Results	276
12.5	Experiment 3: Results	280
12.6	Experiment 4: Results	284
13.1	Judgments on baseline sentences and subject subextraction	
	sentences in English	292
13.2	Word-by-word reading times (raw RTs, ms) for baseline	
	(control) sentences and for subextraction from the subject of an	
	unaccusative, unergative, and transitive in English	292
13.3	Judgments on Russian subextraction, VX	302
13.4	Judgments on Russian subextraction, XV	302
14.1	Effect of embedding, resumption and wh-phrase on object	
	extraction in Greek in Experiment 1	322
14.2	Effect of embedding, resumption and wh-phrase on object	
	extraction in English in Experiment 2	328
14.3	Effect of embedding, resumption, d-linking and animacy on	
	object extraction in English in Experiment 3	332
15.1	Online ratings for relative clause sentences	348
15.2	Online reaction times for relative clause sentences	348
15.3	Online ratings for adjunct island sentences	349
15.4	Online reaction times for adjunct island sentences	349
15.5	Ratings for relative clause declaratives, auditory presentation	351
16.1	Acceptability rating	369
16.2	Average reading time in all conditions	371
16.3	Average reading time in Complement Clause conditions	371
16.4	Average reading time in Adjunct Clause conditions	372

Tables

1.1	Cross-linguistic variation in island effects	page 4
2.1	Calculating the DD score with a sample set of mean ratings	32
2.2	Means and standard deviations of z-scored magnitude	
	estimation scores for each condition $(n = 173)$	36
2.3	Two-way linear mixed effects models for each island type and	
	pairwise comparisons for the effects of each structural	
	manipulation $(n = 173)$	37
2.4	Linear regression modeling differences-in-differences scores as	
	a function of serial recall scores ($n = 173$)	39
5.1	The corpus analysis of the child-directed speech samples from	
	CHILDES	113
5.2	Basic composition of the child-directed and adult-directed	
	input corpora	120
5.3	Classification of the learning biases required by the proposed	
	acquisition process	129
9.1	Mean judgments and standard error by participants for	
	Experiment 1	213
9.2	Mean judgments and standard error by participants for	
	Experiment 2	215
9.3	Subcategorization proportions for verbs used in Experiments	
	1 and 2	220
10.1	Classic examples of "island" constraints	222
12.1	Which domains allow subextraction in German?	267
12.2	ANOVA 2×2 subanalyses ArgType \times Ext interaction effects	
	(p-values)	277
13.1	Transparency for subextraction	303
14.1	Result of Tukey test for the main effect of WH-PHRASE in	
	Experiment 1 (whether-clauses)	321
14.2	Result of Tukey test for the main effect of WH-PHRASE in	
	Experiment 1 (<i>that</i> -clauses)	323
14.3	Result of Tukey test for the interaction of EMBEDDING and	
	RESUMPTION in Experiment 1 (that-clauses)	323
	1 , , , ,	

ix

x List of tables

14.4	Result of Tukey test for the interaction of RESUMPTION and	
	WH-PHRASE in Experiment 1 (that-clauses)	324
14.5	Result of Tukey test for the main effect of WH-PHRASE in	
	Experiment 2 (whether-clauses)	327
14.6	Result of Tukey test for the interaction of D-LINKING and	
	ANIMACY in Experiment 3 (whether-clauses)	331
14.7	Result of Tukey test for the interaction of EMBEDDING and	
	D-LINKING in Experiment 3 (that-clauses)	333
14.8	Result of Tukey test for the interaction of D-LINKING and	
	RESUMPTION in Experiment 3 (that-clauses)	333