Provisioning of urban ecosystem services and the benefit distribution under climate change

Case study of Prague

Helena Duchková

Supervisor: Mgr. Davina Vačkářová, PhD.

Content:

Intro

Aim and research questions Motivation behind the project

Literature review

Methodology

overview data preparation

Model testing

Follow up and next steps

Aims:

Explore the relationship among urban ecosystem services, their distribution and climate change in space and time, and thus, support equity and equality in ES benefitiaries.

- \rightarrow To analyse the distribution of ES supply and demand in Prague.
- \rightarrow To identify the areas with population vulnerable to risks of climate.
- \rightarrow To identify the areas threatened by current and future risks of climate change.
- \rightarrow To evaluate the areas with unequal distribution of ES benefits and areas with the need of ES benefits.

Research questions:

→ Are ES benefits supplied equally in all Prague areas?

- → What ES are the most demanded in which areas?
- → What areas include the most vulnerable population?
- \rightarrow What areas are in need of ES benefits?

Motivation behind the project

Increasing number of population in urban areas, urbanization, land competition and increasing magnitude and frequency of climate change impacts

 \rightarrow An urgent need to maintain and increase urban ecosystem services in urban areas

Combination of mapping and modelling ES with a vulnerability analysis

→ bringing new perspectives and evidence on a problem of ecosystem servicesurbanization-climate change.

Identification of spatial mismatches between ecosystem service (ES) supply and societal demand

 \rightarrow informing and guiding governance, and policy- and decision-makers in the sustainable management of areas important for the provision of ecosystem services and urban planning

Literature review

Methods for mapping, modelling and assessment of supply-demand urban ecosystem services

Systematic approach

Search engines: Scopus and Web of Science

Keywords: ecosystem service* and mismatch* in tiitle, abstract, keywords; English; articles; all years

- \rightarrow 167 returns after removing duplicates
- \rightarrow 58 articles after title-abstract screening \rightarrow 18 articles for full screening
- \rightarrow 10 articles passed to review through inclusion/exclusion criteria

Database creation

 \rightarrow data for selected articles entered into the database (example of data entry in Table 1)

 \rightarrow data entry in database served as a basis for comparison of frameworks and methods

Table 1: Examples of database entries

													a seconda se		dama and					
	year of		type of					reason for ES	LULC	resolution	model/		supply		demand				year or	
authors	publication	journal	study	location	country	framework	ES	selection	types	of LULC	analysis	supply	indicators	demand	indicators	EQS	mismatches	participation	data	note
Ortiz and Geneletti	2018	Sustainability Science of the	urban	Havana (two municipalities)	Cuba	Conceptual diagram; assessing unsustainable flow and unsatisfied demand; 1. the identification of services providing and demanding areas, 2. the quantification of mismatches by a spatial comparison between critical capacity and flow, and demand and flow. Compremensive manework comprising or 4 steps for quantifying ES S and S changes associated with land use changes on the basis of environmental quality standards and policy goals. Developed based on Baro et al (2015) but advanced by quantifying the mismatches between ES S and D associated with land use changes for optimal land management. 1. urbanisation related LULC (land composision, configuration and spatial transition) 2. selection of appropriate indicators reflecting stakeholder concerns and appropriate EQS and policy goals based on policy documents to assess coocurrence of ES S and D under alternative land use situations using spatially explicit models 3. assessment of ES mismatches and shortfalls on the basis of spatial visual results	recreation, food supply carbon sequestrati on, water retention, particulate (PM10)	Recreation frequently considered in planning processes, urban agriculture plays important in provision of service while representing a source of income for population of cities in low income countries.	lake, reservoir, grassland, and trees, shrubland, grassland, areas, road network lake, reservoir, grassland, garden plot, coastal wetland, equaculture , woodland, river,	1:1000 urban block resolution	GIS modelling, network analysis GIS; balance thresholds od ES S and D derived by regression analysis between ES	PM10 removal service is concentration - if PM10 absorption concentration - is smaller than PM concentration - is smaller than PM	Water retention - recreation - minimum area of green space; food - mean crop yield of vegetables and fruits in 2016 and mean annual crop yield Water retention - runoff air quality - absorption capacity climate regulation - carbon sequestration (absorbed carbon capacity recreation - average fraction	recreation - based on the quality standard for which everyone should be able to reach at least one recreational area within maxium distances, reliance coeficient rive remitovar demando is conditional: calculated as each subdistrict and the permitted PM concentration set by the local government target. The demand is the disperacy between the actual concentration and the permitted concentration and the permitted concentration and the permitted concentration. If the actual concentration exceeds the permitter PM concentation. Otherwise the demand = 0. carbon sequestration = the difference between actual emissions and permitted CO2	water retention - water retention - water demand air quality - concentration PM10 concentration PM10 concentration PM10 concentration PM10 concentration PM10 concentration PM10 concentration of PM10 concentration density (and the local	recreation - inverse minimum value of green spaces per capita (cuban rule); food - 45% reliance coefficient	Unsustainable mismatch = converting number of inhabitants in benefiting residential areas to m2/inhabitantant, comparin value to the critical capacity; unsatisfied demand = % of people who travel over max. distance to recreational sites; % of people and for whom the production does not meet at least 45%.	no yes - stakehodlers and residents	2016	accounting for boundry effect
Chen et al.	2019	Environment	urban	Shanghai	China	options	recreation	good data availability	arable land	100 m	types	PM absorption capacity	space	government	space per capita	demand	same as above	the choise of Ess	2000-2014	
Parsa et al.	2019	PiosONE	urban	Tabriz	Iran	a methodological approach based on indicators 1. assessing the supply 2. selecting environmental quality standards 3. assessing demand 4. identifying mismatches	air quality, global climate regulation		trees, shrubs	city scale	iTree Eco model	supply = ES flows or biophysical impact of the ES on the environment in or surrounding the area	air quality - aanually removed pollutants (PM2.5, O3, NO2, SO2, CO) climate regulation - annual carbon sequestration	the required or desired amount of ES delivered by the society, EQS used as an indicator for demand	air quality - concentration in reference to values selected standards climate regulation - annual GHG emissions (downscaled global CO2 emissions to Tabriz based on the number of inhabitants.	the environmental quality standards (EQS) as an amenable indicator 4 air quality standards and GHG reguction targets (Iranian reguction target GHG, WHO air quality guidelines, EU air quality directive, National ambient aur quality standards for the EPA of the US and the Iran air quality standard)	difference between S and D, if demand is met without any decrease in the future capacity of regulating provision, it is sustainable; otherwise it is unsustainable (also if it involves losing or degrading other ES - traddeoffs)	no	2015	not spatial distribution - whole city assessment

Brief scientometrics

 \rightarrow No pattern in publication journal

→Oldest included article from
2015 (despite no restrictions to timespan in search)

→Recreation and global climate regulation are the most assessed services (Fig. 1)

→Most assessments from China(4) and Spain (3)

→Only one attempt to assess supply and demand of urban climate temperature (unsuccesful in mismatch assessment on the demand side)

Advances in ES supply and demand coupling

The innovative approaches appearing in reviewed literature:

- \rightarrow Approach for regulating ES based on environmental quality standards
- Advances in framework expresing 2 mismatches unsatisfied demand and unsatisfied sustainability
- \rightarrow Advances in framework to assess ES bundles from supply-demand approach
- \rightarrow Demand assessed as a function of vulnerability
- \rightarrow Inclusion of alternative scenarios
- \rightarrow Advances in framework by assessing mismatches between supply and demand linked to land use changes
- → Predicting change in ES mismatches based on 1 baseline and 3 stakeholder defined scenarios

Findings

- The assessment of ES supply and demand coupling mechanisms in urban areas is an emergent topic in urban planning and ecosystem service literature
- Indicators for ES supply and demand differ across papers even if the same ES is assessed
- No assessments of noise attenuation, habitat quality and urban temperature regulation, which are also important services in urban environment
- There is a gap in an assessment of socio-demographics of population living in areas of matches and mismatches → a need to address a question who are the beneficiaries and losers, (not only where they are located) while considering the equity of distribution and future planning

Limitations of the literature search

Including only city-scale studies

→Needs to be extented to all urban studies (e.g. regional study of urban areas)

Keyword limitation

→Needs to be expanded to other keywords in search (e.g. coupling mechanisms, supply and demand,..)

Including only original studies

 \rightarrow A need to take a look at review studies (snowballing)

Methodology Overview

Selection of ES services: →Urban temperature regulation →Urban flood mitigation

- →Recreation
- \rightarrow Air purification
- →Stormwater runoff retention
- \rightarrow Carbon sequestration
- →Noise attenuation
- →Habitat quality

Methods:

- →Remote sensing and GIS (and literature search) for data preparation
- →Urban InVEST software for modelling
- →GIS for mapping and modelling

Urban cooling model (InVEST)

 \rightarrow estimates the cooling effect of vegetation based on commonly available data

Model inputs:

Area of interest

- Neighborhood or city

Climate

- Background temperatute
- Reference evapotranspiration
- Maximal UHI effect

Land Use/Land Cover

- Raster data -
- Associated biophysical parameters

Buidings (optional)

- Footprints and energy use

EVAPOTRANSPIRATION

Island

Magnitude

Baseline Temperature

Air Blendin Distance

For each Land Use category:

InVEST

integrated valuation of ecosystem services

and tradeoffs

natural

capital

PROJECT

Albedo: proportion of solar radiation reflected Kc: crop evapotranspiration coefficient Shade: proportion of tree cover or other substantial sources of shade

Green Area: binary indicator of 'green area' potential, with larger (>2ha) green areas providing additional cooling

Building Intensity: ratio of building floor area to land area

Stanford University

Data

Prague Land Use Land Cover classification

In raster (aprox. 20 m resolution) Data fromUrban Atlas 2012

Potential evapotranspiration

raster climate data for the 1970-2000 (resolution 30-arc

Data from CGIARCSI

Mean average temperature (1981 – 2010)

Data from klimatickazmena.cz

Urban heat island effect

Daytime intensity

Nightime intensity

Yceo earth engine, 2020

Model testing Urban Cooling

- Testing the model on the data provided from Natural Capital Project during the online workshop
- Results from Minneapolis case study (area 3x3 km)

Land Use Land Cover classes

Shade areas Shade Ν

0

1

Actual evapotranspiration

Additional cooling capacity index of parks

Heat mitigation index

Follow up and next steps

- Finishing the collection/preparation of data (albedo, crop coeficients for all LULC classes)
- Validation of urban cooling model's outputs
- Continuing with other ES supply mapping/modelling
- Selection the indicators for the demand side assessment (e.g. EQS)
- Analysis of mismatches
- Vulnerability analysis
- Design of various scenarios of urban greenery development

References

Baro, F., Gomez-Baggethun, E., and Haase, D. 2017. Ecosystem service bundles alon the urban-rural grandient: Insights for landscape planning and management. *Ecosystem Services*, 24:147-159.

Baro, F., Haase, D., Gomez-Baggethun, E. and Frantzeskaki, N. 2015. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. *Ecological Indicators*, 55:148-158

Baro, F., Palomo, I., Zilian, G., Vizcaino, P., Haase, D., and Gomez-Baggethun, E. 2016. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. *Land Use Policy*, 57:405-417.

Chen, Y., Jiang, B., Bai, Y., Xu, X., and Alatalo, J., M. 2019. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. *Science of the Total Environment*, 650:1426-1439.

Jian, B., Bai, Yang, Chen, J., Alatalo, J., M., Xu, X., Liu, G., and Wang, Q. 2020. Land management to reconcile ecosystem services supply and demand mismatches – A case study in Shanghai municipality, China. *Land Degradation and Development, 1-16.*

Klimaticka Zmena. 2020. Mean average temperature.

Marango, D., Galio, M., Robbi, M., Appiotti, F., Fano, E., A., and Gissi, E. 2018. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem service approach for the management of water flows. *Ecological Modelling*, 386:1-10.

Natural Capital. 2019. Users' guide. Stanford University.

Trabucco, A., Zomer, R. 2019. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare. Fileset.

Urban Atlas. 2012, Land Copernicus.