BANKING

Tutorial 09 - Money market instruments, interest rates and central banks

Petr Hanzlík

Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Czech Republic

Contents

Money market instruments

2. Interest rates

3. Repo operations

Money market instruments

Money market instruments - examples

Money market = securities with maturity up to I year Instruments quoted on the yield basis

- Money Market Deposits (MMD)
- Certificates of Deposits (CD)

Instruments quoted on the discount basis

- Treasury bills
- Bills of exchange, commercial papers

Money market instruments

Treasury bills

Treasury bills (T-bills) are government bonds with maturity up to 1 year
 - Traded on discount basis (i.e. under its par value) Simple interest and the ACT/360 method

Money market instruments

Treasury bills

Average yield $\left(r_{n o m}\right)$ measures the rate of return on the T-bill

$$
F V=P V\left(1+\frac{t}{360} r_{\text {nom }}\right) \quad \Rightarrow \quad r_{\text {nom }}=\frac{F V-P V}{P V \times t / 360}
$$

FV - Future Value (par value or selling price) of the bond
PV - Present Value of the bond (issue price)
$\mathrm{r}_{\text {nom }}$ - Average yield
t - Holding period of the T-bill
Bond equivalent yield ($r_{\text {eq }}$) enables comparability among various instruments with different day conventions (ACT/360 and ACT/365).
$r_{e q}=\frac{F V-P V}{P V \times t / 365}$
FV - Future Value (par value or selling price) of the Bond
PV - Present Value of the Bond
$r_{\text {eq }}$ - Bond equivalent yield
t - Holding period of the T-bill

Money market instruments

Day count conventions

number of days between dates $\frac{\text { number of days in reference period }}{x}$ interest earned in referenceperiod

Standard	Method	Security
ACT/365	English	English securities (gilts etc.)
ACT/360	French (International)	Czech Treasury Bills, French T-bills, U.S. T-bills
30E/360	German (Trading)	Accrued Interest, Czech Government Coupon Bonds
ACT/ACT		U.S. Treasury Bonds

Money market instruments

Task I: Treasury bill

On March 1, 2015 the Ministry of Finance issued a 270-day, CZK 1million par T-bill priced at CZK 980,000.
a) Compute an average yield of the T-bill.
b) Calculate the selling price of the T-bill if an investor sells the T-bill after 90 days with an average yield of 3%.

Money market instruments

Task I: Treasury bill (solution)

On March 1, 2015 the Ministry of Finance issued a 270-day, CZK 1million par T-bill priced at CZK 980,000.
a) Compute an average yield of the T-bill.
b) Calculate the selling price of the T-bill if an investor sells the T-bill after 90 days with an average yield of 3%.
Solution:
a)

Par value	1000000 CZK
Maturity	270
Issue price (March I, 2015)	980000 CZK
Average yield (March I,2015)	$2,72 \%$

b) Holding period

90
Average yield (May 30, 2015)
3,00\%
Selling price (May 30, 2015)
987350 CZK

$$
F V=P V \times\left(1+\frac{t}{360} r_{\text {nom }}\right)=980,000 \times\left(1+\frac{90}{360} \times 3 \%\right)=987,350
$$

Money market instruments

Task 2: Money market deposit

As of March 1, 2015 JP Morgan placed a EUR 100-million deposit with a 30-day maturity and the current market rate of 2%. How much did JP Morgan receive on April 1, 2015?

Contents

I. Money market instruments

2. Interest rates

3. Repo operations

Interest rates

Interest rates basics

Interest rate = "rental" price of money; price paid for the use of money for a period of time

Money loaned \rightarrow the lender defers consumption to the future in exchange for an expected increase in future income

Real interest rate $=$ expected increase in real income (relative to the amount loaned)

Real vs. vs. Nominal interest rate

- Fisher's equation $\boldsymbol{i}_{r}=i_{n}-\pi^{e} \longleftarrow$ Expected inflation
- Adjustment for premium: $i_{n}=i_{r}+\pi^{e}+C R P+M P+L P+O P$
i_{n} - nominal interest rate
i_{r} - real interest rate
π^{e} - expected inflation
CRP - credit risk premium
MP - maturity premium
LP - liquidity premium
OP - optionality premium

Types of interest rates: ČNB announced rates

Discount rate ... paid by the ČNB to commercial banks for making their deposits
Repo rate ... rate for which the ČNB provides repurchase agreements with commercial banks.
Lombard rate ... the rate charged by the ČNB for granting loans to commercial banks against a pledge for securities

Q: What are current ČNB/ECB policy rates?

Interest rates

ČNB rates

Types of interest rates: Interbank rates

- PRIBOR (Prague Interbank Offered Rate) = the reference interest rate on the interbank deposit market (the sale of deposits "offer")
- PRIBID (Prague Interbank Bid Rate) $=$ the reference interest rate on the interbank deposit market (the purchase of deposits "bid"); quotation stopped in 7/2015!
- PRIMEAN = interest rate in the middle between PRIBOR and PRIBID
- CZEONIA (CZEch OverNight Index Average) = the weighted average of the interest rates of all unsecured O / N deposits placed by reference banks on the interbank market
- LIBOR (London Interbank Offered Rate)
- EURIBOR (Euro Interbank Offered Rate)

Interest rates

PRIBOR development I/2

Interest rates

PRIBOR development 2/2

Interest rates

Question

Can the interbank rates (e.g. 1M Euribor) go negative? Explain your statement.

Interest rates

IM Euribor

Interest rates

Types of interest rates: Interbank rates

Development of 3M USD LIBOR in the last 20 years

Interest rates

Types of interest rates: government bonds yields

Development of CZ and DE 5Y GOV bonds

Interest rates

Time structure of interest rates

- Yield curve shows the relationship between maturity and interest rates (yields on bonds against bond maturities)
- It is constructed from the bonds of the same risk - usually from government (Treasury) bonds.

European and United States Yield Curve

- In the past, four main yield curves have been observed: normal, inverted, flat and steep.

Interest rates

Yield curve examples

CZ and DE GOV YC (11/2015):

Interest rates

Yield curve examples

CZ GOV YC (development: 1/2014, 1/2015, 11/2015)

Source: Reuters

Task 3:Yield curve

We know that yield to maturity (YTM) is an average return paid to an investor if he or she holds a bond until its maturity. However, YTM is not appropriate for constructing the yield curve. Why?

Interest rates

Time structure of interest rates - spot rates

- Yield curve suffers from problems: the presence of coupons on bonds affects the calculated yield to maturity (YTM)
- Two ways to overcome this fact:

1

Bootstrapping

= construction of a yield curve using only zero coupon government bonds with different maturities

$$
{ }_{0} s_{N}=\left(\frac{M}{P_{N}}\right)^{\frac{1}{N}}-1
$$

P_{N} - bond's price at year N
M - bond's nominal value
${ }_{0} 5_{\mathrm{N}}-\mathrm{N}$-year spot rate

Interest rates

Time structure of interest rates - spot rates

To extract spot interest rates from the yields to maturity of coupon bonds

- The table below provides YTMs on bonds (5% coupon rate, face value of 100) with maturities from one to five years and corresponding spot rates
* It is clear that the difference between YTMs and spot rates increases as the bond maturity increases (YTM is a weighted average of spot rates)
p The following equation demonstrates, how the price of a two-year bond is calculated:

$$
P_{2}=\frac{C_{1}}{1+{ }_{0} S_{1}}+\frac{M+C_{2}}{\left(1+S_{0} S_{2}\right)^{2}} \quad 100=\frac{5.25}{1+5 \%}+\frac{100+5.25}{\left(1+s_{0} s_{2}\right)^{2}} \quad \Rightarrow{ }_{0} s_{2}=\left(\frac{105.25}{100-\frac{5.25}{1.05}}\right)^{\frac{1}{2}}-1=5.26 \%
$$

P_{2}-2-year bond's price
C_{1}-coupon at time 1
C_{2}-coupon at time 2
M - bond's nominal valve
os: - 1 -year spot rate
0S2 - 2 -year spot rate

If we put numbers into the equation, we obtain the two-year (annualized) spot rate (assume that the bond is priced at par, i.e. YTM $_{t}=$ Coupon rate ${ }_{\mathrm{t}}$):

Maturity	YTM	Spot Rates
1	5.00%	5.00%
2	5.25%	5.26%
3	5.40%	5.41%
4	5.50%	5.52%
5	5.60%	5.63%

Interest rates

Time structure of interest rates - forward rates

- The pure expectations hypothesis says that the forward rate for period T should be the best predictor of the expected spot rate in that period.
- In addition, we know that long-term rates are a geometric average of short-term rates. For instance, we can calculate a two-year spot rate S_{\wedge} as follows:

$$
\left(1+s_{2}\right)^{2}=\left(1+s_{1}\right)\left(1+{ }_{1} f_{2}\right) \Longrightarrow_{T-k} f_{T}=\left(\frac{\left(1+{ }_{0} s_{T}\right)^{T}}{\left(1+{ }_{0} s_{T-k}\right)^{T-k}}\right)^{1 / k}-1
$$

S_{T} - T-year spot interest rate
${ }_{T-k} \mathrm{f}_{\mathrm{T}}$ - Forward interest rate from time T-k until time T

Task 4: Spot and Forward rates

The following table contains maturities and YTMs of government bonds. Compute corresponding spot and 1 Y forward rates.

Maturity	YTM	Spot Rates	Forward Rates
1	$5,00 \%$	$\boldsymbol{?}$	$\boldsymbol{?}$
2	$5,25 \%$	$\boldsymbol{?}$	$\boldsymbol{?}$
3	$5,40 \%$	$\boldsymbol{?}$	$\boldsymbol{?}$
4	$5,50 \%$	$\boldsymbol{?}$	$\boldsymbol{?}$
5	$5,60 \%$	$?$	$?$

Interest rates

Task 4: Spot and Forward rates (hint)

Time structure of interest rates - Spot \& Forward

- We can depict a spot yield curve from the rates on the previous slide however, we cannot construct a forward yield curve. The reason is that the table includes one-year forward rates (such as ${ }_{2} \mathrm{f}_{3}$ or ${ }_{3} \mathrm{f}_{4}$) rather than longer-term rates, which are needed for constructing a forward yield curve.
- For instance, we need the rates ${ }_{1} f_{2},{ }_{1} f_{3}, f_{1}$ and ${ }_{1} f_{5}$ for the curve valid next year.

Interest rates

Task 5: Spot \& Forward rates

The table shows spot rates for next 5 years. Compute corresponding forward rates (at 1 year from now) and draw a spot curve and a forward yield curve valid a year from now.

Maturity	Spot Rates	Forward Rates
1	$5,00 \%$	$?$
2	$5,26 \%$	$?$
3	$5,41 \%$	$?$
4	$5,52 \%$	$?$
5	$5,63 \%$	$?$

Interest rates

Task 5: Spot \& Forward rates (hint)

The table shows spot rates for next 5 years. Compute corresponding forward rates and draw a spot curve and a forward yield curve valid a year from now.

Maturity	Spot Rates	Forward Rates
1	$5,00 \%$	$!$
2	$5,26 \%$	\vdots
3	$5,41 \%$	\vdots
4	$5,52 \%$	\vdots
5	$5,63 \%$	
${ }_{T-k} f_{T}=\left(\frac{\left(1+{ }_{0} s_{T}\right)^{T}}{\left(1+{ }_{0} s_{T-k}\right)^{T-k}}\right)^{1 / k}-1$	${ }_{1} f_{3}=\left(\frac{(1+5,41 \%)^{3}}{(1+5,00 \%)^{1}}\right)^{1 / 2}$	

Interest rates

Task 5: corresponding graph

Contents

I. Money market instruments

2. Interest rates

3. Repo operations

Repo operations

Repurchase apreenent

- A classic repurchase agreement (repo) = a purchase of securities followed by their future sale back
- Central bank - commercial bank or commercial bank commercial bank

Repo operations

Task 6: Repo

On March 20, 2015 Komerční banka (KB) and ČSOB concluded a repo under the conditions below (KB accepts the loan). Use the 30/360 day-count convention for your calculations.

Repo		Dluhopis/Bond	
-Days	30	- Coupon rate	$3,00 \%$
-Volume	100000000	- Price	$100,90 \%$
- Settlement	20.3 .2015	- Maturity	30.6 .2015
- Termination	20.4 .2015		
Repo rate	$2,0 \%$	Last Coupon Paid	30.6 .2014

a) Compute flows of cash and bonds at the beginning and the end of the deal.
b) Calculate the implicit price of the bond as of April 20, 2015.
c) Depict this transaction on a picture.

Repo operations

Task 6: Repo

Solution: a)
Accrued interest: $\quad A I=\frac{t_{1}-D_{1}}{360} \times C$
Accrued interest is a part of the coupon that compensates the Buyer (or the Seller) for non-obtaining the accrual part of the coupon.

$$
P_{D}=P_{C} \pm A I
$$

If the deal is done at time t_{1}, the seller is to be compensated for holding a bond in period $\left(D_{I}, t_{1}\right)$, i.e. $P_{D}=P_{C}+A I$

Repo operations

Task 6: Repo

Solution:a)
i. Accrued interest $\left(\frac{260}{360} \times 3 \% \times 100 \mathrm{mil}\right.$. $)$

Date	Al	Number of days
20.3 .2015	2166667	260
20.4 .2015	2416667	290

ii. Price of the bond (100 mil. $\times 100,9 \%$) + AI as of 20 March

20.3.2015	ČSOB pays	KB receives
Principal	100900000	100900000
Accrued Interest	2166667	2166667
Total	$\mathbf{1 0 3 0 6 6 6 6 7}$	$\mathbf{1 0 3 0 6 6 6 6 7}$

iii. Interest from the repo $(2 \% \times 103$ mil. $\times 30 / 360)$

20.4 .2015	ČSOB receives	KB pays
Interest from repo	171778	171778
Total	103238444	103238444

Repo operations

Task 6: Repo

Solution:
b) The implicit price of the bond equals the difference between the repo amount and Al as of 20 April 2015

Repo operations

Task 7: Repo

On October 24, 2015 GE Money Bank, a.s. (GE) and Česká sporitelna (CS) concluded a repo under the conditions below (GE accepts the loan). Use the 30E/360 day-count convention for your calculations.

Repo	Bond		
- Days	14	- Coupon rate	$3,00 \%$
- Volume	500000000	- Price	$100,50 \%$
- Settlement	24.10 .2015	- Maturity	30.6 .2016
- Termination	7.11 .2015		
Repo rate	$3,25 \%$	Last Coupon Paid	30.6 .2015

a) Compute flows of cash and bonds at the beginning and the end of the deal (507849388 CZK)
b) Calculate the implicit price of the bond as of November 7, 2015 (502 557722 CZK)
c) Depict this transaction on a picture

Source

Thank you for your attention.

