Rostering

Example (nurse-roster)

Schedule the shifts of num_nurses nurses over num_days days.
Each nurse is scheduled for each day as either: (d) on day shift, (n) on night shift, or (o) off. In each four day period a nurse must have at least one day off, and no nurse can be scheduled for 3 night shifts in a row.

We require req_day nurses on day shift each day, and req_night nurses on night shift, and that each nurse takes at least min_night night shifts.

Nurse rostering condition as a DFA

The regular constraint

Is a sequence of symbols accepted by a DFA?

```
regular(array[int] of var int: x, int: Q, int: S,
array[int,int] of int: d, int: q0, set of int: F)
```

Constrains that the sequence of values in array x (which must all be in $\{1, \ldots, S\}$ is accepted by the DFA of Q states with input alphabet $\{1, \ldots, S\}$ and transition function

$$
d:\{1, \ldots, Q\} \times\{1, \ldots, S\} \rightarrow\{0, \ldots, Q\}
$$

and initial state $q 0 \in\{1, \ldots, Q\}$ and accepting states F. State 0 is reserved to be a fail state.

See also regular_nfa.

The seesaw problem ${ }^{21}$

Example (seesaw)

Adam (36 kg), Boris (32 kg) and Cecil (16 kg) want to sit on a 10 -foot long seesaw such that they are at least 2 feet apart and the seesaw is balanced.

Write a general model for any number of people.
Possible decision variables?
1 Position on the seesaw for each person.
2 Distances between persons, position of the first person, and order of persons.
3 Person or empty for each position on the seesaw.
Multiple modeling?
How to improve performance of our model?
${ }^{21}$ From R. Barták's practical

