Respiratory infections

Pavel Drevinek Department of Medical Microbiology

2nd Faculty of Medicine, Charles University Motol University Hospital

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

- most common infections worldwide
- often epidemic outbreaks: droplet transmission; direct contact seasonal pattern

- acute or chronic

- community acquired or nosocomial
- bacterial or viral (with the risk of bacterial superinfection) ... or fungal
 - the same microorganism can cause different diseases
 - from mild to life threatening

Respiratory tract: anatomy

Conductive zone:

Respiratory zone:

No cilia, no mucus

Upper respiratory tract Nasal cavity

Pharynx

Larynx

Lower respiratory tract

Trachea

Lungs

Primary bronchi

virtualmedicalcentre.com®

Respiratory tract: one of important ports of entry

- some infections remain there
- some spread further
 - per continuitatem (S. pneumoniae)
 - via blood (S. pneumoniae, TB, measles)
 - systemic effect of toxin (scarlet fever, diptheria, pertussis)

Respiratory tract: naturally colonized

- not every bug means infection (microbiota)

.

- staphylococci, diphteroids, *S. aureus*
- *H. influenzae*, *S. pneumoniae*, viridans streptococci, neisseria, meningococci, enterobacteria, candida

• Lung microbiome: streptococci, haemophilus, anaerobes, pseudomonads

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
- - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Suitable material for investigation

• SPUTUM

- microscopy (to validate sputum)

zoom 10x10

zoom 10x100

Suitable material for investigation

• SPUTUM

- microscopy (to validate sputum)
- culture (incl. quantification)
- molecular genetics

Induced sputum

- bronchoalveolar lavage (BAL)
 - microscopy, culture, PCR
 - Ag of molds

- throat/cough swab
 - culture
 - Ag (Strep test)

nasopharyngeal swab

- viral dg. (PCR, Ag)
- pertussis, atypical pathogens

• urine

- pneumococcal Ag (in children low PPV)
- legionella Ag

• serum

- mold Ag (glucan; galactomannan ~ aspergillus)
- antibodies (chlamydia, mycoplasma, pertussis, flu)

blood cultures

pleural fluid

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Key players

Viruses, called respiratory viruses:

orthomyxoviruses: influenza A, B

paramyxoviruses: parainfluenza PIV 1 to 4, RSV, metapneumovirus hMPV, measles

picornaviruses: rhinovirus HRV; coxsackie and echovirus (= enteroviruses!)

adenoviruses

coronaviruses HCoV

Key players

Bacteria:

S. pneumoniae H. influenzae C. pneumoniae M. pneumoniae S. aureus L. pneumophila M. tuberculosis, NTM *B. pertussis, B. parapertussis C. diphteriae*

Nosocomial infections: *P. aeruginosa* other G- non-fermenters enterobacteria

Fungi: Aspergillus spp., Pneumocystis jiroveci

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Rhinitis

• rhinoviruses (also others – e.g. coronaviruses) mucoid secretion is not a sign of bacterial infection

What do the different snot colors mean?

	clear	white	green or yellow	red or pink	brown or orange	black
"normal" or healthy	~					
allergic sinusitis	~					
common cold		¥	~			
fungal infection						~
injury or irritation				~	V.	
nonallergic or pregnancy rhinitis	4			~		
sinusitis		~				
smoking/drug use						J

Sinusitis, otitis media

• viruses

• *S. pneumoniae*, *H. influenzae*, *M. pneumoniae*, *M. catarrhalis*, anaerobes

otitis in young children complications - mastoiditis, risk of meningitis

Th: amoxicillin

Tonsillopharyngitis (sore throat)

- adenoviruses (often accompanied with conjuctivitis)
- EBV (part of inf mononucleosis)
- S. pyogenes (5-15 yrs of age)
- streptococci groups C, G
- Arcanobacterium heamolyticum
- N. gonorrhoeae

complications in GAS

scarlet fever (when exotoxin is produced) rheumatic fever (alteration of mitral valve, arthritis, chorea minor, erythema) glomerulonephritis peritonsillar abscessus

Th: GAS: PNC V for 10 days Arcanobacterium: macrolides

epiglottitis versus laryngitis (subglotic laryngitis, laryngotracheitis)

Epiglottitis	Croup, pseudocroup
<i>H. influenzae</i> type b	viruses (parainfluenza)
rapid onset	upper airway infection
no cough	barking cough
fever above 38 deg. C	temp below 38 deg. C
no swallowing	
anxiety	
blood cultures	
swab from epiglottis questionnable	
ATB th! aminoPNC, cephalosporins II., III. gen.	

Invasive *H. influenzae* type b in CR

1999: 54x meningitis, 36x epiglottitis, 6x sepsis, 5x pneumonia

BUT: other serotypes of *H. influenzae* still out there *H. influenzae* non-typeable, types e, f

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Diphteria

Corynebacterium diphteriae (and other corynebacteria) with production of the toxin (the evidence by PCR)

- tonsillitis, pharyngitis
- laryngitis (true croup) with production of pseudomembranes
- myocard alteration
- neurological problems

Tonsillitis

Pertussis

Bordetella pertussis, B. parapertussis

Disease stages:

- catarrhal (common cold)
- paroxysmal (paroxysmal cough, dyspnoe, vomiting)
- convalescent (risk of secondary infections, encephalopathy)
- today more likely atypical course (persistent cough in adults)
- in infants (non-vaccinated) a risk of malignant pertussis:
 - respiratory failure
 - leukocytosis and right-sided heart failure
 - encephalopathy

Dg: culture, PCR, serology

The structure of the respiratory epithelium at different sites within the respiratory tract

non-invasive disease affecting ciliated epithelium

 \rightarrow nasopharyngeal swab, aspirate

Bronchiolitis (obliterans)

respiratory syncytial virus RSV-A, RSV-B

- in children below 2 years of age (high risk in preterm babies by 6 mo of age)
- serious condition

Th: ribavirin

+ passive immunization (Ab against F protein)

= also as prevention for infants at risk in winter months

Pneumonia

• infectious condition with corresponding respiratory symptomatology (cough, tachypnoe, dyspnoe, ...) and the fresh radiological finding on lungs

• inflammation affecting alveoli, respiratory bronchioli (bronchopneumonia), or also interstitium

1a/ CAP with typical pathogens

- S. pneumoniae (most common)
- H. influenzae
- Moraxella catarrhalis
- S. aureus (secondary pneumonia; production of PVL)
- K. pneumoniae, E.coli

Diagnostics: direct methods

- sputum
 - microscopy, culture
 - PCR occasionally
- detection of pneumococcal antigen in urine
- blood cultures

1b/ CAP with atypical pathogens

sometimes termed atypical pneumonia, walking pneumonia, several weeks cough

- Mycoplasma pneumoniae: former primary atypical pneumonia
- Chlamydophila pneumoniae
- Chlamydophila psittaci: psittacosis
- Coxiella burnetii: Q fever

Diagnostics: indirect methods

- serology; careful interpretation (up to 80% prevalence in healthy)

direct method - PCR

24-year-old lady

5 days fever 40 °C, vomiting 3 days cough, with sputum, dyspnoea

X ray: small infiltrates on the bottom right WBC 8.2x10⁹ /I CRP 153 mg/I

CRP LEVELS IN LOWER RESPIRATORY TRACT INFECTION

Typically higher values in bacterial infections than in viral infections

24-year-old lady

Microbiology:

urine:

antigen *S. pneumoniae* neg. antigen *L. pneumophila* neg.

nasopharyngeal swab:

M. pneumoniae	****
C. pneumoniae	neg
C. psittaci	neg
L. pneumophila	neg
P. jiroveci	neg

7 days since the start of therapy with fluorochinolons: mild cough, no temperature CRP 12.3 mg/l X ray: substantial regression of the infiltrates

1b/ CAP with atypical pathogens

- Legionella pneumophila

- pontiac fever (mild infection, not pneumonia)
- Legionnaire's disease

Legionella pneumophila

Diagnostics:

- detection of legionella antigen in urine
- culture
- PCR
- serology

ATB therapy of CAP

Pneumococcal pneumonia:

non complicated - amoxicillin (not hospitalized) hospitalization - PNC G or cephalosp. III. gen.

Atypical agents: macrolides tetracyclines respiratory fluoroquinolons (moxifloxacin) 1c/ CAP with atypical pathogen - virus

Influenzavirus type A, B, C subtypes HxNx (H1N1, H3N2)

Spanish flu 1918 - 1919 20 - 50 mil. deaths

The Family, 1918 Egon Schiele

1c/ CAP with atypical pathogen - virus

Influenzavirus type A, B, C subtypes HxNx (H1N1, H3N2)

- tracheobronchitis
- pneumonia
 - primary viral
 - secondary bacterial

Diagnostics:

- antigen detection (low sensitivity)
- PCR
- serology

1c/ CAP with atypical pathogen - virus

SARS-CoV-2

- asymptomatic course
- pneumonia
 - primary viral (interstitial)
 - secondary bacterial

 Direct detection microscopy (EM) culture antigen detection <u>RNA detection</u>

Indirect detection
IgM, IgA, IgG

Sethuraman et al. JAMA. 2020.

PCR of SARS-CoV-2

2/ HAP; hospital acquired pneumonia

develops min. 48 hours post admission and in association with hospitalization typically of bacterial origin

Ventilator associated pneumonia (VAP)

Early onset (by day 5)

- S. aureus
- S. pneumoniae
- *H. influenzae*
- K. pneumoniae, E. coli

Late onset

- K. pneumoniae, E. coli ...
- P. aeruginosa
- MRSA
- A. baumannii

Diagnostics: endotracheal aspirate

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Newborn pneumonia

- S. agalactiae GBS
- Chlamydia trachomatis
- K. pneumoniae, E. coli

Chronic respiratory diseases and chronic infections

- chronic obstructive pulmonary disease (COPN)
- chronic bronchiectasis
- cystic fibrosis (mucoviscidosis)

- S. aureus

- enterobacteria (K. pneumoniae)
- G- nonfermenters
 - P. aeruginosa
 - complex Burkholderia cepacia
 - Stenotrophomonas maltophilia
 - Achromobacter xylosoxidans

Infection course

Biofilm

• Aggregate of bacteria embedded in matrix which they produce themeselves (polysaccharides, proteins, DNA)

• Protection against phagocytosis, ATB

Courtesy: Prof. N. Hoiby, Copenhagen

P. aeruginosa biofilm

Immunocompromised and respiratory infections

- haematological malignancies
- AIDS
- after solid or bone marrow transplantation

Oportunistic pathogens of both endogenous and exogenous origin

- CMV
- TB, NTM
- *Pneumocystis jiroveci*; microscopy, PCR
- fungi

2-month old girl

10 days cough, increased mucus, temperature max. 37.5 °C x ray: difuse gentle infiltrates

Microbiology: culture aspirate from upper airways: S. aureus; K. oxytoca

PCR nasopharyngeal swab:

respiratory viruses all neg.

M. pneumoniae neg *C. pneumoniae* neg *L. pneumophila* neg *P. jiroveci* **

Therapy: Ampicillin/sulbactam --> cotrimoxazol

<u>BAL</u>:

M. pneumoniae neg *C. pneumoniae* neg *L. pneumophila* neg *P. jiroveci* ****