Fastidious bacteria 2

illustration: Don Smith

Jan Tkadlec

Dept. of medical microbiology

Winter 2020

Topics

Fastidious gram negative bacili

- Francisella
- Legionella
- Brucella

Spirochaetes

۲

- Leptospira
- Treponema
 - Borrelia Rickettsia and rickettsia-like organisms
 - Rickettsia
 - Anaplasma
 - Ehrlichia
 - Bartonella
 - Coxiella

<u>Common features</u>

- Intracellular parasites
- Culture is not effective for diagnosis
- Systemic infections
- Vector borne (mostly)
- Zoonosis (mostly)

Diagnosis of rare fastidious bacteria is challenging

When infection caused by fastidius patogen occurs rarely outcome could be worse because:

- 1. Looking for non fastidious patogens delays detection of true cause
 - Patogen will be detected after rulling out more common causes
- 2. Non fastidious patogen is taken as true cause
 - Treating wrong patogen
- 3. Not using apropriated method
 - Patogen would not be detected at al

It is important to know fastidious patogens and their typical symptoms and <u>**risk factors**</u> – it could by life-saving knowledge

Logistical challenge

Be aware that not all microbiology departments perform detection of fastidious agents

- 1. It is too rare to be economical to have apropriate method
- 2. It is too laborious/expensive...
- 3. It is dangerous (highly infectious agens)

Detection or confirmatin of detection of some fastidious agents is performed only by specialised/reference laboratories

Francisella tularensis

Biology:

Aerobic gram-negative cocobacilli facultative intracellular bacterium Subspecies:

F. tularensis tularensis North America – more virulent F. tularensis holarctica Europe and Asia – less virulent

Potential bioterrorism agent

Ecology

Zoonosis Reservoir: wild animals (<u>rabbits</u>, rodents, deer, birds, etc.) Survive also in water, grass, haystacks, animal carcasses Transmission (entry) • Respiratory system • Blood • Skin contact Low infection dose = highly infectious

BSL-3

Francisella tularensis

Clinical signifikance

Tularemia Ulceroglandular – through skin contact Pulmonary

Dg:

Culture requires cystein for growth CO₂ and prolonged cultivation 35–37 °C Chocolate agar Symptoms and patient history (contact with dead wild animals)

<u>Rx:</u>

aminoglycosides, tetracyclines, or fluoroquinolones

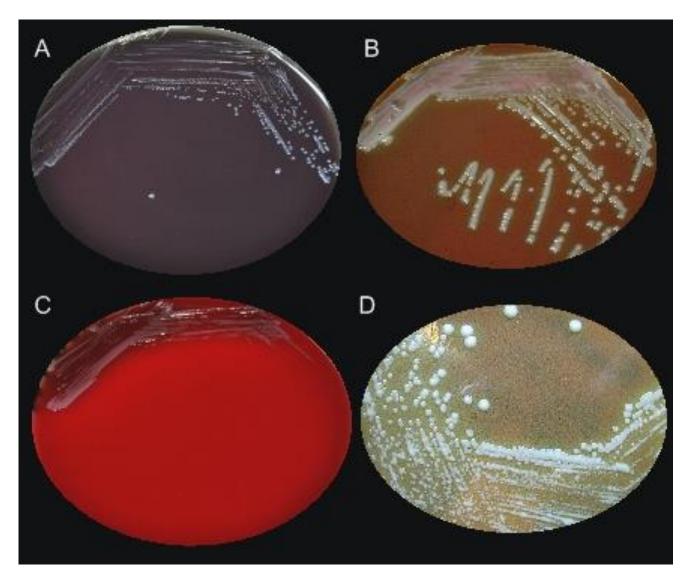
F. tularensis on chocolate agar

BIOSAFETY LEVELS

basic classes of laboratory risks from low to high

Biosafety Levels							
Biological Safety Levels	Description	Examples	CDC Classification				
BSL-4	Microbes are dangerous and exotic, posing a high risk of aerosol-transmitted infections, which are frequently fatal without treatment or vaccines. Few labs are at this level.	Ebola and Marburg viruses	high-risk				
BSL-3	Microbes are indigenous or exotic and cause serious or potentially lethal diseases through respiratory transmission.	Mycobacterium tuberculosis	BSL-4 BSL-3				
BSL-2	Microbes are typically indigenous and are associated with diseases of varying severity. They pose moderate risk to workers and the environment.	Staphylococcus aureus	BSL-2 BSL-1 low-risk microbes				
BSL-1	Microbes are not known to cause disease in healthy hosts and pose minimal risk to workers and the environment.	Nonpathogenic strains of Escherichia coli					

BSL 3 - 4



BSL 2

BSL 1

Francisella tularensis - culture

(A) buffered charcoal yeast extract;
(B) chocolate agar medium;
(C) sheep's blood agar;
(D) cysteine heart agar.
Pathogen profile dictionary ppdictionary.com

Brucella

Biology:

Strictly aerobic gram-negative cocobacilli facultative intracellular bacterium Species:

- B. abortus (cattle)
- B. melitensis (sheep and goat)
- B. suis (pig)
- B. canis (dog)

survive in soil, manure and dust for weeks or months, and remain viable in dead fetal material for even longer

<u>Ecology</u>

Zoonosis

Reservoir: animals (sheep, <u>cattle</u>, or pigs, etc.)

Transmission

- contaminated food (such as unpasteurized milk products, meat products)
- direct contact with an infected animal
- inhalation of aerosols

Low infection dose - level BSL-3

B. melitensis is still prevalent in Mediterranean countries, the Middle East, central and southern Asia, and parts of Africa and South America

Brucella

Clinical signifikance

Brucellosis septicaemic illness, undulant fever. Most human disease is caused by *Brucella melitensis*, *B. abortus* or *B. suis*.

Brucellosis can present as an acute or subacute pyrexial illness that may persist for months or develop into a focal infection that can involve almost any organ system. The characteristic intermittent waves of increased temperature that gave the name *undulant fever* to the human disease are now usually seen only in longstanding untreated cases.

Affects gastrointestinal tract including anorexia, abdominal pain, vomiting, diarrhea, constipation, hepatomegaly, and splenomegaly

Less frequently arthritis (hip, knee, and ankle), spondylitis, osteomyelitis, and sacroiliitis Rarely endokarditis

Infection in animal has economical impact – in pregnant animals often leads to abortion,

Brucella

Dg:

isolation of the organism from blood (blood culture); alternatively serology or PCR Culture: some species require CO2, media with glukose and animal serum 37°C 1 to 6 weeks

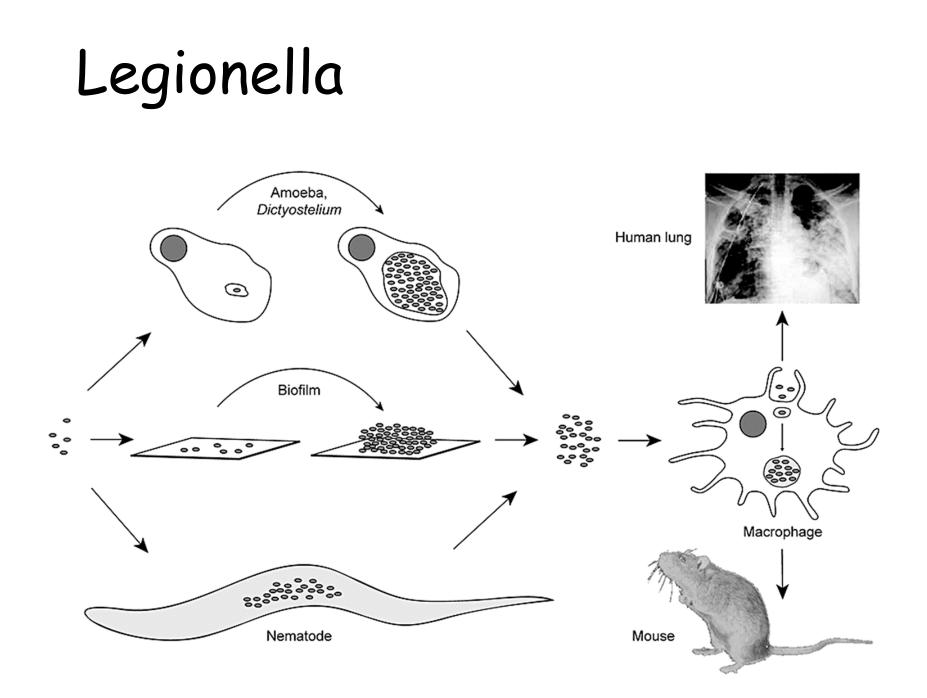
<u>Rx:</u> tetracycline, usually in combination with an aminoglycoside or rifampicin Prevention – pasteurization of milk

Brucella melitensis, blood agar

Legionella

Biology:

Gram-negative rods L. pneumophila


Other species less frequent e.g. *L. longbeachae*

Epidemiology:

Frequent in water – intracelularly in amoebas (*Acanthamoeba, Naegleria*) and other protozoa Warm water sources Spread through aircondition and untreated water supply Inhaling aerosol or droplets containing legionella Inhaled bacteria are engulfed by monocytes and can survive therein as intracellular parasites

Legionella

Clinical significance:

Legionnaires disease (mostly *L. pneumophila* serogroup 1) pneumonia, up to 10% mortality when not treated high fever, respiratory distress, scanty sputum confusion, hallucinations Renal impairement could be present Potential to cause outbreak (hospitals!!!) – contaminated water supply Risk factors: immunosuression, higher age (over 40y) Stays in hotels in low income countries

Pontiac fever – non-pneumonic, non-fatal, influenza-like symptoms, high attack rate – most of the affected people develop disease

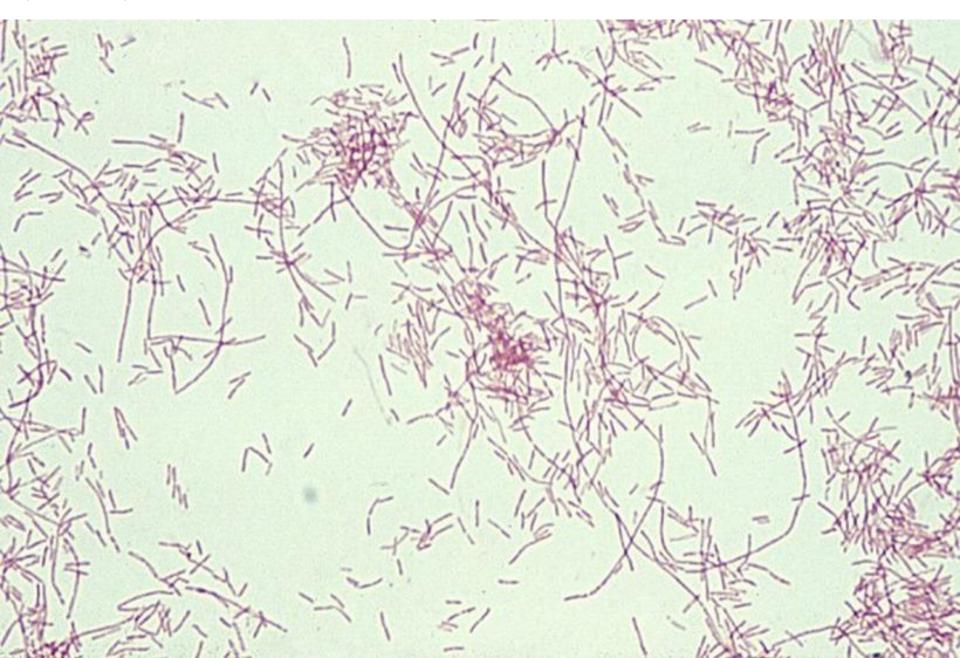
<u>History</u>

1976 first outbreak of 182 cases of pneumonia, mainly affecting members of the American Legion, occurred at a convention in Philadelphia = legionnaires disease Spread through air condition

Legionella

Dg:

Sample: sputum and other respiratory specimen, lung biopsy – PCR or culture require cystein and iron grow best on buffered charcoal yeast extract agar (BCYE) with antibiotics Culture about 1 week, increased CO2 Heat stable – sample could be heated to 50°C for 30 min to diminiss growth of other bacteria ATB testing is not performed (too laborious) Antigen detection in urine (ELISA) – commonly used, Serology – IG could be detected 8-10 days from start of the symptoms


Prevention

Water treatment:

- heat
- disinfection with chlorine or other biocides, including chlorine dioxide
- copper-silver ionization.

<u>Rx:</u>

Legionnaires disese – intravenous azitromycin, combined with fluoroquinolones and/or rifampicin in severe cases *Legionella pneumophila*, Gram stain By courtesy of MUDr. Petra Kabelíková

Legionella pneumophila

BCYE agar

Courtesy of MUDr. Petra Kabelíková

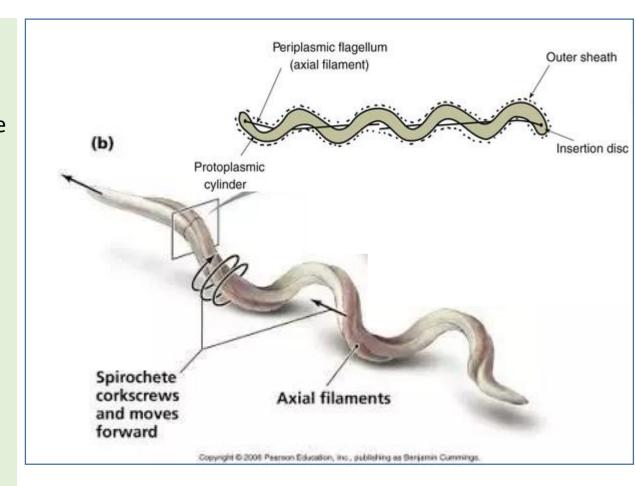
Spirochaetes

Spirochaetes

Borrelia

Treponema

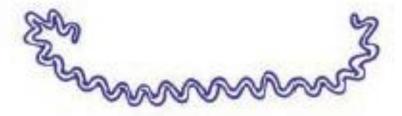
Leptospira


Biology:

Helical corkscrew –shaped bacteria Close to gram negatives – have outer and inner membrane but differently organised

flagella in periplasmic space – corkscrew-like movement = tissue penetration

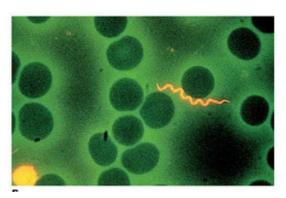
Too thin to be seen by light microscope


- Dark field microscopy or immunofluorescence

Different shapes of spiropchaetes

Leptospira

Treponema

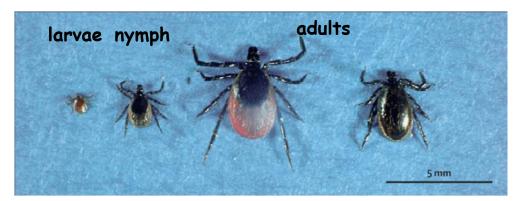

Borrelia

Biology:

Microaerophilic spirochaetes Poorly stained by Gram *B. burgdorferi sensu lato* complex of related species:

- B. burgdorferi sensu stricto
 USA and West EU
- B. garinii, B. afzelii CZ

B. recurrentis

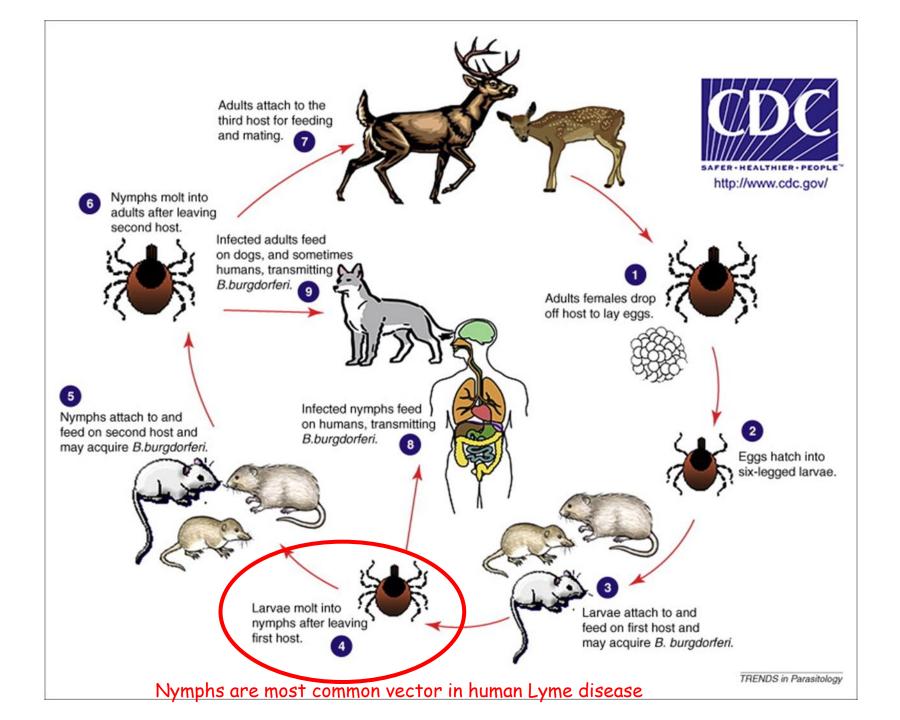

Acridine orange stain of peripheral blood demonstrates Borrelia spp.

Epidemiology:

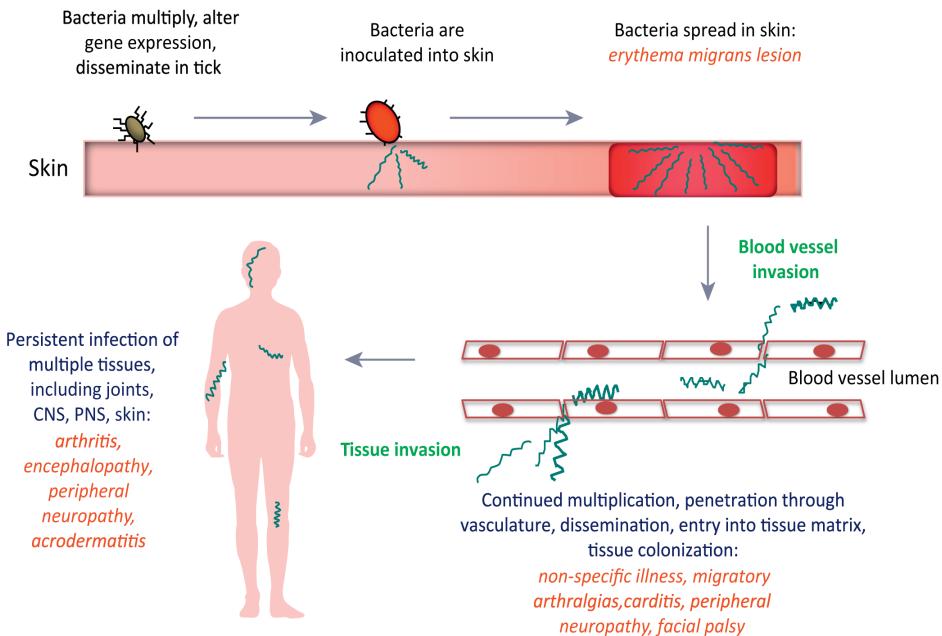
arthropod vector - Lice or ticks Relapsing fever (*B. recurrentis*) – ticks (*Argasidae*) or lice (*Pediculus humanus*)

Lyme disease (B. burgdorferi)

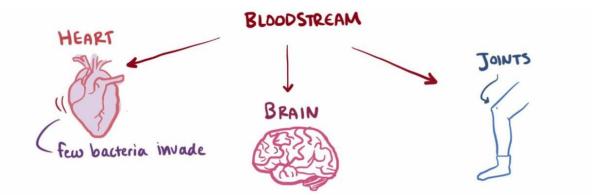
 Ixodes ticks - I. dammini and I. pacificus (USA); I. ricinus (EU)


Ixodes ricinus developmental stages

Lyme disease (Lyme borreliosis)


- B. burgdorferi sensu lato
- Reservoir mice and other rodents, deer, sheep, cattle, horses and dogs.
- Transmission through tick bite (*Ixodes* sp.)
- Multisystem infection
 - Non specific symptoms at the begining
 - Affects skin, joints, heart, and CNS
 - Three stages

Erythema migrans Typical symptom but only in about 30% cases



Lyme disease - patogenesis

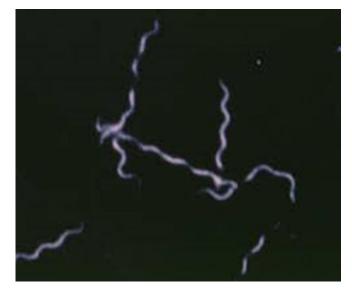
Kumar D, Ristow LC, Shi M, Mukherjee P, Caine JA, Lee W-Y, et al. (2015) PLoS Pathog 11(12): e1005333. doi:10.1371/journal.ppat.1005333

Early Lyme Disease	Erythema migrans	 Most characteristic clinical manifestation Well demarcated, flat-bordered, blanching erythematous oval patch Hematogenous spread leads to secondary lesions 	Within one month Dx: antigen in CSF or PCR from CSF or skin biopsy	
	Constitutional symptoms	Fatigue, myalgia, fever		
	Meningeal irritation	Headache		
	Gastrointestinal symptoms	HepatitisPharyngitis		
Acute Disseminated Infection	Cutaneous	Multiple annular/target-shaped lesions (Early)	1 to 4 months Dx: IgG and IgM in serum and CSF	
	Neurologic manifestations	 Meningoencephalitis Cranial neuropathy (Bell palsy) (Bilateral in 33%) Radiculopathy 		
	Cardiac manifestations	 Occurs 3-5 weeks from erythema migrans AV block 		
Late Lyme Disease	Neurologic manifestations	 Fatigue Chronic encephalopathy Memory impairment Hypersomnolence Psychiatric disturbances 	More than 4 months Dx: IgG and IgM in serum and CSF	
	Arthritis	 Most often affects the knee, can be oligoarticular Can lead to chronic Lyme arthritis (recurring arthritis) 		

Rx: doxycykline, amoxicillin, ceftriaxone Duration from 2 week up to 1 month

Relapsing fever (typhus recurrentis)

- Borrelia recurrentis
- Human is only reservoir
- Transmission: human louse (*Pediculus humanus*)
- Associated with poor hygiene conditions (low income countries, homeless people,...)
- Symptoms: Fever returning each 5-10 days, hepatosplenomegaly, ikterus
- Dx: Serology
- Rx: doxycycline


Treponema pallidum

Biology:

Anaerobic to microaerophilic spirochaetes Intracellular patogen Poorly stained by Gram <u>Sensitive</u> to temperature above 40°C, oxygen etc. Transmission only through direct contact Only human to human Sexualy transmited congenital

Subspecies

T. pallidum palidum – cause syphilis *T. p. endemicum* – bejel or endemic syphilis *T. p. pertenue* - yaws

T. pallidum darkfield microscopy

Treponema pallidum

Clinical significance:

Syphilis – STD

Penetration through skin lessions or through mucous membranes Tisuse destruction due to immune response

Forms/stages

1. Primary

Localised necrosis and ulceration(ulcus durum) lymphadenophaty, highly infectious detectable Ig

2. Secondary

Skin, mucous epitelia and systemic symptoms, CNS (encephalitis), highy infectious, detectable Igs

- 3. Latent non infectious live long stage
- 4. Tertiary after 10 to 25 y cardiovascular and CNS (neurosyphilis) symptoms progressive paralysis
- Congenital

Treponema pallidum subsp. pallidum

Stage		Time period	manifestation	diagnostics
early	primary	weeks	ulcum durum and bubo	microscopy, PCR, antibodies
	secondary	weeks - months	Generalisation: skin, condylomata lata	antibodies
	latent	1 year (2 yrs)	none	antibodies
late		many years	none	antibodies
	tertiary		Organs: neurosyphilis, cardiovascular, gumma	antibodies

Treponema pallidum

Dg:

Sample Urine Swab (urethra, cervix, vagina) Swab from skin lessions Serum

Methods

Microscopy dark field or fluorescent antibody staining.

PCR – only early stage

Serology

Nontreponemal (reagin) antibodies

Venereal Disease Research Laboratory (VDRL) test – CSF, flockulation,

agglutination

Rapid plasma reagin (RPR) test

Treponemal antibodies

T. pallidum indirect hemagglutination (TPHA), agglutination

T. pallidum particle agglutination (TP-PA) test, agglutination ELISA

Treatment - Penicilin

Prevention

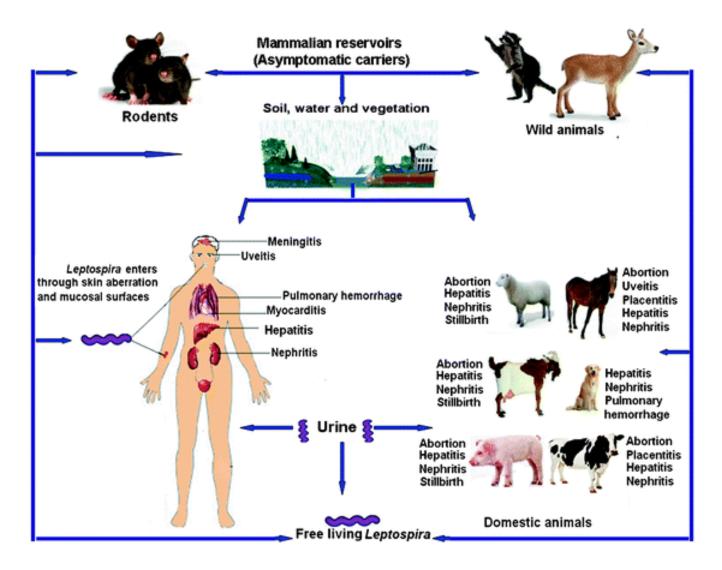
Mandatory screening newborns etc Monitoring of STDs

Leptospira

Biology:

Obligate aerobic pathogenic or saprophytic spirochaetes Stable in water environment *Leptospira interrogans*

Terminal hook Leptospires in urine (X1800) Protoplasmic cylinder Axial filament Outer envelope © UGA 2004


Epidemiology: Zoonosis

Reservoir wild animals (mammals <u>rodents</u>, etc), lives in kidneys of animals (without causing illnes), released with <u>urine</u>

Pathogenic *Leptospira* do not multiply in the environment, but could survive in humid environments like stagnant water or contaminated soil.

Entry through: Skin abrasion, wound , ingestion, mucous membrane (e.g. Mouth, nose, eye)

Faisal S.M., McDonough S.P., Chang YF. (2012) *Leptospira*: Invasion, Pathogenesis and Persistence. In: Embers M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_8

Leptospira - risk factors

Risk:

- farmers, fishermen, garbage collectors and sewage workers
- Outdoor sport
- floods

Leptospira

Clinical significance:

Leptospirosis

Bacteria penetrates bloodstrem and spread through body vary from flu-like to severe illnes =Weil's disease (meningitidis, renal failure, icterus, bleeding, could affect liver, shock)

<u>Rx</u>: intavenous penicillin G for severe cases, amoxicillin, doxycycline

Dg:

Sample: serum, urine, CSF, autopsy Cultivation is possible patogenic species grow worse than saprophytic EMJH medium with rabbit serum, 30°C, 4 - 7 days **PCR**

Serology – IgM ELISA

Antigen detection - Latex agglutination etc **Microscopic agglutination test** (MAT) is the reference test for the diagnosis of leptospirosis patient sera are mixed with different serovars of *Leptospira* – agglutination with IG is observed under microscope

Rickettsia and related patogens

Rickettsiales Rickettsia Anaplasma Ehrlichia Bartonella

Coxiella

Rickettsia in general

Biology:

Gram-negative, highly pleomorphic bacteria, obligate intracellular patogens Small genome Primar human patogen Sensitive to environmental changes

Spoted fever group *R. rickettsii R. akari*

Typhus group *R. prowazekii R. typhi*

Epidemiology

zoonoses Animal or human host arthropod vector

Penetrrates through skin into blood stream, infects endothelium of bloodstream vessels in multiple organs

Dg:

Symptom based suspition Serology: Weil–Felix test Mixing patient serum with rickettsial antigen When antibodies present agglutination appears PCR

<u>Rx:</u> tetracyclines - doxycycline

Spoted fever group

Rickettsia rickettsii (Western Hemisphere)

- Rocky Mountain spotted fever
- Tick-borne *Dermacentor* sp = Dog tick
- Reservoir dogs and rodents
- Infection in children during spring (tick activity)
- Suden fever, headache, myalgia
- Typical rash spreading from limbs to trunk
- Fatal if untreated

Rickettsia akari (USA, former Soviet Union)


- Rickettsialpox
- Mite-borne Liponyssoides sp
- Reservoir mice
- Mild disease, nonfatal, self-limiting
- Vesicular rash, fever, lymphadenopatty

Petechial rash on the arm caused by Rocky Mountain spotted fever

Rickettsialpox rash

K

Epidemic/recrudescent typhus

- Rickettsia prowazekii
- Vector human body louse (Pedicullus humanus)
- War and poverty
- Africa, South america
- Symptoms: Chills, fever, headache, pain, stupor and delirium
- Signs f severe meningoencephalitis begin with rash
- Rash spreads from trunk to limbs
- Untreated is fatal
- In some people reactivity after many years recrudescent typhus (Brill-Zinsser disease) – milder symptoms

Murine/endemic typhus

- Rickettsia typhi
- Vector flea (Xenopsylla sp)
- Reservoir: Rats
- Symptoms: gradual onset of fever, chills severe headache, generalized pain
- Macular rash spreading from trunk to limbs

Ehrlichia and Anaplasma

Biology:

Obligate intracellular patogens Preference to WBC – mononuclear cells

Zoonosis

Epidemiology

Tick borne, reservoir: wild animals and dogs

Clin. significance

Human monocytic ehrlichiosis (HME) Ehrlichia chaffeenis USA

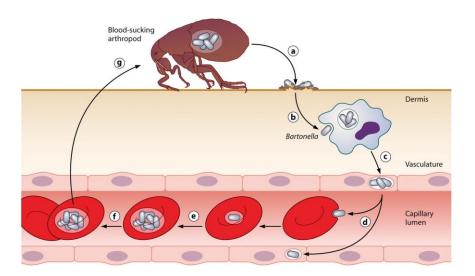
Human granulocytic ehrlichiosis Anaplasma phagocytophilum USA but also EU and Asia <u>Dg:</u>

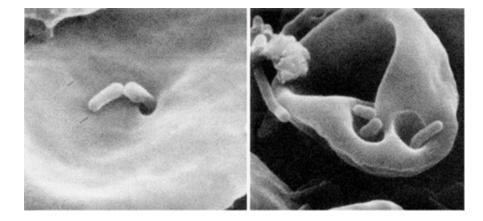
PCR (blood) Serology

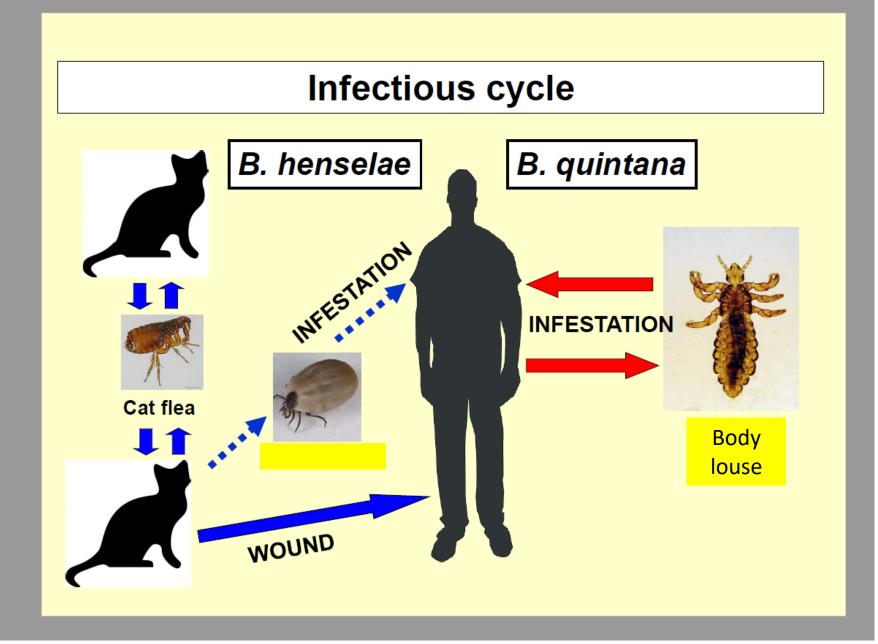
<u>Rx:</u> doxycycline

Bartonella

Biology:


Gram-negative small rods or cocobacilli Facultative intracellular parasites


B. henselae, B. quintana, B. bacilliformis


Zoonosis (*B. henselae*) Human as primary host (*B. quintana, B. bacilliformis*)

Source: cat, mouse etc.

Transmission: vector borne (ticks, fleas, sand flies, mosquitoes)

Bartonella

Clinical signifikance

Cat-scratch disease – felinosis (*B. henselae*) – local lymphadenopathy, mild disease (fever, headache tiredness), slow recovery – 4 – 12 months, speed up by ATB

Endocarditis (B. henselae, B. quintana)

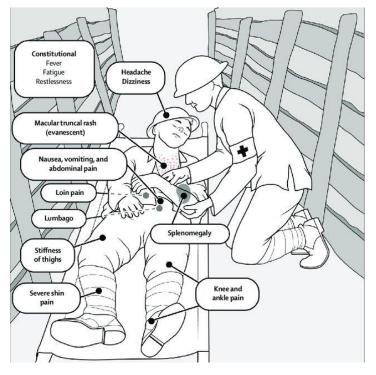
Trench fever (*B. quintana*) Soldiers (WWI) or today homeless people

Bacillary angiomatosis (B. henselae, B. quintana) – skin lessions(papules or nodules) – vascularised
Present in internal organs – potentially fatal if not treated

Rx:

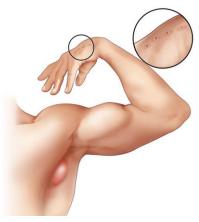
Long term terapy (6 weeks and more) Tetracyclines, aminoglycosides, macrolides

Dg.


Culture – CO2, at least two weeks, enriched media Sample has to be treated with detergent to release intracelular bacteria

Serology – antibody cross reactivity with other bacteria, antibodies are

often not produced PCR



Trench fever symptoms

Bacilary angiomatosis

felinosis

Coxiella burneti

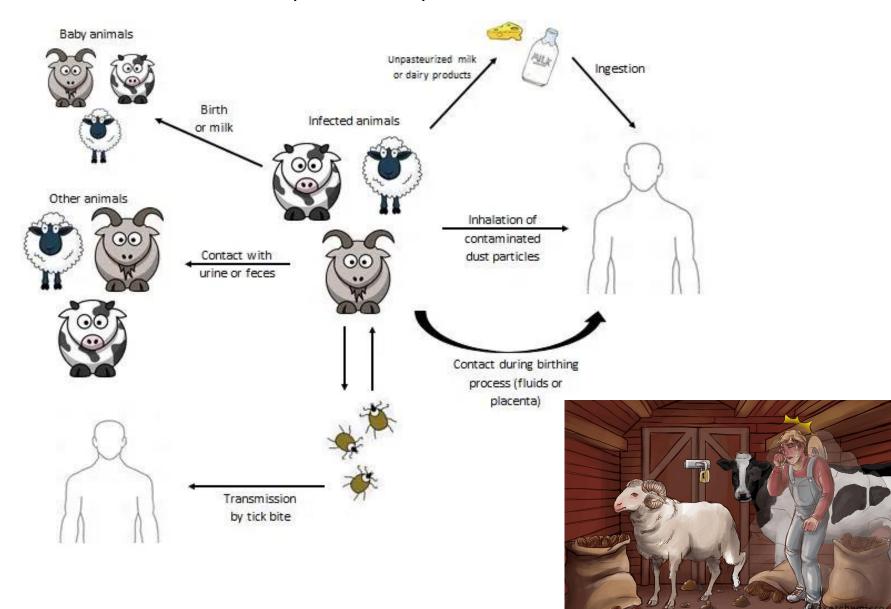
Biology:

small Gram-negative, coccobacilliobligate intracellular bacterial pathogenSurviving in phagolysosome of macorphagesResistant to environmental conditionsHighly infectious, primary patogens for human

Clinical significance

Q- Fever (query – the causing agent was not known for a long time)

Survive in macrophages, intersticial (atypical) pneumonia, liver and spleen – granuloma, flu-like illness, gastroenteritis complications–meningoencefalitis, endocarditis


<u>Dg:</u> direct –cultivation using tissue culture, PCR, Undirect – serology: Weil-Felix reaction

<u>Rx:</u> doxycykline+ rifampicin (fluoroquinolones)

Epidemiology:

Zoonosis (cats, dogs, cattle,...) source – inhalation of aerosols from infected animals or consumption of milk, or tick-borne transmission Risk groups: farmers, slaughter house workers, veterinarians

Possible transmission paths and potential hosts of C. burnetii

Take home message

Fastidious bacteria (Francisella, Brucella, Legionella, Spirochates, Ricketssia etc.)

- Intracellular
- Culture is not possible or usefull poor sensitivity and long time to result
- Serology! (or PCR, but not always)
- Symptoms (rash, lymphadenopaty, etc) and risk factors!
- Multi-organ infection, long term diseases = long term treatment.
- Zoonosis, vector borne (with exceptions e.g.T. pallidum)

Biggest thread in dealing with rare fastidious pathogens is that they could be <u>easily forgotten</u> and not treated in right time.