
Gaussian Processes and Bayesian Optimization
Bayesian Optimization is used when

We are solving: x∗ = arg minx f (x)
f (x) is a black box function
f is expensive to evaluate
the evaluations may be noisy.

If any condition is not true, a better algorithm exists.
We search the point x to observe.
scikit-optimize = skopt Python package
we minimize y and search the maximal probability of improvement
’the chance to improve’ is expressed by the Expected improvement (EI)

Bayesian Optimization Algorithm

Evaluate y on X , let y = y(X) and calculate conditional means and
covariances
repeat forever

xnew = argmaxx EI(x) add x into X
Evaluate y = y(x) and add y to y.
re–estimate the Gaussian process (the parameters of the covariance
(kernel) function).

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 71 / 105

Gaussian Processes

An infinite (continuous) number of Gaussian variables
any variable x follows N(µ = f (x), Σx |observed)
since we have only a finite number of observations which means a finite
number of variables

we can marginalize unobserved variables out (the integral is 1, we multiply by
1, we just remove),

we can predict at any x , continuously.

0 2000 4000 6000 8000 10000
time

250

200

150

100

50

0

po
sit

io
n

Brownian Motion

Brown motion
Observations
Prediction
95% confidence interval

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 72 / 105

Gaussian Processes

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,
the MIT Press, 2006

Definition (Gaussian Process)

A Gaussian process is a set of random variables where any finite subset follows
multivariate Gaussian distribution.

We define the mean m(x) and the symmetric positive semidefinite covariance
function k(x , x |):

m(x) = E[f (x)]
k(x, x|) = E[(f (x)−m(x))(f (x|)−m(x|))]

a Gaussian process is

f (x) = GP(m(x), k(x, x|)).

We assume m(x) = 0 it simplifies the formulas.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 73 / 105

Brownian Motion (Wiener Process)
https://www.coursera.org/lecture/stochasticprocesses/week-4-6-two-definitions-of-a-brownian-motion-THRqL

Definition (Brownian motion 1)
B0 = 0 for sure
stationary and independent
increments
Bs − Bt ∼ N(0, s − t)

0 2000 4000 6000 8000 10000
time

200

100

0

100

200

300

po
sit

io
n

Brownian Motion
Our trajectory
Observations
1.96 t

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
position

0

50

100

150

200

250

300

va
lu

e
co

un
t

Brownian Motion: Histogram over 104 trajectories
B7
B5
B7 B5

40 30 20 10 0 10 20 30 40
position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
pr

ob
ab

ilit
y

de
ns

ity
 fu

nc
tio

n

Brown motion: 2
t = t

t=1
t=2
t=3
t=4
t=5
t=6
t=7
t=8
t=9
t=10
t=11
t=12

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 74 / 105

Definition (Brownian motion 1)
B0 = 0 almost surely
Bt stationary and
independent increments
Bs − Bt ∼ N(0, s − t)

Definition (Brownian motion 2)
Gaussian process with

m = 0 and
k(x , x ′) = min(x , x ′).

Positive semidefinite:
min(t, s) =

∫∞
0 ft(x)fs(x)dx

ft(x)fs(x) = 1 iff x ∈ [0, t]&x ∈ [0, s]

Lemma (2⇒1)
K (0, 0) = min(0, 0) = 0
The process has variance 0 at t = 0 and m(0) = 0.
covariance is linear in both arguments, s ≥ t

cov(Bs − Bt , Bs − Bt) = cov(Bs , Bs)− cov(Bt , Bs)− cov(Bs , Bt) + cov(Bt , Bt)
= s − 2t + t = s − t

increments, s ≥ t ≥ b ≥ a # independence skipped, from Gaussian vectors

cov(Bb − Ba, Bs − Bt) = cov(Bb, Bs) − cov(Ba, Bs) − cov(Bb, Bt) + cov(Ba, Bt)
= b − a − b + a = 0.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 75 / 105

Normal Distribution

Definition (Brownian motion 2)
Gaussian process with

m = 0 and
k(x , x ′) = min(x , x ′).
The covariance on y is defined by the covariance on the inputs x.
the covariance defines also the distribution on functions f :

f∗ ∼ N(0, K (X∗, X∗)).
Without noise, we observe y and we want to predict f∗:[

y
f∗

]
∼ N

(
0,

[
K (X , X) K (X , X∗)
K (X∗, X) K (X∗, X∗)

])

X = [3, 5]
yT = [−5,−11]

K (x∗, X) = [min(x∗, a)for a in X]
K (X , X) =

[
min(3, 3) min(3, 5)
min(3, 5) min(5, 5)

]
=
[
3 3
3 5

]
Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 76 / 105

Prediction
noisy-free observations y = f (x)

cov(yp, yq) = k(xp, xq)

noisy observations y = f (x) + ϵ, ϵ ∼ N(0, σ2
n)

cov(yp, yq) = k(xp, xq) + σ2
nδpq

cov(y) = K (X , X) + σ2
nI

We observe y and we want to predict f∗:[
y
f∗

]
∼ N

(
0,

[
K (X , X) + σ2

nI K (X , X∗)
K (X∗, X) K (X∗, X∗)

])
Predictive distribution

f∗|X , y, X∗ ∼ N(f∗, cov(f∗))
f∗ ≜ E[f∗|X , y, X∗] = K (X∗, X)[K (X , X) + σ2

nI]−1y
cov(f∗) = K (X∗, X∗)− K (X∗, X)[K (X∗, X) + σ2

nI]−1K (X , X∗)

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 77 / 105

f∗|X , y, X∗ ∼ N(f∗, cov(f∗))
f∗ ≜ E[f∗|X , y, X∗] = K (X∗, X)[K (X , X) + σ2

nI]−1y
cov(f∗) = K (X∗, X∗)− K (X∗, X)[K (X∗, X) + σ2

nI]−1K (X , X∗)

f∗ ≜ E
[
f∗|
[
3
5

]
,

[
−5
−11

]
, [4]
]

= [3, 4]
[
3 + σ2

n 3
3 5 + σ2

n

]−1 [−5
−11

]
cov(f∗) = min(4, 4)− [3, 4]

[
3 + σ2

n 3
3 5 + σ2

n

]−1 [3
4

]

0 2000 4000 6000 8000 10000
time

250

200

150

100

50

0

po
sit

io
n

Brownian Motion

Brown motion
Observations
Prediction
95% confidence interval

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 78 / 105

Predictive distribution
Prediction

is a linear function of observations y
for α ⇐ (K + σ2

nI)−1y
we predict
f (x∗) ⇐

∑N
i=1 αi k(xi , x∗)

The red vertical bars show
the variance due to the
observation noise.

0 2000 4000 6000 8000 10000
time

250

200

150

100

50

0

50

po
sit

io
n

Brownian Motion, noise = 25

Brown motion
Observations
Prediction
noiseless CI
95% confidence interval

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 79 / 105

Definition (First Set of Kernel Functions!)
Radial Basis Function (RBF) covariance function with the length scale
parameter ℓ is defined

cov(f (xp), f (xq)) = RBF (xp, xq) = exp
(
−1

2
|xp − xq|2

ℓ2

)
.

Constant covariance function with the constant parameter is defined

cov(f (xp), f (xq)) = Constant(xp, xq) = constant.

Squared exponential (SE) covariance function with hyperparameters ℓ2

lenghtscale and σ2
f signal variance

k(xp, xq) = σ2
f exp

(
−1

2
|xp − xq|2

ℓ2

)
= Constant(xp, xq)∗RBF (xp, xq)

can be defined as a product kernel of the Constant and RBF kernels.
There is also a sum kernel kernel function +.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 80 / 105

Scikitlearn Examples

Noiseless observations.

0 2 4 6 8 10
x

10

5

0

5

10

15

20

f(x
)

Gaussian Process sklearn Example
f(x) = x sin(x)
Observations
Prediction
95% confidence interval

The red vertical bars show the
variance due to the observation
noise.

0 2 4 6 8 10
x

10

5

0

5

10

15

f(x
)

f(x) = x sin(x)
Prediction
95% confidence interval
Observations

The parameters may be fitted by the gradient update.
The observation noise alpha may be specific for each observation (right),
identically 0 (left) or constant.

kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (100e-2, 100e2))
gp = GaussianProcessRegressor(kernel=kernel, alpha=dy ** 2)
gp.fit(X, y)

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 81 / 105

Marginal likelihood
The parameters may be automatically tuned by gradient maximization of the
marginal likelihood.
Noise-free in sample prediction f follows: f ∼ N(0, Σ.) where Σ. = K (X , X).

Lemma
The marginal log likelihood is

for noisy-free observations y = f:

log p(y|X) = log p(f|X) = −1
2 fT Σ−1

. f − 1
2 log |Σ.| −

N
2 log 2π

For noisy observations y|f ∼ N(f, σ2
nI), y ∼ N(0, Σ. + σ2

nI)

log p(y|X) = −1
2yT (Σ. + σ2

nI)−1y− 1
2 log |Σ. + σ2

nI| − N
2 log 2π.

The noise level may be tuned as well by (sum)adding the WhiteKernel.
WhiteKernel= noise_level iff we address the same variable (xp, xp), otherwise
WhiteKernel = 0.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 82 / 105

Hyperparameter Fit

Scikitlearn example:
The log-marginal function has two
local maxima.
The log-marginal maxima
corresponds to the two models.

Left initial noise_level=1
right initial noise_level=0.00001 10 2 10 1 100 101 102 103

Length-scale

10 2

10 1

100

No
ise

-le
ve

l

Log-marginal-likelihood

2.18 × 101

2.37 × 101

2.58 × 101

2.81 × 101

3.06 × 101

3.33 × 101

3.63 × 101

3.95 × 101

4.29 × 101

4.67 × 101

0 1 2 3 4 5

1.0

0.5

0.0

0.5

1.0

1.5

Initial: 1**2 * RBF(length_scale=100) + WhiteKernel(noise_level=1)
Optimum: 0.00316**2 * RBF(length_scale=109) + WhiteKernel(noise_level=0.637)

Log-Marginal-Likelihood: -23.87233736198489

0 1 2 3 4 5

1.0

0.5

0.0

0.5

1.0

1.5

Initial: 1**2 * RBF(length_scale=1) + WhiteKernel(noise_level=1e-05)
Optimum: 0.64**2 * RBF(length_scale=0.365) + WhiteKernel(noise_level=0.294)

Log-Marginal-Likelihood: -21.80509089016203

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 83 / 105

Definition (Further Kernel Functions)
ExpSineSquared kernel function with the parameters length scale ℓ and the
periodicity p > 0 (d is the distance) is defined

cov(f (xq), f (xr)) = exp
(
−2 sin2(πd(xq, xr)/p)

ℓ2

)
.

Usefull for periodic functions.
Dot product kernel function with the inhomogenicity parameter σ0 is
defined

cov(f (xp), f (xq)) = σ0 + xp · xq.

Useful to capture the trend, often combined with exponential kernel.
Rational Quadratic kernel function with hyperparameters ℓ2 lenghtscale and
mixture α

k(xp, xq) =
(

1 + d(xp, xq)2

2αℓ2

)−α

The mixure of many RBF kernel lengthscales.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 84 / 105

Conditional Covariance

Consider the conditional
covariance, the relation of two
unobserved points x and x0.

left Noiseless Brown motion example.
The covariance is zero outside the
x0 closest observations interval.

right Brown motion with a high noise
level. 0 2000 4000 6000 8000 10000

time

250

200

150

100

50

0

50

po
sit

io
n

Brownian Motion, noise = 25

Brown motion
Observations
Prediction
noiseless CI
95% confidence interval

0 2000 4000 6000 8000 10000
time

0

500

1000

1500

2000

2500

co
nd

iti
on

al
 v

ar
ia

nc
e

Conditional covariance cov(x, x0|X)
x0=1000
x0=3500
x0=4000
x0=6000
x0=6500
var(x|X)

0 2000 4000 6000 8000 10000
time

0

500

1000

1500

2000

2500

co
nd

iti
on

al
 v

ar
ia

nc
e

Conditional covariance cov(x, x0|X), noise = 25
x0=1000
x0=3500
x0=4000
x0=6000
x0=6500
var(x|X)

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 85 / 105

Conditional Covariance Rassmussen Example

The conditional covariance may be also negative.
Most kernels have a continuous first derivative. This makes the conditional
covariance negative with points on the other side of the closest observation.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 86 / 105

Matérn
Most kernel function have many derivatives.
The Matérn kernel ν = 1.5 (’nu’) has only the first derivative. It is able to
model less smooth functions.
As ν →∞, it becomes a RBF kernel.

Definition (Matérn kernel)

The Matérn kernel with parameters ν = k + 1
2 and ℓ is defined

k(xp, xq) = 1
2ν−1Γ(ν)

(√
2ν

ℓ
d(xp, xq)

)ν

Kν

(√
2ν

ℓ
d(xp, xq)

)

The Modified Bessel functions (for α not integer, the limit otherwise) are
defined

Iα(x) =
∑∞

m=0
1

m!Γ(m+α+1)
(x

2
)2m+α

Kα(x) = π
2

I−α(x)−Iα(x)
sinαπ .

(No need to memorize the formulas.)
Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 87 / 105

Bayesian Optimization
Bayesian Optimization is used when

We are solving: x∗ = arg minx f (x)
f (x) is a black box function
f is expensive to evaluate
the evaluations may be noisy.

If any condition is not true, a better algorithm exists.
We search the point x to observe.
scikit-optimize = skopt Python package
we minimize y and search the maximal probability of improvement
’the chance to improve’ is expressed by the Expected improvement (EI)

Bayesian Optimization Algorithm

Evaluate y on X , let y = y(X) and calculate conditional means and
covariances
repeat forever

xnew = argmaxx EI(x) add x into X
Evaluate y = y(x) and add y to y.
re–estimate the Gaussian process (the parameters of the covariance).

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 88 / 105

Bayesian Optimization Example [Skopt]

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0

1
Gaussian Process Model

True (unknown)
GP(x)

Observations

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.01

0.02

Expected Improvement function
EI(x)
Next query point

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0

1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.01

0.02

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0

1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0

1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 89 / 105

Expected Improvement Aquisition Function
we search the point x to observe
we minimize y , we already have the training data X ,y
the search the maximal probability of improvement is expressed by the
Expected improvement (EI)

EI(x) = E[(min(Y (X))− Y (x))+|Y (X) = y]
= E[(min(y)− Y (x))+|Y (X) = y]

this can be solved analytically (Φ cummulative df, ϕ pdf Gaussian distribution):

EI(x) = (min(y)− µ(x))Φ
(

min(y)− µ(x)
σ(x)

)
+ σ(x)ϕ

(
min(y)− µ(x)

σ(x)

)
to maximize y:

EI(x) = (µ(x)−max(y))Φ
(

µ(x)−max(y)− ξ

σ(x)

)
+σ(x)ϕ

(
µ(x)−max(y)− ξ

σ(x)

)
.

if ’xi’ ξ > 0 we ignore small improvements.
Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 90 / 105

Paralelization: The Constant Liar

EI(x) = E[(min(Y (X))−min(Y (x (n+1)), Y (x (n+2)), . . . , Y (x (n+k))))+|Y (X) = y]
= E[(min(y)− Y (x))+|Y (X) = y]

it does not have direct formula. It is solved by Markov Chain simulation.
We estimate the observations y by an estimate (min, max, mean)
and run the evaluation in parallel.

That means the covariance is correctly estimated, the mean must be corrected
later.
ParBayesianOptimization R package

Definition (Other Aquisition Functions)

Probability of Improvement: PI(f (x∗) < min(y)) = Φ
(

min(y)−µ(x∗)
σ(x∗)

)
Lower Confidence Bound: LCB(x) = µ(x)− κ · σ(x).

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 91 / 105

GP for Classification
GP for classification are more complex and ’only an approximation’
still, it is worth to try the
sklearn.gaussian_process.GaussianProcessClassifier .
We estimate a latent function f as before
we link it to ⟨0, 1⟩ interval by the sigmoid function (or Φ).
The log-marginal-likelihood does not have a closed analytical form anymore.
can be approximated by Hessian matrix, the algorithm works in O(N3), not
too bad.

0 1 2 3 4 5
Feature

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
as

s 1
 p

ro
ba

bi
lit

y

Initial kernel: 1**2 * RBF(length_scale=1)
Optimized kernel: 66.3**2 * RBF(length_scale=1.33)
Train data
Test data

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 92 / 105

POMDP Applications

Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under
Partial
Observability
https://proceedings.neurips.cc/paper/2017/file/e9412ee564384b987d086df32d4ce6b7-
Paper.pdf
Eric Mueller and Mykel J. Kochenderfer :Multi-Rotor Aircraft Collision
Avoidance using Partially Observable Markov Decision Processes,
American Institute of Aeronautics and Astronautics
https://aviationsystemsdivision.arc.nasa.gov/publications/2016/AIAA-2016-
3673.pdf

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 93 / 105

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 94 / 105

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 95 / 105

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks , KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 96 / 105

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 97 / 105

Evaluation Function
The primary goal is to remain safely
separated from the intruder aircraft.

r5%CPA ’the closest point of
approach’, we allow 5%
trajectories a little bit closer.

Figure: required 1.5 units, never
closer than 1.1 units.
Mean deviation distance from
the desired trajectory µdev .

A. Reward Parameter Tuning Metrics

The primary goal of a collision avoidance algorithm is to remain safely separated from intruder aircraft.
The first metric used to evaluate the QMDP algorithm, r5%CPA, therefore, is the separation achieved in
most, but not all, encounters. The cumulative distribution of separations for 500 simulated encounters with
stationary intruders shown in fig. 3 illustrates the desired behavior: for a required separation of 1.5 units,
approximately 5% have a CPA within this range and none are closer than 1.1 units. The red line shows the
distribution of original predicted minimum separations before any avoidance actions are taken; nearly all
encounters are predicted to violate required separation. Specifying the separation metric as the horizontal
distance at CPA achieved by 95% of encounters improves the robustness of the algorithm to noise by allowing
a small number of minor violations of the separation standard without requiring large trajectory deviations.

The second optimization metric, µdev, accounts for the desire to avoid course deviation. It is defined
simply as the average deviation distance over time, averaged over all the simulated encounters. An example
cumulative distribution of mean and maximum trajectory deviations for 500 simulated encounters is shown
in fig. 4. Cumulative distributions on the left side of the chart are desirable, they indicate smaller deviations
from the desired trajectory. The maximum single-point deviation distribution for each encounter, which is
another relevant algorithm evaluation metric, is also shown in fig. 4. Each simulation is concluded shortly
after the ownship has passed the intruder and had sufficient time to return to the desired trajectory.

Figure 3: Separation metric used to evaluate the collision avoidance algorithm

Figure 4: Deviation metric used to evaluate the collision avoidance algorithm

B. Multi-Objective Optimization

The overall optimization approach for this algorithm consists of two loops as shown in fig. 5. In the first loop,
a given set of reward parameters is selected and the collision avoidance algorithm is posed as a POMDP. This

8 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 98 / 105

Reward Tuning – Bayesian Optimization

We tune RP = (KT , Ks , Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev

)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 99 / 105

Bayesian Optimization

we know QMDP and F values for
one or more x = RP points
we search the point x = R∗

P to
observe
we minimize y = F (R∗

P) and search
the maximal probability of
improvement
’the chance to improve’ is
expressed by the Expected
improvement (EI)

Figure 1: Illustration of BayesOpt, maximizing an objective function f with a 1-dimensional continuous
input. The top panel shows: noise-free observations of the objective function f at 3 points, in blue; an
estimate of f(x) (solid red line); and Bayesian credible intervals (similar to confidence intervals) for f(x)
(dashed red line). These estimates and credible intervals are obtained using GP regression. The bottom panel
shows the acquisition function. Bayesian optimization chooses to sample next at the point that maximizes
the acquisition function, indicated here with an “x.”

We construct the mean vector by evaluating a mean function µ0 at each xi. We construct the
covariance matrix by evaluating a covariance function or kernel Σ0 at each pair of points xi, xj . The
kernel is chosen so that points xi, xj that are closer in the input space have a large positive correlation,
encoding the belief that they should have more similar function values than points that are far apart.
The kernel should also have the property that the resulting covariance matrix is positive semi-definite,
regardless of the collection of points chosen. Example mean functions and kernels are discussed below in
Section 3.1.

The resulting prior distribution on [f(x1), . . . , f(xk)] is,

f(x1:k) ∼ Normal (µ0(x1:k),Σ0(x1:k, x1:k)) , (2)

where we use compact notation for functions applied to collections of input points: x1:k indicates the
sequence x1, . . . , xk, f(x1:k) = [f(x1), . . . , f(xk)], µ0(x1:k) = [µ0(x1), . . . , µ0(xk)], and Σ0(x1:k, x1:k) =
[Σ0(x1, x1), . . . ,Σ0(x1, xk); . . . ; Σ0(xk, x1), . . . ,Σ0(xk, xk)].

Suppose we observe f(x1:n) without noise for some n and we wish to infer the value of f(x) at some
new point x. To do so, we let k = n + 1 and xk = x, so that the prior over [f(x1:n), f(x)] is given by
(2). We may then compute the conditional distribution of f(x) given these observations using Bayes’
rule (see details in Chapter 2.1 of Rasmussen and Williams (2006)),

f(x)|f(x1:n) ∼ Normal(µn(x), σ2
n(x))

µn(x) = Σ0(x, x1:n)Σ0(x1:n, x1:n)−1 (f(x1:n)− µ0(x1:n)) + µ0(x)

σ2
n(x) = Σ0(x, x)− Σ0(x, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x).

(3)

This conditional distribution is called the posterior probability distribution in the nomenclature of

4

Peter I. Frazier: A Tutorial on Bayesian Op-
timization, rXiv:1807.02811v1 [stat.ML] 8
Jul 2018

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 100 / 105

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 101 / 105

Beliefs

Uncertainty does not increase with time
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the potential states become the beliefs used to select an action.

π(b) = maxa

[∑
k

Q(s(k), a)b(k)

]

The value Q(s(k), a)b(k) approximated from QMDP solutions
rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 102 / 105

Pareto Optimal frontier

194 parameter sets evaluated
β between 0.01 and 0.99 .
resulting in nine non-dominated, Pareto–optimal designs.

0 1 2 3 4 5
0

1

2

3

Mean Deviation

In
ve
rs
e
5
%

C
P
A

R
an

ge
,
r 5

%
C
P
A QMDP optimal front

QMDP designs

Figure 6: Pareto-optimal front of reward parameter design options

Intruder aircraft moving with uniform velocity are a typical encounter case and one which allows evalua-
tion of overall avoidance performance as a function of a range of relative headings and speeds. The relative
heading is the difference between the ownship and intruder heading at CPA, so a value of 180° is a head-on
encounter. Each combination of velocity and heading is replayed ten times under different sequences of state
and dynamic uncertainty in order to ensure a range of reasonable behavior is obtained for each encounter
type. The parameters that were systematically varied for this class of intruders and their values are shown
in table 3. A total of 1320 uniform velocity encounters were simulated for each experimental condition (i.e.,
level of state and dynamic uncertainty).

Table 3: Encounter parameters for uniform velocity intruders

Encounter Parameter Minimum Value Step Size Maximum Value

Relative heading (deg) 30 30 330

Relative velocity(s−1) 0.25 0.25 3.0

Number of uncertainty histories 10

The intruder trajectories generated by the encounter model are meant to simulate realistic flights by
hobbyist unmanned aircraft and represent the most difficult encounter conditions: maneuvering (or, equiva-
lently, accelerating) intruders. In some cases it may be impossible for the ownship to avoid a close encounter
when an intruder maneuvers at close range to the ownship with high relative velocity. Details of the charac-
teristics of these intruder trajectories and how they were shown to be realistic are provided in a companion
paper.6 A total of 7000 encounter model intruders were simulated for each experimental condition.

VI. Results

This section presents the results of simulations using several types of initial conditions and levels of
surveillance uncertainty. The available design tradeoffs for different sets of reward parameters are shown,
each of which delivers a different combination of separation and deviation distances. Example collision
avoidance resolution trajectories are discussed next. The sections following this discussion describe the
algorithm’s performance in terms of separation and deviation for a single set of reward parameters, and
the last section compares the performance of the coarsely and finely discretized state variables specified in
table 1.

12 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 103 / 105

Human Expert Check

Left: intruder starts at (0, 0),
random heading, fixed velocity of
the intruder
the ownship starts at the blue cross

Right: The goal is hovering
the intruder comes from the
right with the unknown
behaviour.

Figure 7: QMDP collision avoidance maneuver examples

solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters
with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in fig. 9. The
deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 104 / 105

State Discretization

The fine discretization improves the results.

other for these close encounters. However, the coarse discretization does not possess grid points at ranges
between 1.0 and 15.0, so it provides more than the required separation for a majority of the encounters. The
implication of this excessive separation is that the maximum trajectory deviations are also much larger than
required. The selection of an appropriate discretization scheme has a major effect on the performance of the
QMDP algorithm, so it is important that care is taken to balance the additional computational costs of a
finely discretized scheme against that increased performance.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

CPA Separation

P
ro
p
or
ti
o
n
of

tr
a
je
ct
or
ie
s

Fine
Coarse

(a) CPA separations

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Maximum Trajectory Deviation

Fine
Coarse

(b) Maximum trajectory deviations

Figure 10: Cumulative distributions of encounter model metrics as a function of state discretization

VII. Conclusions

This paper presented a formulation of the collision avoidance problem for multi-rotor aircraft as a par-
tially observable Markov decision process (POMDP). The approach extends the ACAS X methodology to
incorporate speed, in the form of horizontal plane accelerations, as a significant degree of freedom. The
parameters for a horizontal, two-dimensional version of this algorithm were presented, and a set of metrics
proposed that would be directly applicable to defining aircraft performance by the user of such an algorithm.
These metrics, which relate to the minimum separation from an intruder and the deviation from the desired
trajectory, are used to judge the performance of the algorithm for a given parameter set. An optimization
loop was created to automatically select reward parameters that balance separation requirements with devi-
ation. That optimization loop includes the POMDP formulation, an approximately optimal QMDP method
for selecting actions, a simulation capability to evaluate the metrics, and a Gaussian process surrogate model
to select reward parameters for subsequent iterations. The optimization was run for a range of values of
relative importance between the two metrics in the inner loop.

The Gaussian process-based optimization scheme generated a large set of collision avoidance algorithms,
each with a different set of reward parameters, that provided different tradeoffs between separation and
trajectory deviation. One of those algorithms was used to show the individual trajectories flown by a sim-
ulated vehicle in the presence of state and dynamic uncertainty for a variety of initial conditions, including
a stationary ownship and a moving intruder and ownship with three different relative headings. The result-
ing trajectories match the expectations for typical collision avoidance behavior and take advantage of the
speed degree of freedom in normally difficult-to-resolve encounters. This use of speed, enabled by the novel
formulation of the collision avoidance problem presented in this paper, could provide significant benefit over
algorithms that only allow turns or vertical maneuvers. Aggregate statistics measuring the performance of
this algorithm over thousands of encounters were also presented, illustrating the robustness of the algorithm
to different initial conditions and degrees of uncertainty.

16 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Machine Learning Gaussian Processes 12 184 - 218 May 16, 2025 105 / 105

List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).

Machine Learning Support Vector Machines 13 219 - 219 May 16, 2025 105 / 105

List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).

Machine Learning Summary 15 220 - 221 May 16, 2025 105 / 105

Table of Contens
1 Overview of Supervised Learning
2 Kernel Methods, Basis Expansion and regularization
3 Linear Methods for Classification
4 Model Assessment and Selection
5 Additive Models, Trees, and Related Methods
6 Ensamble Methods
7 Bayesian learning, EM algorithm
8 Clustering
9 Association Rules, Apriori
10 Inductive Logic Programming
11 Undirected Graphical Models
12 Gaussian Processes
13 Support Vector Machines
14 (PCA Extensions, Independent CA)

Machine Learning Summary 15 220 - 221 May 16, 2025 105 / 105

	Overview of Supervised Learning
	Kernel Methods, Basis Expansion and regularization
	Linear Methods for Classification
	Model Assessment and Selection
	Additive Models, Trees, and Related Methods
	Ensamble Methods
	Bayesian learning, EM algorithm
	Clustering
	Association Rules, Apriori
	Inductive Logic Programming
	Undirected Graphical Models
	Gaussian Processes
	Support Vector Machines
	(PCA Extensions, Independent CA)
	Summary

