

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Volodymyr Sahan

Safe Dike Heights at Minimal Costs: An Integer Programming Approach

- Almost 60% of the Netherlands is under threat of flooding from sea, rivers, or lakes.
- More than 3,500 km of dikes and dunes protect the country.
- Annual maintenance and investment costs exceed €1 billion.
- The heightening of the dike is essential, but must be cost-effective.

Flood Safety Standards in the Netherlands

Figure: Flood safety standards in the Netherlands: protection ranges from 1-in-1,250 inland to 1-in-10,000 per year along the coast. © 2009 Verkeer en Waterstaat [3]

- **1953 flood:** 1835 deaths, 67 dike breaches, 10% GDP loss \rightarrow formation of the Delta Committee.
- Van Dantzig (1956): Introduced first economic model for optimal dike height.
- Resulted in statutory flood safety standards based on dike rings (up to 1 in 10,000 per year).
- **1995 high water levels:** 200,000 evacuated renewed interest in economic flood protection.
- **Delta Program (2012):** Re-assessment of safety levels due to rising risks and values.
- New CBA: Based on the Brekelmans et al. (2012) model adopted as legal standard in 2016.

- Brekelmans et al. (2012) Safe Dike Heights at Minimal Costs: The Nonhomogeneous Case
 - Non-homogeneous case
 - Mixed-Integer Nonlinear Programming (MINLP) approach
- Eijgenraam et al. (2016) Optimal Strategies for Flood Prevention
 - Homogeneous case
 - Derived explicit expression for global solution

- Develop an integer linear programming model to determine optimal dike heightening strategies.
- Perform a cost-benefit analysis that minimizes the total expected costs (investment + expected flood damage).
- Allow for greater flexibility in input parameters
- Provide an efficient, easy-to-implement algorithm usable in practice.
- Compare the model with the approach of Brekelmans et al. (2012).

Common Formulas for Flooding and Damage Costs

• Flood probability:

$$\mathbf{P}_t = \mathbf{P}_0 \mathbf{e}^{eta lpha t} \mathbf{e}^{-eta (h_t - h_0)}$$

• Damage:

$$V_t = V_0 e^{\gamma t} e^{\eta (h_t - h_0)}$$

Investment costs:

$$I_{t} = \begin{cases} (a + b(h_{t} - h_{t-1}))e^{\lambda(h_{t} - h_{0})} & \text{if } h_{t} > h_{t-1} \\ 0 & \text{if } h_{t} = h_{t-1} \end{cases}$$

Model Specifications and Notation

- **Non-homogeneous dike rings:** Each dike ring consists of multiple segments with potentially different characteristics. Let *L* be the set of segments.
- Flood probability: Determined by the weakest segment:

$$P_t^{\mathsf{dike}} = \max_{l \in L} P_t^l$$

Discretization:

- $T = \{0, 1, \dots, |T| 1\}$ discrete time periods.
- $H = \{0, 1, \dots, |H| 1\}$ discrete safety levels.
- $H' \subseteq H$ allowed safety levels for segment $I \in L$.

Decision Variables:

- $CY(t, I, h_1, h_2) = 1$: Segment *I* is upgraded from level h_1 to h_2 at time *t*; 0 otherwise.
- DY(t, l, h) = 1: Segment l at level h is the weakest (determines flood) at time t; 0 otherwise.

Input Parameters:

- $cost(t, I, h_1, h_2)$: Cost for upgrading (or maintaining) segment *I* at time *t*.
- $\operatorname{prob}(t, I, h)$: Flood probability for segment *I* at level *h* and time *t*.
- damage(t, l, h): Expected damage in case of flooding at time t.

Optimization Model (Model C)

$$\min \sum_{t \in \mathcal{T}} \sum_{l \in L} \sum_{h_1, h_2 \in H^l} \operatorname{cost}(t, l, h_1, h_2) \cdot CY(t, l, h_1, h_2) + \sum_{t \in \mathcal{T}} \sum_{l \in L} \sum_{h \in H^l} \operatorname{prob}(t, l, h) \cdot \operatorname{damage}(t, l, h) \cdot DY(t, l, h)$$
(2)

$$CY(0, l, 0, 0) = 1;$$
 $CY(0, l, h_1, h_2) = 0 \quad \forall l \in L, h_1 > 0, h_2 \ge h_1$ (3)

$$\sum_{h_{1}\in H'h_{1}\leq h_{2}} CY(t-1, I, h_{1}, h_{2}) = \sum_{h_{3}\in H': h_{3}\geq h_{2}} CY(t, I, h_{2}, h_{3})$$
$$\forall t \in T \setminus \{0\}, \ I \in L, \ h_{2} \in H'$$
(4)

Optimization Model (Model C) (Continuation)

$$\sum_{\substack{h_{1} \in H^{l_{0}} \\ \text{prob}(t, h_{0}, h_{2}) > \text{prob}(t, l^{*}, h^{*})}} \sum_{\substack{CY(t, l_{0}, h_{1}, h_{2}) + \sum_{l \in L} \\ \text{prob}(t, l, h) \leq \text{prob}(t, l^{*}, h^{*})}} \sum_{\substack{h \in H^{l} \\ \text{prob}(t, l, h) \leq \text{prob}(t, l^{*}, h^{*})}} DY(t, l, h) \leq 1$$
$$\forall t \in T, \ l_{0}, l^{*} \in L, \ h^{*} \in H^{l^{*}}$$
(5)

$$\sum_{l \in L} \sum_{h \in H'} DY(t, l, h) = 1 \quad \forall t \in T$$
(6)

$$CY(t, l, h_1, h_2) \in \{0, 1\} \quad \forall t \in T, \ l \in L, \ h_1, h_2 \in H', \ h_2 \ge h_1$$
(7)

$$DY(t, l, h) \in \{0, 1\} \quad \forall t \in T, \ l \in L, \ h \in H^{l}$$
(8)

Additional constraints:

$$\sum_{t^*=t+1,\ldots,t+up(I)}\sum_{h_1\in H'}\sum_{\substack{h_2\in H'\\h_2>h_1}}CY(t^*,I,h_1,h_2) \le 1 \quad \forall I\in L, \ t=0,\ldots,|T|-up(I)$$
(9)

Discretization Schemes

- Heightenings:
 - In steps of 10 centimeters up to 100 cm,
 - In steps of 20 centimeters from 100 to 200 cm,
 - In steps of 30 centimeters for heights above 200 cm.
- Time periods (planning horizon is 300 years):
 - 5-year periods are used up to the year 2100,
 - 10-year periods are used after 2100.

• Empirically tested: the optimal solution hardly depends on the discretization scheme.

- Technique 1: Is identical heightening one period later always better?
- **Technique 2:** Late heightening not optimal?
- Technique 3: Is heightening in two steps ever better than in one step?

Technique 1

A heightening at time *t* can be postponed to time t + 1 if it improves or maintains the objective value.

Additional assumption:

 $cost(t, l, h_1, h_2) + cost(t + 1, l, h_2, h_3) \ge cost(t, l, h_1, h_3) \quad \forall t \in T, \ l \in L, \ h_1 < h_2 < h_3 \in H^l$

Objective difference:

 $MxChngT(t, I, h_1, h_2) = cost(t, I, h_1, h_2) - cost(t + 1, I, h_1, h_2)$

 $+(\operatorname{prob}(t, I, h_2) - \operatorname{prob}(t, I, h_1)) \cdot \operatorname{damage}(t)$

 $+\cot(t+1, l, h_2, h_2) - \cot(t, l, h_1, h_1)$

If MxChngT $(t, l, h_1, h_2) \ge 0$, then variable $CY(t, l, h_1, h_2)$ can be removed.

Technique 2

This technique searches for heightenings of a segment in one of the latest time periods that are not efficient: the total costs of the heightening (including maintenance and flooding costs) are larger than the total costs of not heightening.

For a specific time period t^* and segment *I*, this happens for a heightening from h_1 to $h_2 > h_1$ if:

$$cost(t^*, l, h_1, h_2) + \sum_{t > t^*} cost(t, l, h_2, h_2) + \sum_{t \ge t^*} prob(t, l, h_2) \cdot damage(t)$$
$$> \sum_{t \ge t^*} cost(t, l, h_1, h_1) + \sum_{t \ge t^*} prob(t, l, h_1) \cdot damage(t)$$

If the condition also holds for all later periods $t > t^*$ and all possible heightenings $h_1, h_2 \in H^l$ with $h_2 > h_1$, then we can remove all such variables:

 $CY(t^*, I, h_1, h_2) := 0.$

Technique 3: Two-Step Heightening More Efficient

This technique identifies large heightenings that are so expensive it is always better to heighten a segment in two consecutive steps instead of one.

Let $t_1, t_2 \in T$, with $t_1 < t_2$, $l \in L$, and $h_1 < h_2 < h_3 \in H^l$. Let also mxh_l be the height with the lowest flood probability for segment *l*.

If:

 $\begin{aligned} & \cos(t_1, l, h_1, h_3) + \sum_{t_2 \ge t > t_1} \cos(t, l, h_3, h_3) \\ & - \cos(t_1, l, h_1, h_2) - \sum_{t_2 > t > t_1} \cos(t, l, h_2, h_2) \\ & - \cos(t_2, l, h_2, h_3) \\ & + \sum_{t_2 > t \ge t_1} [\operatorname{prob}(t, l, \operatorname{mxh}_l) - \operatorname{prob}(t, l, h_2)] \cdot \operatorname{damage}(t) > 0 \end{aligned}$

Then set $CY(t_1, I, h_1, h_3) := 0$

- The same data are used as in Brekelmans et al. (2012).
- Computing times are measured on a Windows Server 2003-based computer with Intel Xeon E5-2670 processors.
- Only the CPLEX-based branch-and-cut procedure is used.
- CPLEX is instructed to first branch on the variable DY; all other settings remain at their default values.

Branch and Cut Method

- Solve the LP relaxation of the integer program.
 - The LP solution provides a lower bound on the objective.
 - Initialize the **upper bound** as ∞ (best known integer solution).
- Termination: If no nodes remain to explore, return the best known integer solution (upper bound).
- **Branching:** Choose a fractional variable *x_i* and split into subproblems:

 $x_i \leq \lfloor x_i \rfloor$ and $x_i \geq \lceil x_i \rceil$

Bounding and Cutting: Solve the subproblems:

- If integer: update the upper bound if it's better.
- If fractional:
 - Prune if infeasible or worse than current upper bound.
 - Else: Add valid cutting planes to tighten the LP and continue.

Comparison of models

Table 1

Comparison of MINLP-approach of Brekelmans et al. (2012) and model C.

Dike ring	Number of segments	MINLP approach of Brekelmans et al. (2012)		Model C	Difference in true objective (%)	
		MINLP objective (M)	True objective (M)	Model C objective (M)	True objective (M)	
10	4	107.51	107.51	108.26	108.26	0.69
13	4	10.38	10.38	10.33	10.33	-0.48
14	2	94.04	94.04	94.57	94.57	0.56
16	8	1044.45	1046.08	1064.65	1064.80	1.79
17	6	377.05	377.05	380.65	380.66	0.96
21	10	217.40	217.71	221.62	221.62	1.80
22	5	373.98	374.08	378.67	378.68	1,23
36	6	395.65	395.65	395.34	395.34	-0.08
38	3	136.26	136.29	136.75	136.76	0.34
43	8	486.72	488.10	492.66	492.66	0.93
47	2	16.57	16.57	16.63	16.63	0.36
48	3	42.92	42.92	43.37	43.37	1.05

Effect of the preprocessing techniques

Table 2

Effect of the preprocessing techniques on the solution of branch-and-cut algorithm of model C.

Dike ring	L	Total number of variables	Reduction in the number of variables				Solution time (minutes)	
		before pre-	Techni	ique		Total (%)	With pre-	Without pre-
		processing	1 (%)	2 (%)	3 (%)		processing	processing
10	4	42,988	44	0	11	56	0.06	0.12
13	4	42,988	64	0	3	67	0.03	0.11
14	2	21,494	35	0	10	45	0.03	0.04
16	8	85,976	33	0	18	51	0.36	0.55
17	6	64,482	49	0	14	63	0.10	0.27
21	10	107,470	34	0	16	50	0.89	1.34
22	5	53,735	36	0	15	51	0.16	0.50
36	6	64,482	25	0	15	40	0.10	0.12
38	3	32,241	29	0	12	41	0.05	0.08
43	8	85,976	53	1	15	68	0.48	0.70
47	2	21,494	63	1	10	74	0.03	0.03
48	3	32,241	45	0	18	64	0.04	0.07

|L|: number of segments.

Anti piping measures

Figure: Flood probabilities for dike ring 10 according to the optimal investment strategy, with the option of constructing anti piping measures only.

- Flexible and efficient model for dike height optimization.
- Proven optimal solutions with fast computation using preprocessing.
- Applicable in both Dutch and international flood risk settings.

References I

Zwaneveld, P., Verweij, G., & van Hoesel, S. (2018).

Safe dike heights at minimal costs: An integer programming approach. *European Journal of Operational Research*, 268(2), 478–487. Available from: https://www.sciencedirect.com/science/article/pii/S0377221718302212 Accessed 3 May 2025

Brekelmans, R., den Hertog, D., Roos, K., & Eijgenraam, C. (2012).

Safe dike heights at minimal costs: The nonhomogeneous case. Operations Research, 60(6), 1342–1355. Available from: https://www.jstor.org/stable/23323704 Accessed 3 May 2025

Dutch Coasts in Transition. Scientific Figure on ResearchGate.

Available from:

https://www.researchgate.net/figure/Flood-safety-standards-of-dykes-in-The-NetherlandsThe-current-level-of-protection-ranges_fig2_46383972 Accessed 3 May 2025

Thank you for your attention!