
Volodymyr Sahan

Safe Dike Heights at Minimal Costs: An Integer
Programming Approach

2025



Motivation

Almost 60% of the Netherlands is under threat of flooding from sea, rivers, or lakes.
More than 3,500 km of dikes and dunes protect the country.
Annual maintenance and investment costs exceed C1 billion.
The heightening of the dike is essential, but must be cost-effective.
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Flood Safety Standards in the Netherlands

Figure: Flood safety standards in the Netherlands: protection ranges from 1-in-1,250 inland to 1-in-10,000 per year along the
coast. © 2009 Verkeer en Waterstaat [3]
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Historical and Policy Background

1953 flood: 1835 deaths, 67 dike breaches, 10% GDP loss → formation of the Delta
Committee.
Van Dantzig (1956): Introduced first economic model for optimal dike height.
Resulted in statutory flood safety standards based on dike rings (up to 1 in 10,000 per
year).
1995 high water levels: 200,000 evacuated renewed interest in economic flood
protection.
Delta Program (2012): Re-assessment of safety levels due to rising risks and values.
New CBA: Based on the Brekelmans et al. (2012) model adopted as legal standard
in 2016.
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Previous Approaches

Brekelmans et al. (2012) — Safe Dike Heights at Minimal Costs: The
Nonhomogeneous Case

Non-homogeneous case
Mixed-Integer Nonlinear Programming (MINLP) approach

Eijgenraam et al. (2016) — Optimal Strategies for Flood Prevention
Homogeneous case
Derived explicit expression for global solution
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Research Objectives

Develop an integer linear programming model to determine optimal dike heightening
strategies.
Perform a cost-benefit analysis that minimizes the total expected costs (investment +
expected flood damage).
Allow for greater flexibility in input parameters
Provide an efficient, easy-to-implement algorithm usable in practice.
Compare the model with the approach of Brekelmans et al. (2012).
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Common Formulas for Flooding and Damage Costs

Flood probability:
Pt = P0eβαte−β(ht−h0)

Damage:
Vt = V0eγteη(ht−h0)

Investment costs:

It =

{
(a + b(ht − ht−1))eλ(ht−h0) if ht > ht−1

0 if ht = ht−1
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Model Specifications and Notation

Non-homogeneous dike rings: Each dike ring consists of multiple segments with
potentially different characteristics. Let L be the set of segments.
Flood probability: Determined by the weakest segment:

Pdike
t = max

l∈L
P l

t

Discretization:
T = {0, 1, . . . , |T | − 1} – discrete time periods.
H = {0, 1, . . . , |H| − 1} – discrete safety levels.
H l ⊆ H – allowed safety levels for segment l ∈ L.
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Decision Variables and Parameters

Decision Variables:
CY(t , l ,h1,h2) = 1: Segment l is upgraded from level h1 to h2 at time t ; 0 otherwise.
DY(t , l ,h) = 1: Segment l at level h is the weakest (determines flood) at time t ; 0
otherwise.

Input Parameters:
cost(t , l ,h1,h2): Cost for upgrading (or maintaining) segment l at time t .
prob(t , l ,h): Flood probability for segment l at level h and time t .
damage(t , l ,h): Expected damage in case of flooding at time t .
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Optimization Model (Model C)

min
∑
t∈T

∑
l∈L

∑
h1,h2∈H l

cost(t , l , h1, h2) · CY (t , l , h1, h2)

+
∑
t∈T

∑
l∈L

∑
h∈H l

prob(t , l , h) · damage(t , l , h) · DY (t , l , h) (2)

CY (0, l , 0, 0) = 1; CY (0, l , h1, h2) = 0 ∀l ∈ L, h1 > 0, h2 ≥ h1 (3)

∑
h1∈H l h1≤h2

CY (t − 1, l , h1, h2) =
∑

h3∈H l :h3≥h2

CY (t , l , h2, h3)

∀t ∈ T \ {0}, l ∈ L, h2 ∈ H l (4)
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Optimization Model (Model C) (Continuation)

∑
h1∈H l0

∑
h2≥h1

prob(t,l0,h2)>prob(t,l∗,h∗)

CY (t , l0,h1,h2) +
∑
l∈L

∑
h∈H l

prob(t,l,h)≤prob(t,l∗,h∗)

DY (t , l ,h) ≤ 1

∀t ∈ T , l0, l∗ ∈ L, h∗ ∈ H l∗ (5)

∑
l∈L

∑
h∈H l

DY (t , l ,h) = 1 ∀t ∈ T (6)

CY (t , l ,h1,h2) ∈ {0,1} ∀t ∈ T , l ∈ L, h1,h2 ∈ H l , h2 ≥ h1 (7)

DY (t , l ,h) ∈ {0,1} ∀t ∈ T , l ∈ L, h ∈ H l (8)

Additional constraints:∑
t∗=t+1,...,t+up(l)

∑
h1∈H l

∑
h2∈H l

h2>h1

CY (t∗, l ,h1,h2) ≤ 1 ∀l ∈ L, t = 0, . . . , |T | − up(l) (9)
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Discretization Schemes

Heightenings:
In steps of 10 centimeters up to 100 cm,
In steps of 20 centimeters from 100 to 200 cm,
In steps of 30 centimeters for heights above 200 cm.

Time periods (planning horizon is 300 years):
5-year periods are used up to the year 2100,
10-year periods are used after 2100.

Empirically tested: the optimal solution hardly depends on the discretization scheme.
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Preprocessing Techniques

Technique 1: Is identical heightening one period later always better?

Technique 2: Late heightening not optimal?

Technique 3: Is heightening in two steps ever better than in one step?
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Technique 1
A heightening at time t can be postponed to time t + 1 if it improves or maintains the
objective value.

Additional assumption:

cost(t , l ,h1,h2) + cost(t + 1, l ,h2,h3) ≥ cost(t , l ,h1,h3) ∀t ∈ T , l ∈ L, h1 < h2 < h3 ∈ H l

Objective difference:

MxChngT(t , l ,h1,h2) = cost(t , l ,h1,h2)− cost(t + 1, l ,h1,h2)

+ (prob(t , l ,h2)− prob(t , l ,h1)) · damage(t)

+cost(t + 1, l ,h2,h2)− cost(t , l ,h1,h1)

If MxChngT(t , l ,h1,h2) ≥ 0, then variable CY (t , l ,h1,h2) can be removed.
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Technique 2
This technique searches for heightenings of a segment in one of the latest time periods
that are not efficient: the total costs of the heightening (including maintenance and
flooding costs) are larger than the total costs of not heightening.

For a specific time period t∗ and segment l , this happens for a heightening from h1 to
h2 > h1 if:

cost(t∗, l ,h1,h2) +
∑
t>t∗

cost(t , l ,h2,h2) +
∑
t≥t∗

prob(t , l ,h2) · damage(t)

>
∑
t≥t∗

cost(t , l ,h1,h1) +
∑
t≥t∗

prob(t , l ,h1) · damage(t)

If the condition also holds for all later periods t > t∗ and all possible heightenings
h1,h2 ∈ H l with h2 > h1, then we can remove all such variables:

CY (t∗, l ,h1,h2) := 0.
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Technique 3: Two-Step Heightening More Efficient
This technique identifies large heightenings that are so expensive it is always better to
heighten a segment in two consecutive steps instead of one.

Let t1, t2 ∈ T , with t1 < t2, l ∈ L, and h1 < h2 < h3 ∈ H l .
Let also mxhl be the height with the lowest flood probability for segment l .

If:

cost(t1, l ,h1,h3) +
∑

t2≥t>t1

cost(t , l ,h3,h3)

− cost(t1, l ,h1,h2)−
∑

t2>t>t1

cost(t , l ,h2,h2)

− cost(t2, l ,h2,h3)

+
∑

t2>t≥t1

[prob(t , l ,mxhl)− prob(t , l ,h2)] · damage(t) > 0

Then set CY(t1, l ,h1,h3) := 0
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Technical Details

The same data are used as in Brekelmans et al. (2012).
Computing times are measured on a Windows Server 2003-based computer with Intel
Xeon E5-2670 processors.
Only the CPLEX-based branch-and-cut procedure is used.
CPLEX is instructed to first branch on the variable DY; all other settings remain at their
default values.
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Branch and Cut Method

1 Relaxation: Solve the LP relaxation of the integer program.
The LP solution provides a lower bound on the objective.
Initialize the upper bound as ∞ (best known integer solution).

2 Termination: If no nodes remain to explore, return the best known integer solution
(upper bound).

3 Branching: Choose a fractional variable xi and split into subproblems:

xi ≤ ⌊xi⌋ and xi ≥ ⌈xi⌉

4 Bounding and Cutting: Solve the subproblems:
If integer: update the upper bound if it’s better.
If fractional:

Prune if infeasible or worse than current upper bound.
Else: Add valid cutting planes to tighten the LP and continue.
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Comparison of models
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Effect of the preprocessing techniques
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Anti piping measures

Figure: Flood probabilities for dike ring 10 according to the optimal investment strategy, with the
option of constructing anti piping measures only.
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Conclusion

Flexible and efficient model for dike height optimization.
Proven optimal solutions with fast computation using preprocessing.
Applicable in both Dutch and international flood risk settings.
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Thank you for your attention!
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