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@ Almost 60% of the Netherlands is under threat of flooding from sea, rivers, or lakes.
@ More than 3,500 km of dikes and dunes protect the country.

@ Annual maintenance and investment costs exceed €1 billion.

@ The heightening of the dike is essential, but must be cost-effective.
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Flood Safety Standards in the Netherlands

The Netherlands
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Figure: Flood safety standards in the Netherlands: protection ranges from 1-in-1,250 inland to 1-in-10,000 per year along the
coast. © 2009 Verkeer en Waterstaat [3]
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Historical and Policy Background

@ 1953 flood: 1835 deaths, 67 dike breaches, 10% GDP loss — formation of the Delta
Committee.

@ Van Dantzig (1956): Introduced first economic model for optimal dike height.

@ Resulted in statutory flood safety standards based on dike rings (up to 1 in 10,000 per
year).

@ 1995 high water levels: 200,000 evacuated renewed interest in economic flood
protection.

@ Delta Program (2012): Re-assessment of safety levels due to rising risks and values.

@ New CBA: Based on the Brekelmans et al. (2012) model adopted as legal standard
in 2016.
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Previous Approaches

@ Brekelmans et al. (2012) — Safe Dike Heights at Minimal Costs: The
Nonhomogeneous Case

e Non-homogeneous case
e Mixed-Integer Nonlinear Programming (MINLP) approach

@ Eijgenraam et al. (2016) — Optimal Strategies for Flood Prevention

e Homogeneous case
e Derived explicit expression for global solution
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Research Objectives

@ Develop an integer linear programming model to determine optimal dike heightening
strategies.

@ Perform a cost-benefit analysis that minimizes the total expected costs (investment +
expected flood damage).

@ Allow for greater flexibility in input parameters
@ Provide an efficient, easy-to-implement algorithm usable in practice.
@ Compare the model with the approach of Brekelmans et al. (2012).
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Common Formulas for Flooding and Damage Costs

@ Flood probability:
P = Pye?te=Ahi=h)

@ Damage:
V; = Vyertenthi—h)
@ Investment costs:

[ — (a+ b(ht = ht_1))e)\(htih°) if ht > ht_1
o if hy = hy_q
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Model Specifications and Notation

@ Non-homogeneous dike rings: Each dike ring consists of multiple segments with
potentially different characteristics. Let L be the set of segments.

@ Flood probability: Determined by the weakest segment:

P — max P!
leL

@ Discretization:
e T={0,1,...,|T| — 1} —discrete time periods.
e H={0,1,...,|H| — 1} —discrete safety levels.
o H' C H - allowed safety levels for segment / € L.
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Decision Variables and Parameters

Decision Variables:
@ CY(t, 1, hy, ho) = 1: Segment / is upgraded from level hy to hy at time t; 0 otherwise.

@ DY(t,/,h) =1: Segment / at level h is the weakest (determines flood) at time ¢; 0
otherwise.

Input Parameters:
@ cost(t,/, hy, ho): Cost for upgrading (or maintaining) segment / at time t.
@ prob(t,/, h): Flood probability for segment / at level h and time t.
@ damage(t, /, h): Expected damage in case of flooding at time t.
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Optimization Model (Model C)

min > > " > cost(t,/, b, ) - CY(t,1, b, hp)

teT I€L hy,hpeH!

+3 3> " probo(t, I, h) - damage(t, I, h) - DY(t, I, h) )
teT IeL heH!
CY(0,1,0,0)=1; CY(0,/,hi,h)=0 VieL, h >0, hy> 3)
SoCY(t—1.h, k)= > CY(tI h, o)
hi€H!'hy <hy hy€H!:h3>hy
Vte T\{0}, lelL, hoe H (4)
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Optimization Model (Model C) (Continuation)

> > CY(t, o, h2) + > > DY(t,1,h) <1

hyeHb hp>hy leL heH'
prob(t,l,h2)>prob(t,/* ,h*) prob(t,/,h)<prob(t,/* ,h*)

Vte T, " el h*eH (5

S > DY(thhy=1 vteT (6)

leL heH!
CY(t, 1 h,h) € {0,1} VteT,lelL, hy,hpc H h > h (7)
DY(t,I,h) € {0,1} VteT,lelL, heH (8)

Additional constraints:

> Yooyt hhe) <1 WIelL t=0,...,[T|—up()) (9)

tr=t+1,..., t+up(/) heH h,eH'
ho>hy
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Discretization Schemes

@ Heightenings:
e In steps of 10 centimeters up to 100 cm,
@ In steps of 20 centimeters from 100 to 200 cm,
o In steps of 30 centimeters for heights above 200 cm.

@ Time periods (planning horizon is 300 years):

e 5-year periods are used up to the year 2100,
e 10-year periods are used after 2100.

@ Empirically tested: the optimal solution hardly depends on the discretization scheme.
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Preprocessing Techniques

@ Technique 1: Is identical heightening one period later always better?

@ Technique 2: Late heightening not optimal?

@ Technique 3: Is heightening in two steps ever better than in one step?
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Technique 1

A heightening at time t can be postponed to time ¢ + 1 if it improves or maintains the
objective value.

Additional assumption:

cost(t, I, hy, hp) + cost(t+ 1,1, ho, hg) > cost(t, [, hi,h3) Vte T, el hy<h <hse€ H'

Objective difference:

MxChngT(t,/, hy, ho) = cost(t, 1, hy, ho) — cost(t + 1,1, hy, hp)
+ (prob(t, I, hp) — prob(t,/, hy)) - damage(t)
+cost(t + 1,1, ho, ho) — cost(t, /, hy, hy)

If MxChngT(t, 1, hy, hy) > 0, then variable CY(t,/, hy, ho) can be removed.
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Technique 2

This technique searches for heightenings of a segment in one of the latest time periods
that are not efficient: the total costs of the heightening (including maintenance and
flooding costs) are larger than the total costs of not heightening.

For a specific time period t* and segment /, this happens for a heightening from h; to
h2 > h1 if:

cost(t*,/, hy, ho) + Z cost(t,/, ho, ho) + Z prob(t, I, ho) - damage(t)

>t >t

> > " cost(t, ], hi, hy) + > prob(t, , h) - damage(t)

>t >t

If the condition also holds for all later periods { > t* and all possible heightenings
hy, ho € H' with h, > hy, then we can remove all such variables:

CY(t", 1, hy,h) :=0.
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Technique 3: Two-Step Heightening More Efficient

This technique identifies large heightenings that are so expensive it is always better to
heighten a segment in two consecutive steps instead of one.

Let L, b e T,withti <b,/lel,and hy < ho < hs € H'.
Let also mxh, be the height with the lowest flood probability for segment /.

If:
cost(t, 1, hy, hs) + Z cost(t, I, hs, hs)
bL>t>H

—cost(t, [, hp) — > cost(t, ], hp, hy)
b>t>t

— cost(k, I, ho, h3)
+ > [prob(t,/,mxh;) — prob(t, /, hy)] - damage(t) > 0

bL>t>h

Then set CY(t1 5 I, hy 5 h3) =0
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Technical Details

@ The same data are used as in Brekelmans et al. (2012).

@ Computing times are measured on a Windows Server 2003-based computer with Intel
Xeon E5-2670 processors.

@ Only the CPLEX-based branch-and-cut procedure is used.

@ CPLEX is instructed to first branch on the variable DY; all other settings remain at their
default values.
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Branch and Cut Method

@ Relaxation: Solve the LP relaxation of the integer program.
e The LP solution provides a lower bound on the objective.
o Initialize the upper bound as ~o (best known integer solution).
@ Termination: If no nodes remain to explore, return the best known integer solution
(upper bound).

© Branching: Choose a fractional variable x; and split into subproblems:

Xi < |_X,'J and x; > |—X,'-|

© Bounding and Cutting: Solve the subproblems:
o If integer: update the upper bound if it’s better.
e If fractional:

@ Prune if infeasible or worse than current upper bound.
@ Else: Add valid cutting planes to tighten the LP and continue.
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Comparison of models

Table 1
Comparison of MINLP-approach of Brekelmans et al. (2012) and model C.
Dike  Number of  MINLP approach of Model C Difference
ring segments Brekelmans et al. (2012) in true
objective (%)

MINLP True Model C True
objective objective objective objective
(M) (M) (M) (M]

10 4 10751 107.51 108.26 108.26 0.69

13 4 1038 10.38 10,33 10.33 —0.48

14 2 9404 94.04 9457 94.57 0.56

16 8 1044.45 1046.08 1064.65 1064.80 179

17 6 377.05 377.05 380.65 380.66 0.96

21 10 217.40 21771 22162 23162 18O

22 5 373.98 37408 37867 378.68 123

36 6 39565 39565 395.34 395.34 —0.08

38 3 136.26 136.29 136.75 136.76 034

43 B 486.72 488.10 492 66 492 66 093

47 2 16.57 16.57 16.63 1663 036

48 3 4292 4292 4337 43.37 105
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Effect of the preprocessing techniques

Table 2
Effect of the preprocessing techniques on the solution of branch-and-cut algorithm of model C.

Dike L] Total number  Reduction in the number Solution time

ring of variables of variables (minutes)
befiore pre- Technique Total (£)  With pre- Without pre-
processing 1(%) 2(%X) 3(%) processing  processing

10 4 42,988 44 ] n 56 0.06 012

13 4 42,988 64 0 3 67 0.03 on

14 2 21494 35 ] 10 45 003 004

16 8 85,976 33 ] 18 51 0.36 055

17 6 64,482 49 ] 14 63 010 0.27

n 10 107470 34 ] 16 50 089 134

22 5 53,735 36 ] 15 51 016 050

36 6 64,482 25 ] 15 40 010 0.2

38 3 32241 29 ] 12 41 0,05 0.08

43 B 85,976 53 1 15 68 048 0.70

47 2 21494 63 1 10 74 003 003

48 3 32241 45 ] 18 64 004 0.07

|L|: number of segments.
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Anti piping measures
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Figure: Flood probabilities for dike ring 10 according to the optimal investment strategy, with the
option of constructing anti piping measures only.
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Conclusion

@ Flexible and efficient model for dike height optimization.
@ Proven optimal solutions with fast computation using preprocessing.
@ Applicable in both Dutch and international flood risk settings.
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Thank you for your attention!




	Úvod
	Hlavní část
	Závěr

