Stochastic vs Deterministic Programming in Water Management

Yousaf Shad Muhammad & Georg C. Pflug

Annals of Operations Research (2014)

Outline

Introduction

- 2 Mathematical Model
- In the second second
- 4 Scenario Generation
- 6 Modeling conditions
- 6 Results

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation

- Water management in the Indus Basin Irrigation System (IBIS)
- Vast network: 2 major reservoirs, 19 barrages, 44 canals
- Agriculture is vital to Pakistan's economy (90% of food production)

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation

Indus Irrigation System (Source:WCD, Terbela Dam a Scoping report)

Deterministic vs Stochastic Programming

- Deterministic LP assumes perfect knowledge of inputs
- Stochastic LP models uncertainty in inflows and rainfall
- Flexibility improves system efficiency and economic outcomes
- Captures real-world randomness in water availability

Two-Stage Stochastic Programming

General form:

$$\min_{x} \quad c^{\top}x + \mathbb{E}_{\xi}[q(\xi)^{\top}y(\xi)]$$

subject to Ax = b,

$$T(\xi)x + Wy(\xi) = h(\xi),$$

 $x \ge 0$, $y(\xi) \ge 0$.

3

(日)

Interpretation in our model

- x: area sown for each crop in each canal command (first-stage decision)
- y(ξ): area actually cultivated after rainfall/inflows are realized (second-stage decision)
- ξ : random variable that represents the rainfall and water inflow
- *T*(ξ), *W*: matrices linking sowing and cultivation (identity matrices here)

Simplified Recourse Constraints

Second stage constraint:

$$x-y(\xi)-z(\xi)=0$$

where $z(\xi) =$ dropped cultivation area.

Equivalent to:

 $0 \leq y(\xi) \leq x$

Only cultivate what has been sown.

Interpretation in Water Management

• First stage (here-and-now decisions):

- Decide the area to be sown with each crop before knowing future inflows and rainfall.
- Second stage (wait-and-see decisions):
 - Adjust cultivation areas after actual inflows and rainfall are realized.
 - Some sown areas may be dropped depending on water availability.

< 同 ト < 三 ト < 三 ト

Table: Indexes and Cardinality

Index	Name	Cardinality
с	Crop	13
i	Storage (reservoir)	2
k	State	4
1	Canal command	44
n	Node	35
r	River	7
S	Scenario	200
t	Time-step	12 (monthly) or 36 (ten-daily)
z	Rainfall zone	3

Note: Node set includes reservoirs, rim stations, and ordinary nodes.

э

イロト 不得下 イヨト イヨト

Objective Function

Maximize Expected Revenue:

$$\max\left[\sum_{s\in S} \pi_s \left(\sum_{l\in L} \sum_{c\in C} (p_c \lambda_{cl} - \theta_{cl}) Y_{lc}^s\right) - \sum_{l\in L} \sum_{c\in C} \vartheta_{cl} X_{lc}\right]\right]$$

Where:

- $\pi_s = \text{scenario probability}$
- $p_c = \text{crop price}, \ \lambda_{cl} = \text{yield}$
- $\theta_{cl} = \text{labor cost}, \ \vartheta_{cl} = \text{sowing cost}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Constraint: Crop Area Limits

Land occupation:

$$\sum_{c \in C} a_{clt} \leq \mathsf{Land}_I \quad \forall l \in L, t \in T$$

$$X_{lc} - Y^s_{lc} \ge 0 \quad \forall l \in L, c \in C, s \in S$$

• Maximum permitted crop area by zone:

$$\sum_{l:z(l)=z} X_{lc} \leq \mathsf{CropArea}_{zc} \quad \forall z \in Z, c \in C$$

(represents agronomic and policy limits)

Land occupation

Land occupation a_{clt}

Yousaf Shad Muhammad & Georg C. Pflug Stochastic vs Deterministic Programming

э

イロト イボト イヨト イヨト

Constraint: Crop Area Limits

Land occupation:

$$\sum_{c \in C} a_{clt} \leq \mathsf{Land}_I \quad \forall l \in L, t \in T$$

$$X_{lc} - Y^s_{lc} \ge 0 \quad \forall l \in L, c \in C, s \in S$$

• Maximum permitted crop area by zone:

$$\sum_{l:z(l)=z} X_{lc} \leq \mathsf{CropArea}_{zc} \quad \forall z \in Z, c \in C$$

(represents agronomic and policy limits)

Constraint: System network

System network

$$\sum_{\substack{n':(n',n)\in\mathcal{N}\\n'':(n,n'')\in\mathcal{N}}} \eta_{n'nt}^{s} + \sum_{\substack{i:(i,n)\in\mathcal{N}\\i:(i,n)\in\mathcal{N}}} \omega_{int}^{s} + \tilde{\alpha}_{r(n)t}^{s}}$$
$$- \sum_{\substack{n'':(n,n'')\in\mathcal{N}\\n'':t}} \eta_{nn''t}^{s} - \sum_{\substack{l:n(l)=n\\l:n(l)=n}} W_{lt}^{s} \ge 0, \quad \forall n \in \mathbb{N}, \ t \in \mathcal{T}, \ s \in S$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Constraint: Reservoir Storage Dynamics

• Water linkage:

$$\Delta_{i(t-1)}^{s} + \tilde{\alpha}_{r(i)t}^{s} - \Delta_{it}^{s} - \sum_{(i,n)\in N} \omega_{int}^{s} - \epsilon_{it} = 0; \quad \forall i \in N_{S}, t \in T, s \in S$$

• Water consumption balance:

$$\delta_{l}W_{lt}^{s} + \tau_{lt} - \sum_{c \in C} \max(v_{clt} - \tilde{\sigma}_{z(l)t}^{s}, 0)Y_{lt}^{s} \ge 0; \quad \forall l \in L, t \in T, s \in S$$

Water availability

$$\sum_{r:n\in NR} \tilde{\alpha}_{r(n)t}^{s} + \sum_{i:(i,n)\in N} \sum_{n:(i,n)\in N} \omega_{int}^{s} - \sum_{l\in L} W_{lt}^{s} \geq 0; \quad \forall t\in T, s\in S$$

Constraint: Flood Aversion and Political Water Sharing

Flood aversion:

$$\sum_{r:n\in NR} \tilde{\alpha}_s^{r(n)t} + \sum_{i:(i,n)\in N} \sum_{n:(i,n)\in N} \omega_s^{int} - \sum_{l\in L} W_{lt}^s \leq H; \quad \forall t\in T, s\in S$$

• Political water sharing:

$$\sum_{l:k(l)=k} \sum_{t \in T} W_{lt}^s = \mathsf{Share}_k \sum_{l \in L} \sum_{t \in T} W_{lt}^s \quad \forall k \in \mathcal{K}, s \in S$$

Constraint: Labor Availability

• Labor constraint per rainfall zone:

$$\sum_{l:z(l)=z} \sum_{c \in C} \beta_{clt} Y_{lc}^{s} \leq \mathsf{Labor}_{z} \quad \forall z \in Z, t \in T, s \in S$$

Non negativity

 $X_{lc}, Y_{lc}^s, \Delta_{it}^s, W_{lt}^s \geq 0$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Scenario Generation

۰

- Random parameters: inflows (2 seasons), rainfall (3 zones)
- Historical data fitted to Normal distributions

$$d_1(G, \tilde{G}) = \sup\left\{\int f(u) dG(u) - \int f(u) d\tilde{G}(u) : L_1(f) \leq 1\right\}$$

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Scenario Generation

Discrete Estimate

Dicrete estimate for inflow distribution

2

(日)

Scenario Generation

- If G is the standard normal N(0, 1) distribution, the optimal location of approximating mass points are -3.4, -1.029, 0, 1.029, 3.4
- If \tilde{G} sits on two points, the optimal values are -0.7979, 0.7979
- Discretized into 5 (inflow) and 2 (rainfall) support points
- Total scenarios: $5 \times 5 \times 2 \times 2 \times 2 = 200$

Models

- Monthly horizon, single-stage deterministic model (average inflow and rainfall).
- Monthly horizon, two-stage stochastic model with 200 scenarios.
- Ten-daily horizon, two-stage stochastic model with 200 scenarios.
- Solved using dual-simplex algorithm

Model dimensions

Model	Rows	Columns	Non-zeros	Memory Used
Monthly deterministic	2,773	2,437	20,405	< 1 MB
Monthly stochastic	572,374	487,861	3,080,807	253 MB
Ten-daily stochastic	767,830	1,191,061	7,751,040	611 MB

Table: Model statistics summary

э

イロト イポト イヨト イヨト

Cropping Patterns and Revenue

- Deterministic: 5.318 bn USD
- Monthly Stochastic: 6.130 bn USD
- Ten-daily Stochastic: 7.175 bn USD

< ∃ ►

Cropping Policy and Revenue

Crop	Deterministic	Stochastic (monthly)	Stochastic (ten-daily)	Actual (2003–2004)
Basmatti	577	697	519	-
Irri	758	758	838	2503
Maize	81	81	87	896
Mustard	310	310	331	244
Sugarcane	924	924	1026	947
Fodder-kharif	1313	1313	1403	Not available
Fodder-rabi	1352	1352	1445	Not available
Cotton	2881	2881	3028	3221
Gram	880	880	468	1038
Wheat	2296	3624	4403	8330
Potato	32	32	77	111
Onion	56	56	60	122
Chilies	78	69	85	39
Total Area	11538	12977	13770	-
Exp. Revenue (bn USD)	5.318	6.130	7.175	Not available

э

The Value of Stochastic Solution (VSS)

- **VSS** = RP EEV
- Expected result with perfect recourse (RP): 6.130 bn USD
- Expected result under deterministic solution (EEV): 5.473 bn USD
- VSS = 0.657 bn USD

A 回 > A 回 > A 回 >

Expected Value of Perfect Information (EVPI)

- EVPI = PI RP
- Perfect Information (PI): 6.241 bn USD
- Recourse Problem (RP): 6.130 bn USD
- EVPI = 0.111 bn USD

< ロ > < 同 > < 回 > < 回 > < 回 > <

Storage and Power Generation

- Storage levels maintained within min-max bounds
- Power generation (hydro): varies between 10,316 to 29,352 GWH
- Ten-daily model allows better adjustment to extreme inflow scenarios

Results

Revenue plot

Monthly model

æ

A D N A B N A B N A B N

Results

Revenue plot

Ten-daily model

30 / 32

æ

A D N A B N A B N A B N

Summary

- Stochastic programming significantly improves revenues
- Shorter time horizons (ten-daily) add even more flexibility
- Captures uncertainty in inflow and rainfall efficiently
- Scenario-based stochastic optimization is crucial in water management

Thank you for your attention

æ

<ロト < 四ト < 三ト < 三ト