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Recall the definitions of the IFT and DFT circuits for (Z2m ,+):

IFT : |k⟩ 7→ 1√
2m

2m−1∑
l=0

ωkl
2m |l⟩,

DFT : |k⟩ 7→ 1√
2m

2m−1∑
l=0

ωkl
2m |l⟩,

where ωN
M denotes e2πi

N
M .

The following exercises are designed to derive Shor’s algorithm as an application
of Kitaev’s algorithm for phase estimation. We start by solving the following pro-
blem: given a unitary operator U with an eigenvector |ψ⟩, find its corresponding
eigenvalue. Note that the eigenvalue is of the form e2πiθ for some θ ∈ [0, 1], and we
will be computing this θ (also known as phase).

The idea is simple: we apply different powers of U on |ψ⟩ at the same time to
get the distribution of the outputs, which will be almost periodic (i.e., similar to a
character). We can then use the DFT to find the corresponding character, which,
hopefully, will help us compute θ.

Formally, we pick some M = 2m large enough and construct the circuit:

|k⟩|ψ⟩ 7→ |k⟩Uk|ψ⟩ = e2πikθ|k⟩|ψ⟩,(1)

where |k⟩ ∈ Hm
2 .

(1) Implement the above circuit using at most m controlled single-qubit ope-
rators.

To apply all the possible powers of U onto |ψ⟩ simultaneously we need to apply
the above circuit onto the (H⊗m|0⟩⊗m)|ψ⟩.

(2) Write down the result of the application of (1) onto (H⊗m|0⟩⊗m)|ψ⟩.
The resulting state is of the form |φ⟩|ψ⟩, and so we can drop the |ψ⟩ part (or

recycle it for future usage). So, from now on, we concentrate on the given |φ⟩ only.
(3) Assume θ is of the form p

2m for some natural number p. Show that applying
DFT on |φ⟩ and measuring the result in the computational basis yields the
desired θ (actually |p⟩, however θ can then be easily reconstructed) with
probability 1.

Assume now that 2mθ = a+ 2mδ for some natural number a so that |2mδ| ≤ 1
2 .

Since it is not possible, in general, to compute an arbitrary θ, from now on we will
be interested in computing the natural number a which is a good approximation of
2mθ.

(4) Apply DFT on the general |φ⟩ and compute the result. Show that, assuming
δ is 0, one arrives at the same conclusion as in the previous exercise.
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We now measure the result in the computational basis and ask about the pro-
bability of getting |a⟩.

(5) * Show a good (e.g., constant) lower bound on getting |a⟩ after the measu-
rement, assuming δ ̸= 0.

This concludes Kitaev’s algorithm on phase estimation. We now connect it with
Shor’s algorithm.

Assume we are given a ∈ Z∗
N and U realizing multiplication by a in ZN . Let r

denote the order of a in ZN .
(6) Show that all eigenvectors of U are of the form λp = ωp

r = e2πi
p
r for

p = 0, 1, ..., r − 1.
(7) Show that the state |up⟩ = 1√

r

∑r−1
j=0 e

−2πi pj
r |aj⟩ is an eigenvector corre-

sponding to λp.
So, one might pick |u1⟩ and compute the phase of λ1, which equals 1

r , by apply-
ing Kitaev’s algorithm. This reveals the order of a. However, the problem is that
we cannot directly construct |u1⟩ without the knowledge of r. The corresponding
eigenvector, however, is crucial in the application of Kitaev’s algorithm.

(8) Assume we use Kitaev’s algorithm with |ψ⟩ =
∑
cp|up⟩. What do we expect

to see after the measurement?
(9) Show that |1⟩ = 1√

r

∑r−1
l=0 |up⟩. What do we expect to see after applying

Kitaev’s algorithm to this state?
This almost finishes Shor’s algorithm. i.e., finding the order of a in ZN . The final

catch is that we do not get the value p
r precisely but rather its binary approxi-

mation. To compute p
r , one needs to perform an algorithm related to continuous

fractions. Number theory then tells us that, assuming m in the application of Ki-
taev’s algorithm is big enough, we are guaranteed to find p

r exactly after a small
number of steps. This p

r can then be used to reconstruct r, assuming p and r are
coprime.

(10) * Fix r and pick p uniformly at random from the set {0, 1, ..., r − 1}. Give
a good lower bound on p and r being coprime.


