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Research Objectives

@ Model the distribution of insured individuals over time.
@ Estimate the average time spent in healthy and ill states.
@ Determine insurance premiums using Monte Carlo simulations.
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What is a Markov Chain?

A Markov Chain satisfies:
(d)
th+1 |Xth’ Xth_1 ) Xto = th+1 |th

State Space and Time:
@ The state space is a finite or countable set:

S:{SMSQ?"')Sm}‘

@ Time evolves in discrete steps:
T=Nyo=4{0,1,2,... }.
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What is a Markov Chain?

A Markov Chain satisfies:
(d)
th+1 |tha th_1 ) Xfo = th+1 |th

State Space and Time:
@ The state space is a finite or countable set:

82{317327"'7Sm}‘

@ Time evolves in discrete steps:
T=Nyo=4{0,1,2,... }.

Key Properties:
@ The future state depends only on the present state.
@ The history before t, is irrelevant.
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Transition Probabilities and Initial Distribution

Transition Probabilities:
pij(tt+1) = P(Xep1 =j | Xe =)
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Transition Probabilities and Initial Distribution

Transition Probabilities:
pij(tt+1) = P(Xep1 =j | Xe =)

Time Homogeneity: A Markov chain {X;};c 7 is called non-homogeneous in time,
unless:
Vi,je SSVKeN, PXike1 =7 | Xk =1) = P(Xeg1 =4 | Xe = ).
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Transition Probabilities and Initial Distribution

Transition Probabilities:

pij(t,t+1)=P(Xep1 =j | Xs =)

Time Homogeneity: A Markov chain {X;}:c 1 is called non-homogeneous in time,
unless:

Vije S,Vk €N, P(Xpkst =J | Xovk = 1) = P(Xew1 = | X; = i).

Initial Distribution: For a Markov chain {X;}+>0, the probability distribution oo = {a }kes,
where:

P(Xto = Sk) = oK = psk(O), Sk € S,
is called the initial distribution of the chain.
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Transition Probabilities and Initial Distribution

Transition Probabilities:
pij(t,t+1) = P(Xer1 =j | Xe = 1)

Time Homogeneity: A Markov chain {X;}:c 1 is called non-homogeneous in time,
unless:
Vi,je SSVKeN, PXike1 =7 | Xk =1) = P(Xeg1 =4 | Xe = ).

Initial Distribution: For a Markov chain {X;}+>0, the probability distribution oo = {a }kes,
where:
P(Xto = Sk) = oK = psk(O), Sk € S,

is called the initial distribution of the chain.
The absolute probability of the states of the Markov chain:

Pei(0.h) = B (h).
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Chapman-Kolmogorov Equality

Chapman-Kolmogorov Equality (Fecenko, 2018) states that for a Markov chain:

h—1

p®(h) = p®I(h—1)- P(h—1;h) = p®(0) - T] P(t: t + 1).
t=0
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Chapman-Kolmogorov Equality

Chapman-Kolmogorov Equality (Fecenko, 2018) states that for a Markov chain:
h—1

p®(h) = p®I(h—1)- P(h—1;h) = p®(0) - T] P(t: t + 1).
t=0

Interpretation:

@ The probability of transitioning from state k at time 0 to a state at time h depends on
the intermediate transition probabilities.

@ The Chapman-Kolmogorov equation allows us to compute long-term probabilities by
multiplying stepwise transitions.

@ This is fundamental in analyzing Markov Chains over multiple time steps.
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Generating a Discrete Random Variable

Inverse Transformation Method: To generate a discrete random variable Z with
distribution
PZ=z)=px, k=1,....m,

we use the following steps:
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Generating a Discrete Random Variable

Inverse Transformation Method: To generate a discrete random variable Z with
distribution
PZ=z)=px, k=1,....m,
we use the following steps:
@ Generate u ~ Unif(0, 1).
@ If u < py, then return z;.
@ Otherwise, find the smallest k such that:

k—1 k
Yopi<u<y p
i=1 i=1

Then return z.
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Generating Trajectories of a Non-Homogeneous Markov Chain

For a previously defined non-homogeneous Markov Chain, the process of generating one
trajectory of length h follows these steps:
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Generating Trajectories of a Non-Homogeneous Markov Chain

For a previously defined non-homogeneous Markov Chain, the process of generating one
trajectory of length h follows these steps:

@ Generate xp from the initial distribution, determining the starting state X;,.
@ Attime k, generate x, from the transition distribution:

(P (te—1: 1)) s

@ Repeat until k = h.
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Trajectory matrix

The results of multiple simulations are stored in a trajectory matrix M:

@M = [mjloxn, z€S.

where:
@ n = number of simulated trajectories.
@ h = number of time steps.
@ Each entry mj represents the state of the trajectory / at the time step j.
@ zis the initial state.
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Accuracy of Estimation

For Y, ~ Binom(n, p), the approximate confidence interval for p at level « is given by:

Yn Yn
(F — U2 0, T T U2 U) )
where:
pl—p) _ 1

n - 2vn’
and u;_, 2 is the quantile of the standard normal distribution.
Thus, we obtain the uniform confidence intervals:

Vg u 1 Y, u 1
I 1—a/2 2vn’ n + 1704/2'2\/B .

g =
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Accuracy of Estimation

Table 1 Accuracy of the probability estimate p for a given number of simulations n with confidence 1 -a=09

n £os
1000 0.0260
10 000 0.0082
100 000 0.0026
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Multi-State Model for Long-Term Care Insurance

We consider a unidirectional multi-state model with three states:
@ Healthy/Active (A): Can transition to Il (I) or Dead (D).
@ lll (I): Can only transition to Dead (D).
@ Dead (D): Absorbing state.
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Multi-State Model for Long-Term Care Insurance

We consider a unidirectional multi-state model with three states:
@ Healthy/Active (A): Can transition to Il (I) or Dead (D).
@ lll (I): Can only transition to Dead (D).
@ Dead (D): Absorbing state.

Transition Probability Matrix:

paa(tit+1) patit+1) pap(tit+1)
P(t,t+1) = 0 pu(tit+1)  pro(tit+1)
0 0 1
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Transition probabilities
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Figure 1 Transition probabilities p; ;(t, t + 1), /,j € {A, I, D} by age t of males in Italy.
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Estimated percentage distribution

n L
percs?(h) = p{(h) - 100 ~ M 100, ge{A D}, ze{A I}
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Portfolio Composition

The portfolio is composed of K insured lives:
K=Ks+ K

where K; denotes the number of insured lives in the state s.
The total expected number of insured lives in all states is given by the formula:

k= Ka-pA(h) + Ki-pP(h).
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Estimation of the distribution of insured lives in the separate states
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Figure 2 Percentage distribution of initially healthy lives aged 50 in the different states A, I, D over time

15/31 Volodymyr Sahan UoMCSILTCI



Estimated Distribution of Insured Lives After 5 Years

starting age: 50 years starting age: 60 years

3.22868%| {0.8749%

starting age: 70 years starting age: 80 years.
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Figure 3 Distribution of insured lives after 5 years based on 100,000 simulations.
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Time

Healthy

Dead

Total

© 00N U~ WND =

—
o

299,211 (93.503%)
298,339 (93.231%)
297,386 (92.933%)
296,329 (92.603%)
295,166 (92.239%)
293,895 (91.842%)
292,519 (91.412%)
291,014 (90.942%)
289,364 (90.426%)

(

287,541 (89.857%)

17,649 (5.515%)
15,551 (4.860%)
13,628 (4.259%)
11,900 (3.719%)
10,407 (3.252%)
9,140 (2.856%)
8,072 (2.523%)
7,185 (2.245%)
6,460 (2.019%)
5,871 (1.834%)

3,140 (0.982%)

6,110 (1.909%)

8,986 (2.808%)
11,771 (3.678%)
14,427 (4.509%)
16,965 (5.302%)
19,409 (6.065%)
21,801 (6.813%)
24,176 (7.555%)
26,588 (8.309%)

320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)
320,000 (100%)

Distribution of the number of insured lives during 10 years for males aged 50, of which at the beginning

K, = 300000 were in the healthy state and K; = 20000 in the ill state
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Estimation of Time Remaining Healthy

Objective: Estimate the duration an insured individual remains in the healthy state using
simulated trajectories of a non-homogeneous Markov chain.
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Estimation of Time Remaining Healthy

Objective: Estimate the duration an insured individual remains in the healthy state using
simulated trajectories of a non-homogeneous Markov chain.
Methodology:

@ Simulated 1,000 trajectories using transition probability matrices.
@ Initial ages considered: 50, 60, 70, 80.
@ Model states up to age 120.
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Visualization of Estimated Healthy Years
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Figure 4 Analysis of the number of years the insured life remained healthy for the initial
ages 50, 60, 70, and 80 using a bar plot and a box plot.
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Estimated Healthy Years at Different Initial Ages

Age | X025 | Median | xp.75 Mean
50 25 33 39 | 31.39801
60 16 23 29 | 22.53211
70 9 15 20 | 14.54286
80 4 7 12 8.10224

Table 4 Estimated values for the number of years the insured life remains in the healthy
state.
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Visualization of Estimated lll Years
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Figure 5 Analysis of the number of years during which insured life remained ill for ages
50, 60, 70 and 80 using a bar graph and a box plot
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Estimated lll Years at Different Initial Ages

Age | X025 | Median | xg 7 Mean
50 1 3 5 3.599501
60 1 3 5 3.532215
70 1 3 4 3.365925
80 1 2 4 3.002761

Table 5 Estimated values for the number of years during which the insured life was in the

ill state.
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Calculation of Long-Term Care Insurance Premiums

We determine the single premium P that an insured life aged x must pay to receive an
annual benefit C when in a state of non-self-sufficiency.

@ The insured is initially in the healthy state at the start of the policy.

@ We use generated non-homogeneous Markov chain trajectories stored in matrix
AM = [Minxh.

@ To calculate the premium, we transform ill-state (/) elements to C and other elements
to zero, resulting in matrix Mc.
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Premium Calculation Formula

The single premium P is determined as:
P=M:-U
where: ,
U=[uglnxt, uy=1+u)"’

with u as the annual interest rate.

Example:
@ A healthy life aged 50 would pay €12,583.42 as a single premium to receive
C=12000 annually with interest rate u = 0.01.

@ The premium was estimated using the arithmetic average over 1,000 repeated
scenarios.
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Standard Life Insurance Formula

w—X
(1
P= ZP;\,'?q Qe V- W(ag(-)t-t)

where:
o w— highest age in the relevant mortality table.
° Xt 1 — probability that a life aged x remains healthy for { — 1 years.
° qXJr,_1 probability that a life aged x + t — 1 in the healthy state becomes ill within
one year.
o v= (1 + u)~" — discount factor, where u is the annual interest rate.

° w(a +¢) — Whole life annuity-due for a life aged x + t if they are in the ill state, defined
as:

—(x+t)

k—1
x+t =C Z px+tk1
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Comparison of Premium Calculation

Using this formula, we calculated the single premium for a male life aged 50 as:
P =12,584.37
In comparison, the premium obtained from the simulation was:

P =12,583.42

26/31 Volodymyr Sahan UoMCSILTCI



Premium E
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Figure 6 Modelling of the premiums based on 1 000 scenarios for 1 000 non-homogeneous Markov chain
simulations
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Premium E
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Figure 7 Modelling of the premiums based on 1 000 scenarios for 100 000 non-homogeneous Markov chain
simulations
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Variation in Premium Estimates Across Scenarios
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Figure 8 50 premium estimates for 1 000 scenarios for 1 000 non-homogeneous Markov chain simulations.
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Thank you for your attention!
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