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Research Objectives

Model the distribution of insured individuals over time.
Estimate the average time spent in healthy and ill states.
Determine insurance premiums using Monte Carlo simulations.
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What is a Markov Chain?

A Markov Chain satisfies:

Xth+1 |Xth ,Xth−1 , . . . ,Xt0
(d)
= Xth+1 |Xth

State Space and Time:
The state space is a finite or countable set:

S = {s1, s2, . . . , sm}.

Time evolves in discrete steps:

T = N0 = {0,1,2, . . . }.

Key Properties:
The future state depends only on the present state.
The history before th is irrelevant.
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Transition Probabilities and Initial Distribution
Transition Probabilities:

pi,j(t , t + 1) = P(Xt+1 = j | Xt = i)

Time Homogeneity: A Markov chain {Xt}t∈T is called non-homogeneous in time,
unless:

∀i , j ∈ S,∀k ∈ N, P(Xt+k+1 = j | Xt+k = i) = P(Xt+1 = j | Xt = i).

Initial Distribution: For a Markov chain {Xt}t≥0, the probability distribution α = {αk}k∈S,
where:

P(Xt0 = sk ) = αk = psk (0), sk ∈ S,

is called the initial distribution of the chain.
The absolute probability of the states of the Markov chain:

pk,j(0,h) = p(k)
j (h).
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Chapman-Kolmogorov Equality

Chapman-Kolmogorov Equality (Fecenko, 2018) states that for a Markov chain:

p(k)(h) = p(k)(h − 1) · P(h − 1;h) = p(k)(0) ·
h−1∏
t=0

P(t ; t + 1).

Interpretation:
The probability of transitioning from state k at time 0 to a state at time h depends on
the intermediate transition probabilities.
The Chapman-Kolmogorov equation allows us to compute long-term probabilities by
multiplying stepwise transitions.
This is fundamental in analyzing Markov Chains over multiple time steps.
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Generating a Discrete Random Variable

Inverse Transformation Method: To generate a discrete random variable Z with
distribution

P(Z = zk ) = pk , k = 1, . . . ,m,

we use the following steps:

Generate u ∼ Unif(0,1).
If u < p1, then return z1.
Otherwise, find the smallest k such that:

k−1∑
i=1

pi < u ≤
k∑

i=1

pi .

Then return zk .
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Generating Trajectories of a Non-Homogeneous Markov Chain

For a previously defined non-homogeneous Markov Chain, the process of generating one
trajectory of length h follows these steps:

Generate x0 from the initial distribution, determining the starting state Xt0 .
At time k , generate xk from the transition distribution:(

pxk−1,j(tk−1, tk )
)

j∈S .

Repeat until k = h.
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Trajectory matrix

The results of multiple simulations are stored in a trajectory matrix M:

(z)M = [mij ]n×h, z ∈ S.

where:
n = number of simulated trajectories.
h = number of time steps.
Each entry mij represents the state of the trajectory i at the time step j .
z is the initial state.
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Accuracy of Estimation

For Yn ∼ Binom(n,p), the approximate confidence interval for p at level α is given by:(
Yn

n
− u1−α/2 · σ,

Yn

n
+ u1−α/2 · σ

)
,

where:

σ =

√
p(1 − p)

n
≤ 1

2
√

n
,

and u1−α/2 is the quantile of the standard normal distribution.
Thus, we obtain the uniform confidence intervals:(

Yn

n
− u1−α/2 ·

1
2
√

n
,

Yn

n
+ u1−α/2 ·

1
2
√

n

)
.

9/31 Volodymyr Sahan UoMCSiLTCI



Accuracy of Estimation
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Multi-State Model for Long-Term Care Insurance

We consider a unidirectional multi-state model with three states:
Healthy/Active (A): Can transition to Ill (I) or Dead (D).
Ill (I): Can only transition to Dead (D).
Dead (D): Absorbing state.

Transition Probability Matrix:

P(t , t + 1) =

pA;A(t ; t + 1) pA;I(t ; t + 1) pA;D(t ; t + 1)
0 pI;I(t ; t + 1) pI;D(t ; t + 1)
0 0 1
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Transition probabilities

Figure 1 Transition probabilities pi,j (t , t + 1), i, j ∈ {A, I,D} by age t of males in Italy.
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Estimated percentage distribution

perc(z)
g (h) = p(z)

g (h) · 100 ≈
∑n

i=1 I[mij = g]
n

· 100, g ∈ {A, I,D}, z ∈ {A, I}.
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Portfolio Composition

The portfolio is composed of K insured lives:

K = KA + KI

where Ks denotes the number of insured lives in the state s.
The total expected number of insured lives in all states is given by the formula:

k = KA · p(A)(h) + KI · p(I)(h).
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Estimation of the distribution of insured lives in the separate states

Figure 2 Percentage distribution of initially healthy lives aged 50 in the different states A, I, D over time
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Estimated Distribution of Insured Lives After 5 Years

Figure 3 Distribution of insured lives after 5 years based on 100,000 simulations.
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Table

Time Healthy Ill Dead Total
1 299,211 (93.503%) 17,649 (5.515%) 3,140 (0.982%) 320,000 (100%)
2 298,339 (93.231%) 15,551 (4.860%) 6,110 (1.909%) 320,000 (100%)
3 297,386 (92.933%) 13,628 (4.259%) 8,986 (2.808%) 320,000 (100%)
4 296,329 (92.603%) 11,900 (3.719%) 11,771 (3.678%) 320,000 (100%)
5 295,166 (92.239%) 10,407 (3.252%) 14,427 (4.509%) 320,000 (100%)
6 293,895 (91.842%) 9,140 (2.856%) 16,965 (5.302%) 320,000 (100%)
7 292,519 (91.412%) 8,072 (2.523%) 19,409 (6.065%) 320,000 (100%)
8 291,014 (90.942%) 7,185 (2.245%) 21,801 (6.813%) 320,000 (100%)
9 289,364 (90.426%) 6,460 (2.019%) 24,176 (7.555%) 320,000 (100%)

10 287,541 (89.857%) 5,871 (1.834%) 26,588 (8.309%) 320,000 (100%)

Distribution of the number of insured lives during 10 years for males aged 50, of which at the beginning
KA = 300000 were in the healthy state and KI = 20000 in the ill state
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Estimation of Time Remaining Healthy

Objective: Estimate the duration an insured individual remains in the healthy state using
simulated trajectories of a non-homogeneous Markov chain.

Methodology:
Simulated 1,000 trajectories using transition probability matrices.
Initial ages considered: 50, 60, 70, 80.
Model states up to age 120.
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Visualization of Estimated Healthy Years

Figure 4 Analysis of the number of years the insured life remained healthy for the initial
ages 50, 60, 70, and 80 using a bar plot and a box plot.
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Estimated Healthy Years at Different Initial Ages

Age x0.25 Median x0.75 Mean
50 25 33 39 31.39801
60 16 23 29 22.53211
70 9 15 20 14.54286
80 4 7 12 8.10224

Table 4 Estimated values for the number of years the insured life remains in the healthy
state.
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Visualization of Estimated Ill Years

Figure 5 Analysis of the number of years during which insured life remained ill for ages
50, 60, 70 and 80 using a bar graph and a box plot
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Estimated Ill Years at Different Initial Ages

Age x0.25 Median x0.75 Mean
50 1 3 5 3.599501
60 1 3 5 3.532215
70 1 3 4 3.365925
80 1 2 4 3.002761

Table 5 Estimated values for the number of years during which the insured life was in the
ill state.
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Calculation of Long-Term Care Insurance Premiums

We determine the single premium P that an insured life aged x must pay to receive an
annual benefit C when in a state of non-self-sufficiency.

The insured is initially in the healthy state at the start of the policy.
We use generated non-homogeneous Markov chain trajectories stored in matrix
(A)M = [mij ]n×h.
To calculate the premium, we transform ill-state (I) elements to C and other elements
to zero, resulting in matrix MC .
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Premium Calculation Formula

The single premium P is determined as:

P = MC · U

where:
U = [uij ]h×1, uij = (1 + u)−i

with u as the annual interest rate.

Example:
A healthy life aged 50 would pay C12,583.42 as a single premium to receive
C=12000 annually with interest rate u = 0.01.
The premium was estimated using the arithmetic average over 1,000 repeated
scenarios.
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Standard Life Insurance Formula

P =
ω−x∑
t=1

pAA
x,t−1 · qAI

x+t−1 · v t · π(ä(I)
x+t)

where:
ω – highest age in the relevant mortality table.
pAA

x,t−1 – probability that a life aged x remains healthy for t − 1 years.
qAI

x+t−1 – probability that a life aged x + t − 1 in the healthy state becomes ill within
one year.
v = (1 + u)−1 – discount factor, where u is the annual interest rate.
π(ä(I)

x+t) – whole life annuity-due for a life aged x + t if they are in the ill state, defined
as:

π(ä(I)
x+t) = C

ω−(x+t)∑
k=1

pII
x+t,k−1 · vk−1
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Comparison of Premium Calculation

Using this formula, we calculated the single premium for a male life aged 50 as:

P = 12,584.37

In comparison, the premium obtained from the simulation was:

P = 12,583.42
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Premium Estimates with 1,000 Simulations per Scenario

Figure 6 Modelling of the premiums based on 1 000 scenarios for 1 000 non-homogeneous Markov chain
simulations
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Premium Estimates with 100,000 Simulations per Scenario

Figure 7 Modelling of the premiums based on 1 000 scenarios for 100 000 non-homogeneous Markov chain
simulations
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Variation in Premium Estimates Across Scenarios

Figure 8 50 premium estimates for 1 000 scenarios for 1 000 non-homogeneous Markov chain simulations.
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Thank you for your attention!
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